Skip to main content

Microcantilever Sensors: Electrochemical Aspects and Biomedical Applications

  • Chapter
  • First Online:
Biomedical Applications

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 55))

  • 1291 Accesses

Abstract

Microfabricated cantilevers, similar to those used in Atomic Force Microscopy (AFM), are generating growing interest as a sensor platform for label-free detection of chemical and biological molecules [1–17]. Using recent advances in surface microfabrication, it is possible to design and fabricate cantilevers and cantilever arrays with extremely high sensitivity for mass or surface stress. These cantilevers are generally fabricated from silicon or silicon nitride by top-down micromachining methods and can be produced efficiently and affordably. Although the cantilevers have micrometer dimensions, their response are in nanometer-scale, which lends itself to their reference as nanomechanical transducers. The cantilever can be made in different shapes and sizes allowing for flexibility in the design, which renders the resulting cantilevers ideal candidates for the possible incorporation in microfluidic and miniaturized lab-on-a-chip devices. Generally, these cantilevers are operated in either the static deflection mode or the dynamic resonant mode. The basic principle for the static mode is that a chemical or physical event occurring at the functionalized surface of one side of the cantilever generates a surface stress difference (between the active functionalized and passive non-functionalized sides) that causes the cantilever to bend away from its resting position. Whereas in the resonant mode, a binding event occurring on the cantilever increases the overall mass thus decreasing the resonant frequency, which is similar to quartz crystal microbalances. In general, when a force is applied to the end of a free standing cantilever a vertical bending will result. As described by Hooke’s Law (\( (F=-k_{spring}\Delta z),\)), the bending or deflection (Δz) of the cantilever is directly proportional to the applied force F, and the cantilever spring constant k spring is the proportionality factor. The cantilever spring constant dictates the flexibility and sensitivity of the cantilever and is defined by its dimensions and material constants. For a rectangular-shaped cantilever, k spring, is given by [18]

$$ k_{spring}\frac{Ewt^{3}}{4l^3}$$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thundat T, Warmack RJ, Chen GY, Allison DP (1994) Appl Phys Lett 64:2894

    Article  CAS  Google Scholar 

  2. Gimzewski JK, Gerber C, Meyer E, Schlittler RR (1994) Chem Phys Lett 217:589

    Article  CAS  Google Scholar 

  3. Chen GY, Thundat T, Wachter EA, Warmack RJ (1995) J Appl Phys 77:3618

    Article  CAS  Google Scholar 

  4. Butt H-J (1996) J Colloid Interface Sci 180:251

    Article  CAS  Google Scholar 

  5. Thundat T, Oden PI, Warmack RJ (1997) Microscale Thermophys Eng 1:185

    Article  CAS  Google Scholar 

  6. Berger R, Delamarche E, Lang H-P, Gerber C, Gimzewski JK, Meyer E, Güntherodt H-J (1997) Science 276:2021

    Article  CAS  Google Scholar 

  7. Raiteri R, Grattarola M, Butt H-J, Skládal P (2001) Sens Actuators B 79:115

    Article  Google Scholar 

  8. Lang HP, Hegner M, Gerber C (2005) Mater Today 8:30

    Article  CAS  Google Scholar 

  9. Sepaniak M, Datskos P, Lavrik N, Tipple C (2002) Anal Chem 74:568A

    Article  Google Scholar 

  10. Hansen KM, Thundat T (2005) Methods 37:57

    Article  CAS  Google Scholar 

  11. Lang HP, Baller MK, Berger R, Gerber C, Gimzewski JK, Battiston FM, Fornaro P, Ramseyer JP, Meyer E, Güntherodt HJ (1999) Anal Chim Acta 393:59

    Article  CAS  Google Scholar 

  12. Ziegler C (2004) Anal Bioanal Chem 379:946

    CAS  Google Scholar 

  13. Lavrik NV, Sepaniak MJ, Datskos PG (2004) Rev Sci Instrum 75:2229

    Article  CAS  Google Scholar 

  14. Goeders KM, Colton JS, Bottomley LA (2008) Chem Rev 108:522

    Article  CAS  Google Scholar 

  15. Raiteri R, Grattarola M, Berger R (2002) Mater Today 5:22

    Article  CAS  Google Scholar 

  16. Waggoner PS, Craighead HG (2007) Lab Chip 7:1238

    Article  CAS  Google Scholar 

  17. Singamaneni S, LeMieux MC, Lang H-P, Gerber C, Jiang H, Naik RR, Bunning JJ, Tsukruk VV (2008) Adv Mater 20:653

    Article  CAS  Google Scholar 

  18. Sader JE (2002) In: Hubbard A (ed) Encyclopedia of surface and colloid science. Marcel Dekker, New York, p 846

    Google Scholar 

  19. Fritz J (2008) Analyst 133:855

    Article  CAS  Google Scholar 

  20. Baller MK, Fritz J (2004) In: Kambhampati D (ed) Protein microarray technology. Wiley-VCH, Weinheim, p 195

    Google Scholar 

  21. Berger R, Lang HP, Gerber C, Gimzewski JK, Fabian JH, Scandella L, Meyer E, Güntherodt H-J (1998) Chem Phys Lett 294:363

    Article  CAS  Google Scholar 

  22. Barnes JR, Stephenson RJ, Woodburn CN, O’Shea SJ, Welland ME, Rayment T, Gimzewski JK, Gerber C (1994) Rev Sci Instrum 65:3793

    Article  CAS  Google Scholar 

  23. Bachels T, Tiefenbacher F, Schäfer R (1999) J Chem Phys 110:10008

    Article  CAS  Google Scholar 

  24. Krause AR, Van Neste C, Senesac L, Thundat T, Finot E (2008) J Appl Phys 103:094906

    Article  CAS  Google Scholar 

  25. Barnes JR, Stephenson RJ, Welland ME, Gerber C, Gimzewski JK (1994) Nature 372:79

    Article  CAS  Google Scholar 

  26. Wig A, Arakawa ET, Passian A, Ferrell TL, Thundat T (2006) Sens Actuators B 114:206

    Article  CAS  Google Scholar 

  27. Burg TP, Godin M, Knudsen SM, Shen W, Carlson G, Foster JS, Babcock K, Manalis SR (2007) Nature 446:1066

    Article  CAS  Google Scholar 

  28. Bryan AK, Goranov A, Amon A, Manalis SR (2010) Proc Natl Acad Sci 107:999

    Article  CAS  Google Scholar 

  29. Godin M, Delgado FF, Son S, Grover WH, Bryan AK, Tzur A, Jorgensen P, Payer K, Grossman AD, Kirschner MW, Manalis SR (2010) Nat Methods 7:387

    Article  CAS  Google Scholar 

  30. Stoney GG (1909) Proc R Soc London Ser A 82:172

    Article  CAS  Google Scholar 

  31. Haiss W (2001) Rep Prog Phys 64:591

    Article  CAS  Google Scholar 

  32. Godin M, Tabard-Cossa V, Grütter P, Williams P (2001) Appl Phys Lett 79:551

    Article  CAS  Google Scholar 

  33. Tabard-Cossa V, Godin M, Beaulieu LY, Grütter P (2005) Sens Actuators B 107:233

    Article  CAS  Google Scholar 

  34. Tabard-Cossa V, Godin M, Beaulieu LY, Grütter P (2006) Sens Actuators B 119:352

    Article  CAS  Google Scholar 

  35. Ibach H (1997) Surf Sci Rep 29:195

    Article  Google Scholar 

  36. Lang HP, Gerber C (2008) In: Samori P (ed) STM and AFM studies on (bio)molecular systems: unravelling the nanoworld, vol 285. Springer, Heidelberg, p. 1.

    Google Scholar 

  37. Norman LL, Badia A (2009) J Am Chem Soc 131:2328

    Article  CAS  Google Scholar 

  38. Evans DR, Craig VSJ (2006) J Phys Chem B 110:5450

    Article  CAS  Google Scholar 

  39. Freund LB, Floro JA, Chason E (1999) Appl Phys Lett 74:1987

    Article  CAS  Google Scholar 

  40. Jeon S, Thundat T (2004) Appl Phys Lett 85:1083

    Article  CAS  Google Scholar 

  41. Klein CA (2000) J Appl Phys 88:5487

    Article  CAS  Google Scholar 

  42. Mertens J, Álvarez M, Tamayo J (2005) Appl Phys Lett 87:234102

    Article  CAS  Google Scholar 

  43. Rasmussen PA, Hansen O, Boisen A (2005) Appl Phys Lett 86:203502

    Article  CAS  Google Scholar 

  44. Sader JE (2001) J Appl Phys 89:2911

    Article  CAS  Google Scholar 

  45. Sader JE, Larson I, Mulvaney P, White LR (1995) Rev Sci Instrum 66:3789

    Article  CAS  Google Scholar 

  46. Zhang Y, Ren Q, Zhoa Y-p (2004) J Phys D Appl Phys 37:2140

    Article  CAS  Google Scholar 

  47. Miyatani T, Fujihira M (1997) J Appl Phys 80:7099

    Article  Google Scholar 

  48. Khan A, Philip J, Hess P (2004) J Appl Phys 95:1667

    Article  CAS  Google Scholar 

  49. Fritz J, Baller MK, Lang HP, Rothuizen H, Vettiger P, Meyer E, Güntherodt H-J, Gerber C, Gimzewski JK (2000) Science 288:316

    Article  CAS  Google Scholar 

  50. Fritz J, Cooper EB, Gaudet S, Sorger PK, Manalis SR (2002) Proc Natl Acad Sci 99:14142

    Article  CAS  Google Scholar 

  51. Mukhopadhyay R, Lorentzen M, Kjems J, Besenbacher F (2005) Langmuir 21:8400

    Article  CAS  Google Scholar 

  52. Shu W, Liu D, Watari M, Riener CK, Strunz T, Welland ME, Balasubramanian S, McKendry RA (2005) J Am Chem Soc 127:17054

    Article  CAS  Google Scholar 

  53. Mckendry RA, Zhang J, Arntz Y, Strunz T, Hegner M, Lang HP, Baller MK, Certa U, Meyer E, Güntherodt H-J, Gerber C (2002) Proc Natl Acad Sci 99:9783

    Article  CAS  Google Scholar 

  54. Wu G, Ji H, Hansen K, Thundat T, Datar R, Cote R, Hagan MF, Chakraborty AK, Majumdar A (2001) Proc Natl Acad Sci 98:1560

    Article  CAS  Google Scholar 

  55. Stachowiak JC, Yue M, Castelino K, Chakraborty AK, Majumdar A (2006) Langmuir 2006:263

    Article  CAS  Google Scholar 

  56. Backmann N, Zahnd C, Huber F, Bietsch A, Plückthun A, Lang H-P, Güntherodt H-J, Hegner M, Gerber C (2005) Proc Natl Acad Sci 102: 14587

    Article  CAS  Google Scholar 

  57. Savran CA, Knudsen SM, Ellington AD, Manalis SR (2004) Anal Chem 76:3194

    Article  CAS  Google Scholar 

  58. Park J, Ryu J, Choi SK, Seo E, Cha JM, Ryu S, Kim J, Kim B, Lee SH (2005) Anal Chem 77:6571

    Article  CAS  Google Scholar 

  59. Ilic B, Yang Y, Craighead HG (2004) Appl Phys Lett 85:2604

    Article  CAS  Google Scholar 

  60. Álvarez M, Carrascosa LG, Moreno M, Calle A, Zaballos Á, Lechuga LM, Martínez-A C, Tamayo J (2004) Langmuir 20:9663

    Article  CAS  Google Scholar 

  61. Khaled A-RA, Vafia K, Yang M, Zhang X, Ozkan CS (2003) Sens Actuators B 94:103

    Article  CAS  Google Scholar 

  62. Watari M, Galbraith J, Lang H-P, Sousa M, Hegner M, Gerber C, Horton MA, McKendry RA (2007) J Am Chem Soc 129:601

    Article  CAS  Google Scholar 

  63. Hagan MF, Majumdar A, Chakraborty AK (2002) J Phys Chem B 106:10163

    Article  CAS  Google Scholar 

  64. Zhang J, Lang HP, Huber F, Bietsch A, Grange W, Certa U, McKendry RA, Güntherodt H-J, Hegner M, Gerber C (2006) Nat Nanotechnol 1:214

    Article  CAS  Google Scholar 

  65. Ndieyira JW, Watari M, Barrera AD, Zhou D, Vögtli M, Batchelor M, Cooper MA, Strunz T, Horton MA, Abell C, Rayment T, Aeppli G, McKendry RA (2008) Nat Nanotechnol 3:691

    Article  CAS  Google Scholar 

  66. Godin M, Laroche O, Tabard-Cossa V, Beaulie LY, Grütter P, Williams PJ (2003) Rev Sci Instrum 74:4902

    Article  CAS  Google Scholar 

  67. Fischer LM, Pedersen C, Elkjær K, Noeth N-N, Dohn L, Boisen A, Tenje M (2011) Sens Actuators B 157:321

    Article  CAS  Google Scholar 

  68. Tian F, Pei JH, Hedden DL, Brown GM, Thundat T (2004) Ultramicroscopy 100:217

    Article  CAS  Google Scholar 

  69. Ansari MZ, Cho C (2009) Sensors 9:6046

    Article  CAS  Google Scholar 

  70. Lee P-S, Lee J, Shin N, Lee K-H, Lee D, Jeon S, Choi D, Hwang W, Park H (2008) Adv Mater 20:1732

    Article  CAS  Google Scholar 

  71. Sharma G, Svensson S, Ogden S, Klintberg L, Hjort K (2011) J Micromechanics Microeng 21, 075010

    Google Scholar 

  72. Lee W-B, Chen Y-H, Lin H-I, Shiesh S-C, Lee G-B (2011) Sens Actuators B Chem 157:710

    Article  CAS  Google Scholar 

  73. Ogilvie IRG, Sieben VJ, Cortese B, Mowlem MC, Morgan H (2011) Lab Chip 11:2455

    Article  CAS  Google Scholar 

  74. Ricciardi C, Canavese G, Castagna R, Ferrante I, Ricci A, Marasso SL, Napione L, Bussolino F (2010) Biosens Bioelectron 26:1565

    Article  CAS  Google Scholar 

  75. Avila M, Zougagh M, Escarpa A, Rios A (2009) Electrophoresis 30:3413

    Article  CAS  Google Scholar 

  76. Ezkerra A, Fernández LJ, Mayora K, Ruano-López JM (2011) Sens Actuators B Chem 155:505

    Article  CAS  Google Scholar 

  77. Leichle T, Nicu L, Descamps E, Corso B, Mailley P, Livache T, Bergaud C (2006) Appl Phys Lett 88:254108

    Article  CAS  Google Scholar 

  78. Bange AF, Brown GM, Senesac LR, Thundat T (2009) Surf Sci 603:L125

    Article  CAS  Google Scholar 

  79. Brunt TA, Rayment T, O’Shea SJ, Welland ME (1996) Langmuir 12:5942

    Article  CAS  Google Scholar 

  80. Brunt TA, Chabala ED, Rayment T, O’Shea SJ, Welland ME (1996) J Chem Soc Faraday Trans 92:3807

    Article  CAS  Google Scholar 

  81. Bard AJ, Faulkner LR (2001) Electrochemical methods fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  82. Herrero E, Buller LJ, Abruña HD (2001) Chem Rev 101:1897

    Article  CAS  Google Scholar 

  83. Qazi M, Koley G (2008) Sensors 8:7144

    Article  CAS  Google Scholar 

  84. Mandeles A, Christofides C (1993) Physics, chemistry and technology of solid state gas sensor devices. Wiley, New York, NY

    Google Scholar 

  85. Koley G, Qazi M, Lakshmanan L, Thundat T (2007) Appl Phys Lett 90:173105

    Article  CAS  Google Scholar 

  86. Koley G, Spencer MG (2001) J Appl Phys 90:337

    Article  CAS  Google Scholar 

  87. Sasaki N, Tsukada M (1998) Jpn J Appl Phys 2(37):L533

    Article  Google Scholar 

  88. Lahav M, Durkan C, Gabai R, Katz E, Willner I, Welland ME (2001) Angew Chem Int Ed 40:4095

    Article  CAS  Google Scholar 

  89. Tabard-Cossa V, Godin M, Grütter P, Burgess I, Lennox RB (2005) J Phys Chem B 109:17531

    Article  CAS  Google Scholar 

  90. Smela E (2003) Adv Mater 15:481

    Article  CAS  Google Scholar 

  91. Bumbu G-G, Kircher G, Wolkenhauer M, Berger R, Gutmann JS (2004) Macromol Chem Phys 205:1713

    Article  CAS  Google Scholar 

  92. Bumbu G-G, Wolkenhauer M, Kircher G, Gutmann JS, Berger R (2007) Langmuir 23:2203

    Article  CAS  Google Scholar 

  93. Zhou F, Biesheuvel PM, Choi E-Y, Shu W, Poetes R, Steiner U, Huck WTS (2008) Nano Lett 8:725

    Article  CAS  Google Scholar 

  94. Zhou F, Huck WTS (2006) Phys Chem Chem Phys 8:3815

    Article  CAS  Google Scholar 

  95. Zhou F, Shu W, Welland ME, Huck WTS (2006) J Am Chem Soc 128: 5326

    Article  CAS  Google Scholar 

  96. Liu Y, Flood AH, Bonvallet PA, Vignon SA, Northrop BH, Tseng H-R, Jeppesen JO, Huang TJ, Brough B, Baller M, Magonova S, Solares SD, Goddard WA, Ho C-M, Stoddard JF (2005) J Am Chem Soc 127:9745

    Article  CAS  Google Scholar 

  97. Huang TJ, Brough B, Ho C-M, Liu Y, Flood AH, Bonvallet PA, Tseng H-R, Stoddard JF, Baller M, Magonova S (2004) Appl Phys Lett 85:5391

    Article  CAS  Google Scholar 

  98. Juluri BK, Kumar AS, Liu Y, Ye T, Yang Y-W, Flood AH, Fang L, Stoddard JF, Weiss PS, Huang TJ (2009) ACS Nano 3:291

    Article  CAS  Google Scholar 

  99. Bay L, Jacobsen T, Skaarup S, West K (2001) J Phys Chem B 105:8492

    Article  CAS  Google Scholar 

  100. Roemer M, Kurzenknabe T, Oesterschulze E, Nicoloso N (2002) Anal Bioanal Chem 373:754

    Article  CAS  Google Scholar 

  101. Liu Y, Flood AH, Bonvallet PA, Vignon SA, Northrop BH, Tseng H-R, Jeppesen JO, Huang TJ, Brough B, Baller M, Magonov S, Solares SD, Goddard WA, Ho C-M, Stoddard JF (2005) J Am Chem Soc 127:9745

    Article  CAS  Google Scholar 

  102. Chegel V, Raitman O, Katz E, Gabai R, Willner I (2001) Chem Commun 10:883

    Article  Google Scholar 

  103. Howse JR, Topham P, Crook CJ, Gleeson AJ, Bras W, Jones RAL, Ryan AJ (2006) Nano Lett 6:73

    Article  CAS  Google Scholar 

  104. Valiaev A, Abu-Lail NI, Lim DW, Chilkoti A, Zauscher S (2007) Langmuir 33:339

    Article  CAS  Google Scholar 

  105. Igarashi S, Itakura AN, Toda M, Kitajima M, Chu L, Chifen AN, Förch R, Berger R (2006) Sens Actuators B 117:43

    Article  CAS  Google Scholar 

  106. Abu-Lail NI, Kaholek M, LaMattina B, Clark RL, Zauscher S (2006) Sens Actuators B 114:371

    Article  CAS  Google Scholar 

  107. Rant U, Arinaga K, Fujita S, Yokoyama N, Abstreiter G, Tornow M (2004) Nano Lett 4:2441

    Article  CAS  Google Scholar 

  108. Rant U, Arinaga K, Fujita S, Yokoyama N, Abstreiter G, Tornow M (2006) Org Biomol Chem 4:3448

    Article  CAS  Google Scholar 

  109. Shen G, Tercero N, Gaspar MA, Varughese B, Shepard K, Levicky R (2006) J Am Chem Soc 128:8427

    Article  CAS  Google Scholar 

  110. Sushko ML, Harding JH, Shluger AL, McKendry RA, Watari M (2008) Adv Mater 20:3848

    Article  CAS  Google Scholar 

  111. Tabard-Cossa V, Godin M, Burgess IJ, Monga T, Lennox RB, Grütter P (2007) Anal Chem 79:8136

    Article  CAS  Google Scholar 

  112. Kohale S, Molina SM, Weeks BL, Kare R, Hope-Weeks LJ (2007) Langmuir 23:1258

    Article  CAS  Google Scholar 

  113. Godin M, Williams PJ, Tabard-Cossa V, Laroche O, Beaulie LY, Lennox RB, Grütter P (2004) Langmuir 20:7090

    Article  CAS  Google Scholar 

  114. Headrick JJ, Sepaniak MJ, Lavrik NV, Datskos PG (2003) Ultramicroscopy 97:417

    Article  CAS  Google Scholar 

  115. Lavrik NV, Tipple CA, Sepaniak MJ, Datskos PG (2001) Chem Phys Lett 336:371

    Article  CAS  Google Scholar 

  116. Hansen AG, Martensen MW, Anderson JET, Ulstrup J, Kuhlue A, Garnaes J, Boisen A (2001) Probe Microsc 2:139

    CAS  Google Scholar 

  117. Desikan R, Lee I, Thundat T (2006) Ultramicroscopy 106:795

    Article  CAS  Google Scholar 

  118. Mertens J, Calleja M, Tarýn A, Tamayo J (2007) J Appl Phys 101:034904

    Article  CAS  Google Scholar 

  119. Berger R, Delamarche E, Lang HP, Gerber C, Gimzewski JK, Meyer E, Güntherodt H-J (1998) Appl Phys A 66:S55

    Article  CAS  Google Scholar 

  120. Desikan R, Armel S, Meyer HM III, Thundat T (2007) Nanotechnology 18:424028

    Article  CAS  Google Scholar 

  121. Quist F, Tabard-Cossa V, Badia A (2003) J Phys Chem B 107:10691

    Article  CAS  Google Scholar 

  122. Norman LL, Badia A (2011) J Phys Chem C 115:1985

    Article  CAS  Google Scholar 

  123. Finklea HO (1996) In: Bard AJ, Rubinstein I (eds) Electroanalytical chemistry, vol 19. Marcel Dekker, New York, p 109

    Google Scholar 

  124. Weber KS, Creager SE (1998) J Electroanal Chem 458:17

    Article  CAS  Google Scholar 

  125. Valincius G, Niaura G, Kazakevičienė B, Talaikytė Z, Kažemėkaitė M, Butkus E, Razumas V (2004) Langmuir 20:6631

    Article  CAS  Google Scholar 

  126. Kazakevičienė B, Valincius G, Niaura G, Talaikytė Z, Kažemėkaitė M, Razumas V, Plaušinaitis D, Teišerskienė A, Lisauskas V (2007) Langmuir 23:4965

    Article  CAS  Google Scholar 

  127. Ju H, Leech D (1999) Phys Chem Chem Phys 1:1549

    Article  CAS  Google Scholar 

  128. Lee LYS, Sutherland TC, Rucareanu S, Lennox RB (2006) Langmuir 22:4438

    Article  CAS  Google Scholar 

  129. Sato Y, Mizutani F, Shimazu K, Ye S, Uosaki K (1999) J Electroanal Chem 474:94

    Article  CAS  Google Scholar 

  130. Kondo T, Okamura M, Uosaki K (2001) J Organomet Chem 637–639:841

    Article  Google Scholar 

  131. Auletta T, van Veggel FCJM, Reinhoudt DN (2002) Langmuir 18:1288

    Article  CAS  Google Scholar 

  132. Kazakevičienė B, Valincius G, Niaura G, Talaikytė Z, Kažemėkaitė M, Razumas V (2003) J Phys Chem B 1007:6661

    Article  CAS  Google Scholar 

  133. Viana AS, Jones AH, Abrantes LM, Kalaji M (2001) J Electroanal Chem 500:290

    Article  CAS  Google Scholar 

  134. Weber KS, Hockett LA, Creager SE (1997) J Phys Chem B 101:8286

    Article  CAS  Google Scholar 

  135. Sondag-Huethorst JAM, Fokkink LGJ (1994) Langmuir 10:4380

    Article  CAS  Google Scholar 

  136. Luk Y-Y, Abbott NL (2003) Science 301:623

    Article  CAS  Google Scholar 

  137. Calvente JJ, Andreu R, Molero M, Lopez-Perez G, Domínguez M (2001) J Phys Chem B 105:9557

    Article  CAS  Google Scholar 

  138. Smith CP, White HS (1992) Anal Chem 64:2398

    Article  CAS  Google Scholar 

  139. Koev ST, Powers MA, Yi H, Wu LQ, Bentley WE, Rubloff GW, Payne GF, Ghodssi R (2007) Lab Chip 7:103

    Article  CAS  Google Scholar 

  140. Payne GF, Wu LQ (2004) Trends Biotechnol 22:593

    Article  CAS  Google Scholar 

  141. Payne GF, Yi HM, Wu LQ, Bentley WE, Ghodssi R, Rubloff GW, Culver JN (2005) Biomacromolecules 6:2881

    Article  CAS  Google Scholar 

  142. Lee JA, Yun JY, Lee SS, Lee KC (2006) Key Eng Mater 326–328:1359

    Article  Google Scholar 

  143. Xu Y, Zhang B, Wu S, Xia Y (2009) Anal Chim Acta 649:117

    Article  CAS  Google Scholar 

  144. Fasano M, Bergamasco B, Lopiano L (2006) J Neurochem 96:909

    Article  CAS  Google Scholar 

  145. Pei J, Tian F, Thundat T (2004) Anal Chem 76:292

    Article  CAS  Google Scholar 

  146. Subramanian A, Oden PI, Kennel SJ, Jacobson KB, Warmack RJ, Thundat T, Doktycz MJ (2002) Appl Phys Lett 81:385

    Article  CAS  Google Scholar 

  147. Chen T, Chang DP, Liu T, Desikan R, Datar R, Thundat T, Berger R, Zauscher S (2010) J Mater Chem 20:3391

    Article  CAS  Google Scholar 

  148. Yan X, Xu KX, Ji H-F (2005) Anal Chem 77:6197

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by Canada Excellence Research Chair Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lana Norman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Norman, L., Thakur, G., Thundat, T. (2012). Microcantilever Sensors: Electrochemical Aspects and Biomedical Applications. In: Djokić, S. (eds) Biomedical Applications. Modern Aspects of Electrochemistry, vol 55. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3125-1_4

Download citation

Publish with us

Policies and ethics