Skip to main content

Cerebral Cortical Control of Deglutition

  • Chapter
  • First Online:

Abstract

The human swallowing musculature is coordinated centrally through a multidimensional hierarchy of deglutative centres both in the cerebral cortex and brain stem. The cortex has an important role in initiation of the volitional swallow and has a role in all three phases of deglutition. Developments in technology, particularly functional brain imaging, have seen a fuller delineation of the human swallowing network and studies have shown that this system is adaptable to stimuli and subject to plastic change both to internal and external inputs. There is evidence to suggest cortical functional asymmetry, with a dominant swallowing hemisphere in healthy individuals, and when this is affected by stroke, with the non-dominant hemisphere clinically thought to be relevant in re-organisation and recovery of swallowing function. Finally, there is now considerable interest in neuromodulatory-based techniques in driving this brain re-organisation after cerebral injury.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Martino R, et al. Dysphagia after stroke: incidence, diagnosis, and pulmonary complications. Stroke. 2005;36(12):2756–63.

    Article  PubMed  Google Scholar 

  2. Millers AJ. The neurobiology of swallowing and dysphagia. Dev Disabil Res Rev. 2008;14(2):77–86.

    Article  Google Scholar 

  3. Martin RE, Sessle BJ. The role of the cerebral cortex in swallowing. Dysphagia. 1993;8(3):195–202.

    Article  PubMed  CAS  Google Scholar 

  4. Mistry S, Hamdy S. Neural control of feeding and swallowing. Phys Med Rehabil Clin N Am. 2008;19(4):709–28. Vii–viii.

    Article  PubMed  Google Scholar 

  5. Miller FR. The cortical paths for mastication and deglutition. J Physiol. 1920;53(6):473–8.

    PubMed  CAS  Google Scholar 

  6. Miller FR, Sherrington CS. Some observations on the buccopharyngeal stage of reflex deglutition in the cat. Quart J Exp Physiol. 1916;9:147–86.

    Google Scholar 

  7. Penfield W, Boldrey E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain. 1937;60:389–443.

    Article  Google Scholar 

  8. Aziz Q, et al. The topographic representation of esophageal motor function on the human cerebral cortex. Gastroenterology. 1996;111(4):855–62.

    Article  PubMed  CAS  Google Scholar 

  9. Hamdy S, et al. The cortical topography of human swallowing musculature in health and disease. Nat Med. 1996;2(11):1217–24.

    Article  PubMed  CAS  Google Scholar 

  10. Barer DH. The natural history and functional consequences of dysphagia after hemispheric stroke. J Neurol Neurosurg Psychiatry. 1989;52(2):236–41.

    Article  PubMed  CAS  Google Scholar 

  11. Gordon C, Hewer RL, Wade DT. Dysphagia in acute stroke. Br Med J (Clin Res Ed). 1987;295(6595):411–4.

    Article  CAS  Google Scholar 

  12. Meadows JC. Dysphagia in unilateral cerebral lesions. J Neurol Neurosurg Psychiatry. 1973;36(5):853–60.

    Article  PubMed  CAS  Google Scholar 

  13. Hamdy S, et al. Physiology and pathophysiology of the swallowing area of human motor cortex. Neural Plast. 2001;8(1–2):91–7.

    Article  PubMed  CAS  Google Scholar 

  14. Mistry S, et al. Unilateral suppression of pharyngeal motor cortex to repetitive transcranial magnetic stimulation reveals functional asymmetry in the hemispheric projections to human swallowing. J Physiol. 2007;585(Pt 2):525–38.

    Article  PubMed  CAS  Google Scholar 

  15. Hamdy S, et al. Recovery of swallowing after dysphagic stroke relates to functional reorganization in the intact motor cortex. Gastroenterology. 1998;115(5):1104–12.

    Article  PubMed  CAS  Google Scholar 

  16. Hamdy S. The organisation and re-organisation of human swallowing motor cortex. Suppl Clin Neurophysiol. 2003;56:204–10.

    Article  PubMed  Google Scholar 

  17. Hamdy S, et al. Cortical activation during human volitional swallowing: an event-related fMRI study. Am J Physiol. 1999;277(1 Pt 1):G219–25.

    PubMed  CAS  Google Scholar 

  18. Martin RE, et al. Cerebral areas processing swallowing and tongue movement are overlapping but distinct: a functional magnetic resonance imaging study. J Neurophysiol. 2004;92(4):2428–43.

    Article  PubMed  Google Scholar 

  19. Martin R, et al. Cerebral cortical processing of swallowing in older adults. Exp Brain Res. 2007;176(1):12–22.

    Article  PubMed  Google Scholar 

  20. Toogood JA, et al. Discrete functional contributions of cerebral cortical foci in voluntary swallowing: a functional magnetic resonance imaging (fMRI) “Go, No-Go” study. Exp Brain Res. 2005;161(1):81–90.

    Article  PubMed  Google Scholar 

  21. Kern MK, et al. Cerebral cortical representation of reflexive and volitional swallowing in humans. Am J Physiol Gastrointest Liver Physiol. 2001;280(3):G354–60.

    PubMed  CAS  Google Scholar 

  22. Mosier KM, et al. Lateralization of cortical function in swallowing: a functional MR imaging study. AJNR Am J Neuroradiol. 1999;20(8):1520–6.

    PubMed  CAS  Google Scholar 

  23. Soros P, Inamoto Y, Martin RE. Functional brain imaging of swallowing: an activation likelihood estimation meta-analysis. Hum Brain Mapp. 2009;30(8):2426–39.

    Article  PubMed  Google Scholar 

  24. Humbert IA, Robbins J. Normal swallowing and functional magnetic resonance imaging: a systematic review. Dysphagia. 2007;22(3):266–75.

    Article  PubMed  Google Scholar 

  25. Hamdy S. Role of cerebral cortex in the control of swallowing. GI Motility Online (http://www.nature.com), 2006.

  26. Miller AJ. Deglutition. Physiol Rev. 1982;62(1):129–84.

    PubMed  CAS  Google Scholar 

  27. Palmer JB, et al. Volitional control of food transport and bolus formation during feeding. Physiol Behav. 2007;91(1):66–70.

    Article  PubMed  CAS  Google Scholar 

  28. Abe S, Wantanabe Y, Shintani M, Tazaki M, Takahashi M, Yamane GY, Ide Y, Yamada Y, Shimono M, Ishikawa T. Magnetoencephalographic study of the starting point of voluntary swallowing. Cranio. 2003;21(1):46–9.

    PubMed  Google Scholar 

  29. Dziewas R, et al. Neuroimaging evidence for cortical involvement in the preparation and in the act of swallowing. Neuroimage. 2003;20(1):135–44.

    Article  PubMed  CAS  Google Scholar 

  30. Watanabe Y, et al. Cortical regulation during the early stage of initiation of voluntary swallowing in humans. Dysphagia. 2004;19(2):100–8.

    Article  PubMed  Google Scholar 

  31. Steele CM, Miller AJ. Sensory input pathways and mechanisms in swallowing: a review. Dysphagia. 2010;25(4):323–33.

    Article  PubMed  Google Scholar 

  32. Leopold NA, Daniels SK. Supranuclear control of swallowing. Dysphagia. 2010;25(3):250–7.

    Article  PubMed  Google Scholar 

  33. Ertekin C, Aydogdu I. Neurophysiology of swallowing. Clin Neurophysiol. 2003;114(12):2226–44.

    Article  PubMed  Google Scholar 

  34. Lamkadem M, et al. Stimulation of the chewing area of the cerebral cortex induces inhibitory effects upon swallowing in sheep. Brain Res. 1999;832(1–2):97–111.

    Article  PubMed  CAS  Google Scholar 

  35. Zald DH, Pardo JV. Cortical activation induced by intraoral stimulation with water in humans. Chem Senses. 2000;25(3):267–75.

    Article  PubMed  CAS  Google Scholar 

  36. Babaei A, et al. Enhancing effects of flavored nutritive stimuli on cortical swallowing network activity. Am J Physiol Gastrointest Liver Physiol. 2010;299(2):G422–9.

    Article  PubMed  CAS  Google Scholar 

  37. Mistry S, et al. Modulation of human cortical swallowing motor pathways after pleasant and aversive taste stimuli. Am J Physiol Gastrointest Liver Physiol. 2006;291(4):G666–71.

    Article  PubMed  CAS  Google Scholar 

  38. Teismann IK, et al. Functional oropharyngeal sensory disruption interferes with the cortical control of swallowing. BMC Neurosci. 2007;8:62.

    Article  PubMed  Google Scholar 

  39. Furlong PL, et al. Dissociating the spatio-temporal characteristics of cortical neuronal activity associated with human volitional swallowing in the healthy adult brain. Neuroimage. 2004;22(4):1447–55.

    Article  PubMed  CAS  Google Scholar 

  40. Doeltgen SH, et al. Task-dependent differences in corticobulbar excitability of the submental motor projections: Implications for neural control of swallowing. Brain Res Bull. 2011;84(1):88–93.

    Article  PubMed  Google Scholar 

  41. Fraser C, et al. Driving plasticity in human adult motor cortex is associated with improved motor function after brain injury. Neuron. 2002;34(5):831–40.

    Article  PubMed  CAS  Google Scholar 

  42. Jayasekeran V, et al. Adjunctive functional pharyngeal electrical stimulation reverses swallowing disability after brain lesions. Gastroenterology. 2010;138(5):1737–46.

    Article  PubMed  Google Scholar 

  43. Soros P, et al. Stuttered swallowing: electric stimulation of the right insula interferes with water swallowing. A case report. BMC Neurol. 2011;11(1):20.

    Article  PubMed  Google Scholar 

  44. Lang IM. Brain stem control of the phases of swallowing. Dysphagia. 2009;24(3):333–48.

    Article  PubMed  Google Scholar 

  45. Shi G, et al. Deglutitive inhibition affects both esophageal peristaltic amplitude and shortening. Am J Physiol Gastrointest Liver Physiol. 2003;284:G575–82.

    PubMed  CAS  Google Scholar 

  46. Dong H, Loomis CW, Bieger D. Distal and deglutitive inhibition in the rat esophagus: role of inhibitory neurotransmission in the nucleus tractus solitarii. Gastroenterology. 2000;118(2):328–36.

    Article  PubMed  CAS  Google Scholar 

  47. Kruszewska B, Lipski J, Kanjhan R. An electrophysiological and morphological study of esophageal motoneurons in rats. Am J Physiol. 1994;266(2 Pt 2):R622–32.

    PubMed  CAS  Google Scholar 

  48. Car A, Roman C, Zoungrana OR. Effects of atropine on the central mechanism of deglutition in anesthetized sheep. Exp Brain Res. 2002;142(4):496–503.

    Article  PubMed  CAS  Google Scholar 

  49. Paine PA, et al. Modulation of activity in swallowing motor cortex following esophageal acidification: a functional magnetic resonance imaging study. Dysphagia. 2008;23(2):146–54.

    Article  PubMed  Google Scholar 

  50. Kern M, et al. Effect of esophageal acid exposure on the cortical swallowing network in healthy human subjects. Am J Physiol Gastrointest Liver Physiol. 2009;297(1):G152–8.

    Article  PubMed  CAS  Google Scholar 

  51. Humbert IA, et al. Neurophysiology of swallowing: effects of age and bolus type. Neuroimage. 2009;44(3):982–91.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaheen Hamdy PhD, FRCP .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vasant, D.H., Hamdy, S. (2013). Cerebral Cortical Control of Deglutition. In: Shaker, R., Belafsky, P., Postma, G., Easterling, C. (eds) Principles of Deglutition. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3794-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3794-9_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3793-2

  • Online ISBN: 978-1-4614-3794-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics