Skip to main content

Diversified Material Designs in Biological Underwater Adhesives

  • Chapter
  • First Online:
Structural Interfaces and Attachments in Biology

Abstract

There exists in nature a wide variety of adhesives to meet the demands of underwater organisms. The requirements for attachment in aqueous environment are much more challenging than those in air. To achieve underwater attachment, sessile organisms ranging from microbes to hard and soft animals and plants have developed diversified ways to tightly and continuously attach to several material surfaces. These biological adhesives are excellent models from which to learn how to artificially attach materials in water and to obtain information that will be useful to develop general theories in the interface sciences. In this chapter, we compare biological material designs from the macroscopic to molecular levels to provide clues for designing new artificial adhesives. Specifically, we review how the mussel, barnacle, and tubeworm form firm underwater adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Waite JH (1987) Nature’s underwater adhesive specialist. Int J Adhes 7:9–14

    Article  Google Scholar 

  2. Zhao H, Robertson NB, Jewhurst SA, Waite JH (2006) Probing the adhesive footprints of Mytilus californianus byssus. J Biol Chem 281:11090–11096

    Article  Google Scholar 

  3. Kamino K (2010) Molecular design of barnacle cement in comparison with those of mussel and tubeworm. J Adhesion 86:96–110

    Article  Google Scholar 

  4. Ball P (2003) Does nature know best? Nat Mater 2:510

    Article  Google Scholar 

  5. Waite JH (1992) The formation of mussel byssus: anatomy of a natural manufacturing process. In: Case ST (ed) Results and problems in cell differentiation 19, Biopolymers. Springer, Berlin, pp 27–54

    Google Scholar 

  6. Waite JH, Andersen NH, Jewhurst S, Sun C (2005) Mussel adhesion: finding the tricks worth mimicking. J Adhesion 81:297–317

    Article  Google Scholar 

  7. Benedict CV, Waite JH (1986) Composition and ultrastrcuture of the Byssus of Mytilus edulis. J Morphol 189:261–270

    Article  Google Scholar 

  8. Holten-Andersen N, Fantner GE, Hohlbauch S, Waite JH, Zok FW (2007) Protective coatings on extensible biofibers. Nat Mater 6:669–672

    Article  Google Scholar 

  9. Rzepecki LM, Hansen KM, Waite JH (1992) Characterization of a cystine-rich polyphenolic protein family from the Blue Mussel Mytilus edulis L. Biol Bull 183:123–137

    Article  Google Scholar 

  10. Sun CJ, Waite JH (2005) Mapping chemical gradients within and along a fibrous structural tissue, mussel byssal threads. J Biol Chem 280:39332–39336

    Article  Google Scholar 

  11. Harrington MJ, Waite JH (2007) Holdfast heroics: comparing the molecular and mechanical properties of Mytilus californianus byssal threads. J Exp Biol 210:4307–4318

    Article  Google Scholar 

  12. Zhao H, Waite JH (2006) Linking adhesive and structural proteins in the attachment plaque of Mytilus californianus. J Biol Chem 281:26150–26158

    Article  Google Scholar 

  13. Zhao H, Waite JH (2006) Proteins in load-bearing junctions: the histidine-rich metal-binding protein of mussel byssus. Biochemistry 45:14223–14231

    Article  Google Scholar 

  14. Inoue K, Takeuchi Y, Miki D, Odo S (1995) Mussel adhesive plaque protein gene is a novel member of epidermal growth factor-like gene family. J Biol Chem 270:6698–6701

    Article  Google Scholar 

  15. Waite JH, Qin XX (2001) Polyphosphoprotein from the adhesive pads of Mytilus edulis. Biochemistry 40:2887–2893

    Article  Google Scholar 

  16. Papov VV, Diamond TV, Biemann K, Waite JH (1995) Hydroxyarginine-containing polyphenolic proteins in the adhesive plaques of the marine mussel Mytilus edulis. J Biol Chem 270:20183–20192

    Article  Google Scholar 

  17. Waite JH (1983) Evidence for a repeating 3,4-dihydroxyphenylalanine- and hydroxyproline-containing decapeptide in the adhesive protein of the mussel, Mytilus edulis L. J Biol Chem 258:2911–2915

    Google Scholar 

  18. Inoue K, Odo S (1994) The adhesive protein cDNA of Mytilus galloprovincialis encodes decapeptide repeats but no hexapeptide motif. Biol Bull 186:349–355

    Article  Google Scholar 

  19. Lee H, Scherer NF, Messersmith PB (2006) Single-molecule mechanics of mussel adhesion. Pro Natl Acad Sci USA 103:12999–13003

    Article  Google Scholar 

  20. Sagert J, Sun C, Waite JH (2006) Chemical subtleties of mussel and polychaete holdfasts. In: Smith AM, Callow JA (eds) Biological adhesives. Springer, Berlin, pp 125–140

    Chapter  Google Scholar 

  21. Yu M, Hwang J, Deming TJ (1999) Role of L-3,4-dihydroxyphenylalanine in mussel adhesive proteins. J Am Chem Soc 121:5825–5826

    Article  Google Scholar 

  22. Nagai A, Yamamoto H (1989) Insolubilizing studies of water-soluble poly(Lys Tyr) by tyrosinase. Bull Chem Soc Jpn 62:2410–2412

    Article  Google Scholar 

  23. Taylor SW, Chase DB, Emptage MH, Nelson MH, Waite JH (1996) Ferric ion complexes of a DOPA-containing adhesive protein from Mytillus edulis. Inorg Chem 35:7572–7577

    Article  Google Scholar 

  24. Sever MJ, Weisser JT, Monahan J, Srinivasan S, Wilker JJ (2004) Metal-mediated cross-linking in the generation of a marine-mussel adhesive. Ang Chem Int Ed 43:448–450

    Article  Google Scholar 

  25. Hwang DS, Zeng H, Masic A, Harrington MJ, Israelachvili JN, Waite JH (2010) Protein- and metal-dependent interactions of a prominent protein in mussel adhesive plaque. J Biol Chem 285:25850–25858

    Article  Google Scholar 

  26. McDowell LM, Burzio LA, Waite JH, Schaefer J (1999) Rotational echo double resonance detection of cross-links formed in mussel byssus under high-flow stress. J Biol Chem 274:20293–20295

    Article  Google Scholar 

  27. Holten-Andersen N, Harrington MJ, Birkedal H, Lee BP, Messersmith PB, Lee KYC, Waite JH (2011) pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli. Proc Natl Acad Sci USA 108:2651–2655

    Article  Google Scholar 

  28. Holten-Andersen N, Mates TE, Toprak MS, Stucky GD, Zok FW, Waite JH (2009) Metals and the integrity of a biological coating: the cuticle of mussel byssus. Langmuir 25:3323–3326

    Article  Google Scholar 

  29. Harrington MJ, Masic A, Holten-Andersen N, Waite JH, Fratzl P (2010) Iron-clad fibers: a metal-based biological strategy for hard flexible coatings. Science 328:216–220

    Article  Google Scholar 

  30. Lin Q, Gourdon D, Sun C, Holten-Andersen N, Anderson TH, Waite JH, Israelachvili JN (2007) Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3. Proc Natl Acad Sci USA 104:3782–3786

    Article  Google Scholar 

  31. Shimizu K, Cha J, Stucky GD, Morse DE (1998) Silicatein alpha: cathepsin L-like protein in sponge biosilica. Proc Natl Acad Sci USA 95:6234–6238

    Article  Google Scholar 

  32. Waite JH, Lichtenegger HC, Stucky GD, Hansma P (2004) Exploring molecular and mechanical gradients in structural bioscaffolds. Biochemistry 43:7653–7662

    Article  Google Scholar 

  33. Kamino K (2006) Barnacle underwater attachment. In: Smith AM, Callow JA (eds) Biological adhesives. Springer, Berlin, pp 145–166

    Chapter  Google Scholar 

  34. Saroyan JR, Lindner E, Dooley CA (1970) Repair and reattachment in the balanidae as related to their cementing mechanism. Biol Bull 139:333–350

    Article  Google Scholar 

  35. Becka A, Loeb G (1984) Ease of removal of barnacles from various polymeric materials. Biotechnol Bioeng 26:1245–1251

    Article  Google Scholar 

  36. Alberte RS, Shyder S, Zahuranec BJ, Whetstone M (1992) Biofouling research need for the united states NAVY: program history and goals. Biofouling 6:91–95

    Article  Google Scholar 

  37. Clare AS, Fusetani N, Jones MB (1998) Introduction: settlement and metamorphosis of marine invertebrate. Biofouling 12:1–2

    Article  Google Scholar 

  38. Sommer S, Ekin A, Webster DC, Stafslien SJ, Daniels J, VanderWal LJ, Thompson SEM, Callow ME, Callow JA (2010) A preliminary study on the properties and fouling-release performance of siloxane-polyurethane coatings prepared from poly(dimethylsiloxane)(PDMS) macromers. Biofouling 26:961–972

    Article  Google Scholar 

  39. Swain G, Schultz MP (1996) The testing and evaluation of non-toxic antifouling coatings. Biofouling 10:187–197

    Article  Google Scholar 

  40. Swain G, Anil A, Baier RE, Chia F, Conte E, Cook A, Hadfield M, Haslbeck E, Holm E et al (2000) Biofouling and barnacle adhesion data for fouling-release coatings subjected to static immersion at seven marine sites. Biofouling 16:331–344

    Article  Google Scholar 

  41. Wendt DE, Kowalke GL, Kim J, Singer IL (2006) Factors that influence elastomeric coating performance: the effect of coating thickness on basal plate morphology, growth and critical removal stress of the barnacle Balanus amphitrite. Biofouling 22:1–9

    Article  Google Scholar 

  42. Berglin M, Gatenholm P (2003) The barnacle adhesive plaque: morphological and chemical differences as a response to substrate properties. Colloids Surf B 28:107–117

    Article  Google Scholar 

  43. Wiegemann M, Watermann B (2003) Peculiarities of barnacle adhesive cured on non-stick surfaces. J Adhesion Sci Technol 14:1957–1977

    Article  Google Scholar 

  44. Ramsay DB, Dickinson GH, Orihuela B, Rittschof D, Wahl KJ (2008) Base plate mechanics of the barnacle Balanus Amphitrite. Biofouling 24:109–118

    Article  Google Scholar 

  45. Naldrett MJ (1993) The importance of sulphur cross-links and hydrophobic interactions in the polymerization of barnacle cement. J Mar Bio Ass UK 73:689–702

    Article  Google Scholar 

  46. Kamino K, Odo S, Maruyama T (1996) Cement proteins of the acorn barnacle, Megabalanus rosa. Biol Bull 190:403–409

    Article  Google Scholar 

  47. Kamino K, Nakano M, Kanai S (2012) Significance of the conformation of building blocks in curing of barnacle underwater adhesive. FEBS J 279:1750–1760

    Google Scholar 

  48. Sullan RMA, Gunari N, Tanur AE, Chan Y, Dickinson GH, Orihuela B, Rittschoff D, Walker GC (2009) Nanoscale structures and mechanics of barnacle cement. Biofouling 25:263–275

    Article  Google Scholar 

  49. Barlow DE, Dickinson GH, Orihuela B, Kulp JL III, Rittschof D, Wahl KJ (2010) Characterization of the adhesive plaque of the barnacle Balanus amhpitrite: amyloid-like nanofibrils are a major component. Langmuir 26:6549–6556

    Article  Google Scholar 

  50. Raman S, Kumar R (2011) Interfacial morphology and nanomechanics of cement of the barnacle, Amphibalanus reticulatus on metallic and non-metalic substrata. Biofouling 27:569–577

    Article  Google Scholar 

  51. Kamino K, Inoue K, Maruyama T, Takamatsu N, Harayama S, Shizuri Y (2000) Barnacle cement proteins: importance of disulfide bonds in their insolubility. J Biol Chem 275:27360–27365

    Google Scholar 

  52. Kamino K (2001) Novel barnacle underwater adhesive protein is a charged amino acid-rich protein constituted by a Cys-rich repetitive sequence. Biochem J 356:503–507

    Article  Google Scholar 

  53. Urushida Y, Nakano M, Matsuda S, Inoue N, Kanai S, Kitamura N, Nishino T, Kamino K (2007) Identification and functional characterization of a novel barnacle cement protein. FEBS J 274:4336–4346

    Article  Google Scholar 

  54. Nakano M, Kamino K Amyloid-like structure in barnacle cement. Unpublished

    Google Scholar 

  55. Dickinson G, Vega IE, Wahl KJ, Orihuela B, Beyley V, Rodriguez EN, Everett RK, Bonaventura J, Rittschof D (2009) Barnacle cement: a polymerization model based on evolutionary concepts. J Exp Biol 212:3499–3510

    Article  Google Scholar 

  56. Kamino K (2010) Absence of cross-linking via trans-glutaminase in the barnacle cement and redefinition of the cement. Biofouling 26:755–760

    Article  Google Scholar 

  57. Mori Y, Urushida Y, Nakano M, Uchiyama S, Kamino K (2007) Calcite-specific coupling protein in barnacle underwater cement. FEBS J 274:6436–6446

    Article  Google Scholar 

  58. Suzuki R, Mori Y, Kamino K, Yamazaki T (2006) 3D-structure of barnacle cement protein, Mrcp-20k. Pept Sci 2005:257–258

    Google Scholar 

  59. Urushida Y, Mori Y, Sano K, Kotera M, Hirose Y, Kanai S, Inoue N, Shimoura Y, Shiba K, Nishino T, Nakasuga A, Shen J-R, Kamino K Identification and characterization of a multi-surface coupling protein in barnacle underwater cement. Unpublished

    Google Scholar 

  60. Jensen RA, Morse DE (1988) The bioadhesive of Phragmatopoma californica tubes: a silk-like cement containing–DOPA. J Comp Physiol B 158:317–324

    Article  Google Scholar 

  61. Stevens MJ, Steren RE, Hlady V, Stewart RJ (2007) Multiscale structure of the underwater adhesive of Phragmatopoma californica: a nanostructured latex with a steep microporosity gradient. Langmuir 23:5045–5049

    Article  Google Scholar 

  62. Waite JH, Jensen RA, Morse DE (1992) Cement precursor proteins of the reef-bilding polychaete Phragmatopoma californica (Fewkes). Biochemistry 31:5733–5738

    Article  Google Scholar 

  63. Zhao H, Sun C, Stewart RL, Waite JH (2005) Cement proteins of the tube-building polychaete Phragtopoma californica. J Biol Chem 280:42938–42944

    Article  Google Scholar 

  64. Stewart RJ, Weaver JC, Morse DE, Waite JH (2004) The tube cement of Phrgmatopoma californica: a solid foam. J Exp Biol 207:4727–4734

    Article  Google Scholar 

  65. Sun C, Fantner GE, Adams J, Hansma PK, Waite JH (2007) The role of calcium and magnesium in the concrete tubes of the sandacastle worm. J Exp Biol 210:1481–1488

    Article  Google Scholar 

  66. Filpula DR, Lee S-M, Link RP, Strusberg SL, Strausberg RL (1990) Structural and functional repetition in a marine mussel adhesive proteins. Biotechnol Prog 6:171–177

    Article  Google Scholar 

  67. Hwang DS, Yoo HJ, Jun JH, Moon WK, Cha HJ (2004) Expression of functional recombinant mussel adhesive protein Mgfp-5 in Escherichia coli. Appl Environ Microbiol 70:3352–3359

    Article  Google Scholar 

  68. Yamamoto H (1987) Synthesis and adhesive studies of marine polypeptides. J Chem Perkin Trans 1:613–618

    Article  Google Scholar 

  69. Yu M, Deming TJ (1998) Synthetic polypeptide mimics of marine adhesives. Macromolecules 31:4739–4745

    Article  Google Scholar 

  70. Lee BP, Dalsin JL, Messersmith BP (2002) Synthesis and gelation of DOPA-modified poly(ethylene glycol) hydrogels. Biomacromology 3:1038–1047

    Article  Google Scholar 

  71. Ninan L, Monahan J, Stroshine RL, Wilker JJ, Shi R (2003) Adhesive strength of marine mussel extracts on porcine skin. Biomaterials 24:4091–4099

    Article  Google Scholar 

  72. Lim S, Kim KR, Choi YS, Kim DK, Hwang D, Cha HJ (2011) In vivo post-translational modifications of recombinant mussel adhesive protein in insect cells. Biotechnol Prog 27:1390–1396

    Article  Google Scholar 

  73. Taylor SW (2002) Chemoenzymatic synthesis of peptidyl 3,4-dihydroxyphenylalanins for structure-activity relationships in marine invertebrate polypeptides. Anal Biochem 302:70–74

    Article  Google Scholar 

  74. Marumo K, Waite JH (1986) Optimization of hydroxylation of tyrosinase and tyrosinase-containing peptides by mushroom tyrosinase. Biochim Biophys Acta 872:98–103

    Article  Google Scholar 

  75. Zeng H, Hwang DS, Israelachvili JN, Waite JH (2010) Strong reversible Fe3+-mediated bridging between dopa-containing protein films in water. Proc Natl Acad Sci 107:12850–12853

    Article  Google Scholar 

  76. Holten-Andersen N, Harrington MJ, Birkedal H, Lee BP, Messersmith PB, Lee KYC, Waite JH (2011) pH-induced metal-ligand cross-links inspired by mussel yield-healing polymer networks with near-covalent elastic moduli. Proc Natl Acad Sci 108:2651–2655

    Article  Google Scholar 

  77. Dalsin JL, Hu BH, Lee BP, Messersmith PB (2003) Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces. J Am Chem Soc 125:4253–4258

    Article  Google Scholar 

  78. Dalsin JL, Lin L, Tosatti S, Voros J, Textor M, Messersmith PB (2005) Protein resistance of titanium oxide surfaces modified by biologically inspired mPEG-DOPA. Langmuir 21:640–646

    Article  Google Scholar 

  79. Statz AR, Meagher RJ, Barron AE, Messersmith PB (2005) New peptidemimetic polymers for antifouling surfaces. J Am Chem Soc 127:7972–7973

    Article  Google Scholar 

  80. Statz A, Finlay J, Dalsin J, Callow M, Callow JA, Messersmith PB (2006) Algal antifouling and fouling-release properties of metal surfaces coated with a polymer inspired by marine mussels. Biofouling 22:391–399

    Article  Google Scholar 

  81. Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspred surface chemistry for multi-functional coatings. Science 318:426–430

    Article  Google Scholar 

  82. Fan X, Lin L, Dalsin JL, Messersmith PB (2005) Biomimetic anchor for surface-initiated polymerization from metal substrates. J Am Chem Soc 127:15843–15847

    Article  Google Scholar 

  83. Su J, Chen F, Messersmith PB (2011) Catechol polymers for pH-responsive, targeted drug delivery to cancer cells. J Am Chem Soc 133:11850–11853

    Article  Google Scholar 

  84. Kamino K (2008) The underwater adhesive of marine organisms as the vital link between biological science and material science. Mar Biotechnol 10:111–121

    Article  Google Scholar 

  85. Yamamoto H, Kuno S, Nagai A, Nishida A, Yamauchi S, Ikeda K (1990) Insolubiliing and adhesive studies of water-soluble synthetic model proteins. Int J Biol Macromol 12:305–310

    Article  Google Scholar 

  86. Wang J, Liu C, Lu X, Yin M (2007) Co-polypeptides of 3,4-dihydroxyphenylalanine and L-lysine to mimic marine adhesive protein. Biomaterials 28:3456–3468

    Article  Google Scholar 

  87. Ninan L, Stroshine RL, Wilker JJ, Shi R (2007) Adhesive strength and curing rate of marine mussel protein extracts on porcine small intestinal submucosa. Acta Biomater 3:687–694

    Article  Google Scholar 

  88. Stewart RJ (2011) Protein-based underwater adhesives and the prospects for their biotechnological production. Appl Microbiol Biotechnol 89:27–33

    Article  Google Scholar 

  89. Shao H, Bachus KN, Stewart RJ (2009) A water-borne adhesive modeled after the sandcastle glue of P. californica. Macromol Biosci 9:464–471

    Article  Google Scholar 

  90. Lim S, Choi YS, Kang DG, Song YH, Cha HJ (2010) The adhesive properties of coacervated recombinant hybrid mussel adhesive proteins. Biomaterials 31:3715–3722

    Article  Google Scholar 

  91. Guvendiren M, Messersmith PB, Shull KR (2008) Self-assembly and adhesion of DOPA-modified methacrylic triblock hydrogels. Biomacromology 9:122–128

    Article  Google Scholar 

  92. Nakano M, Shen JR, Kamino K (2007) Self-assembling peptide inspired by a barnacle adhesive protein. Biomacromology 8:1830–1835

    Article  Google Scholar 

Download references

Acknowledgments

I greatly appreciate Prof. Jian-Ren Shen of Okayama University for his careful correction of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kei Kamino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kamino, K. (2013). Diversified Material Designs in Biological Underwater Adhesives. In: Thomopoulos, S., Birman, V., Genin, G. (eds) Structural Interfaces and Attachments in Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3317-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3317-0_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3316-3

  • Online ISBN: 978-1-4614-3317-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics