Skip to main content

Strategies for Chromium Bioremediation of Tannery Effluent

  • Chapter
  • First Online:
Reviews of Environmental Contamination and Toxicology Volume 217

Abstract

Pollution of the environment by toxic metals results largely from industrial activities, although sources such as agriculture and sewage disposal also contribute to some extent (Nriagu and Pacyna 1989). Toxic metallic species, once mobilized into the environment, tend to persist, circulate, and eventually accumulate at different trophic levels in members of the food chain. Ultimately, metal pollutants pose a serious threat to the environment, and affect plants, animals, and humans (Olson and Foster 1956; Reidske 1956; Sauter et al. 1976; Levis and Bianchi 1982; Mance 1987; Xing and Okrent 1993). Metal pollutants eventually affect ecosystem function, and impose an economic and public health burden. The problems associated with wastewater disposal in developing countries can generally be attributed to lack of adequate treatment/management policies, coupled with ineffective legislation on the part of entrusted governmental agencies (The Environmental Protection Act 1991; Oboh and Aluyor 2008). Environmental awareness has grown among consumers and industrialists in recent decades, and more recently has culminated in legal constraints being imposed on emissions; such constraints have increasingly become more strict necessitating cost-effective emission control (Gadd and White 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi SA, Soni R (1984) Teratogenic effects of chromium (VI) in the environment as evidenced by the impact of larvae of amphibian Rana tigrina: implications in the environment management of chromium. Int J Environ Stud 23:131–137

    Article  CAS  Google Scholar 

  • Ackerley DF, Gonzalez CF, Keyhan M, Blake R, Matin A (2004) Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction. Environ Microbiol 6:851–860

    Article  CAS  Google Scholar 

  • Agarwal SK (1996) Industrial environment-assessment and strategy. APHA Publishing Company, New Delhi

    Google Scholar 

  • Ahalya N, Ramchandra TV, Kanamadi RD (2003) Biosorption of heavy metals. Res J Chem Environ 7(4):1–10

    Google Scholar 

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from waste water. Biores Technol 98:2243–2257

    Article  CAS  Google Scholar 

  • Ahn D-H, Chung Y-C, Pak D (1998) Biosorption of heavy metal ions by immobilized Zoogloea and zooglan. Appl Biochem Biotechnol 73:43–50

    Article  CAS  Google Scholar 

  • Aksu Z (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40:997–1026

    Article  CAS  Google Scholar 

  • Aksu Z, Acikel U (1999) A single-staged bioseparation process for simultaneous removal of copper (II) and chromium (VI) by using C. vulgaris. Process Biochem 34:589–599

    Article  CAS  Google Scholar 

  • Aksu Z, Akpinar D (2001) Competitive biosorption of phenol and chromium (VI) from binary mixtures onto dried anaerobic sludge. Biochem Eng J 7:183–193

    Article  CAS  Google Scholar 

  • Aksu Z, Egretli G, Kustal T (1999) A comparative study for the biosorption characteristics of chromium (VI) on Ca-alginate, agarose and immobilized C. vulgaris in a continuous packed bed column. J Environ Sci Health A 34:295–316

    Article  Google Scholar 

  • Aksu Z, Gonen F (2004) Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves. Process Biochem 39:599–613

    Article  CAS  Google Scholar 

  • Aksu Z, Gonen F (2006) Binary biosorption of phenol and Cr (VI) onto immobilized activated sludge in a packed bed: prediction of kinetic parameters and breakthrough curves. Sep Purif Technol 49:205–216

    Article  CAS  Google Scholar 

  • Akthar MN, Mohan PM (1995) Bioremediation of toxic metal ions from polluted lake waters and industrial effluents by fungal biosorbent. Curr Sci 69:1028–1030

    CAS  Google Scholar 

  • Akthar MN, Sastry KS, Mohan PM (1995) Biosorption of silver ions by processed Aspergillus niger biomass. Biotechnol Lett 17:551–556

    Article  CAS  Google Scholar 

  • Al-Asheh S, Duvnjak Z (1995) Adsorption of copper and chromium by Aspergillus carbonarius. Biotechnol Prog 11:638–642

    Article  CAS  Google Scholar 

  • Amudeswari A, Sarvanan J, Rao R, Ramasami T (2009) Leather bioprocessing: a greener finish. Biotechnol News 4(1):4–8, 22

    Google Scholar 

  • Anderson RA (1998) Effects of chromium on body composition and weight loss. Nat Rev 56(9):266–270

    CAS  Google Scholar 

  • Andres Y, Thouand G, Boualam M, Mergeay M (2000) Factors influencing the biosorption of gadolinium by micro-organisms and its mobilization from sand. Appl Microbiol Biotechnol 54:262–267

    Article  CAS  Google Scholar 

  • Anttila S (1990) Biological effects of occupational and environmental exposure to chromium. In: Coolery P, Poirier LA, Manfait M, Etienne JC (eds) Metal ions in biology and medicine. John Libbey Eurotext, Paris, pp 315–319

    Google Scholar 

  • Antuner APM, Watlins GM, Duncan JR (2001) Batch studies on the removal of gold (III) from aqueous solution by Azolla filiculoides. Biotechnol Lett 23:249–151

    Article  Google Scholar 

  • Appanna VD, Gazso LG, Huang J, St Pierre M (1996) Mechanism of chromium detoxification in Pseudomonas fluorescens is dependent on iron. Bull Environ Contam Toxicol 57:875–880

    Article  CAS  Google Scholar 

  • Appenroth D, Kersten L (1990) The activity of chromate reduction in renal tissue corresponds nephrotoxicity-developmental aspects. Toxicol Lett 53:157–159

    Article  CAS  Google Scholar 

  • Aravindhan R, Balaraman M, Jonnalagadda RR, Balachandran UN, Thirumalachari R (2004) Bioaccumulation of chromium from tannery wastewater: an approach for chromium recovery and reuse. Environ Sci Technol 38(1):300–306

    Article  CAS  Google Scholar 

  • Aravindhan R, Sreeram KJ, Rao JR, Nair BU (2007) Biological removal of carcinogenic chromium (VI) using mixed Pseudomonas strains. J Gen Appl Microbiol 53:71–79

    Article  CAS  Google Scholar 

  • Arica MY, Bayramoglu G (2005) Cr (IV) biosorption from aqueous solution using free and immobilized biomass of Lentinus sajor-caju: preparation and kinetic characterization. Colloids Surf A: Physicochem Eng Aspects 253:203–211

    Article  CAS  Google Scholar 

  • Asatiani NV, Abuladze MK, Kartvelishvili TM, Bakradze NG, Sapojnikova NA, Tsibakhashvili NY, Tabatadze LV, Lejava LV, Asanishvili LL, Holman H (2004) Effect of Cr (VI) action on Arthrobacter oxydans. Curr Microbiol 49:321–326

    Article  CAS  Google Scholar 

  • Avudainayagam S, Meghara A, Owens G, Kookana RS, Chittleborough D, Naidu R (2003) Chemistry of chromium in soils with emphasis, on tannery waste sites. Rev Environ Contam Toxicol 178:53–91

    Article  CAS  Google Scholar 

  • Bae WC, Kang TG, Kang IK, Won YG, Jeong BC (2000) Reduction of hexavalent chromium by Escherichia coli ATCC 33456 in batch and continuous cultures. J Microbiol 38(1):36–39

    CAS  Google Scholar 

  • Bae WC, Lee HK, Choe YC, Jahng DK, Lee SH, Kim SJ, Lee JH, Jeong BC (2005) Purification nd characterization of NADPH-dependent Cr (VI) reductase from Escherichia coli ATCC 33456. J Microbiol 43:21–27

    CAS  Google Scholar 

  • Bahijri SMA, Mufti AMB (2002) Beneficial effects of chromium in people with type 2 diabetes, and urinary chromium response to glucose load as a possible indicator of status. Biol Trace Elem Res 85:97–110

    Article  CAS  Google Scholar 

  • Bailar JC (1997) Chromium. In: Parker SP (ed) McGraw-Hill encyclopedia of science and technology. McGraw-Hill, New York

    Google Scholar 

  • Baillet F, Margnin J-P, Cheruy A, Ozil P (1998) Chromium precipitation by the acidophilic bacterium Thiobacillus ferrooxidans. Biotechnol Lett 20:95–99

    Article  CAS  Google Scholar 

  • Barman SC, Sahu RK, Bhargava SK, Chaterjee C (2000) Distribution of heavy metals in wheat, mustard, and weed grown in field irrigated with industrial effluents. Bull Environ Contam Toxicol 64:489–496

    Article  CAS  Google Scholar 

  • Barrera LM, Jimenez FMG, Moreno AO, Urbina EC (2008) Isolation, identification and characterization of a Hypocrea tawa strain with high Cr (VI) reduction potential. Biochem Eng J 40:284–292

    Article  CAS  Google Scholar 

  • Belay AA (2010) Impact of chromium from tannery effluent and evaluation of alternative treatment options. J Environ Prot 1:53–58

    Article  CAS  Google Scholar 

  • Belliveau BH, Starodub ME, Cotter C, Trevors JT (1987) Metal resistance and accumulation in bacteria. Biotechnol Adv 5:101–127

    Article  CAS  Google Scholar 

  • Benazir JF, Suganthi R, Rajvel D, Pooja MP, Mathithumilan B (2010) Bioremediation of ­chromium in tannery effluent by microbial consortia. Afr J Biotechnol 9(21):3140–3143

    Google Scholar 

  • Bender J, Lee RF, Phillips P (1995) Uptake and transformation of metals and metalloids by ­microbial mats and their use in bioremediation. J Ind Microbiol 14:113–118

    Article  CAS  Google Scholar 

  • Beveridge TJ (1978) The response of cell walls of Bacillus subtilis to metals and to electron ­microscopic strains. Can J Microbiol 24:89–104

    Article  CAS  Google Scholar 

  • Beveridge TJ (1988) The bacterial surface: general considerations toward design and function. Can J Microbiol 34:363–372

    Article  CAS  Google Scholar 

  • Beveridge TJ, Graham LL (1991) Surface layers of bacteria. Microbiol Rev 55:684–705

    CAS  Google Scholar 

  • Bhide JV, Dhakephalkar PK, Paknikar KM (1996) Microbiological process for the removal of Cr (VI) from chromate-bearing cooling tower effluent. Biotechnol Lett 18:667–672

    Article  CAS  Google Scholar 

  • Bopp LH, Ehrlich HL (1988) Chromate resistance and reduction in Pseudomonas fluorescens strain LB300. Arch Microbiol 150:426–431

    Article  CAS  Google Scholar 

  • Brierley JA, Goyak GM, Brierley CL (1986) Considerations for commercial use of natural ­products for metal recovery. In: Eccles H, Hunt S (eds) Immobilization of ions by biosorption. Horwood, Chichester, pp 105–117

    Google Scholar 

  • Buljan J, Sahasranaman A (1999) Pollution containment in the tanning industry in developing countries. Proceedings of XXV IULTCS Congress. Tata McGraw-Hill Publishers, New Delhi, pp 410–422

    Google Scholar 

  • Calder LM (1988) Chromium contamination of groundwater. In: Nriagu JO, Neiboer E (eds) Chromium in the natural and human environments. Wiley, New York, pp 215–230

    Google Scholar 

  • Camargo FAO, Okeke BC, Bento FM, Frankenberger WT (2003) In vitro reduction of hexavalent chromium by a cell-free extract of Bacillus sp. ES 29 stimulated by Cu2+. Appl Microbiol Biotechnol 62:569–573

    Article  CAS  Google Scholar 

  • Camargo FAO, Okeke BC, Bento FM, Frankenberger WT (2004) Hexavalent chromium reduction by immobilized cells and the cell-free extract of Bacillus sp. ES 29. Biorem J 8(1–2):23–30

    Article  CAS  Google Scholar 

  • Camargo FAO, Okeke BC, Bento FM, Frankenberger WT (2005) Diversity of chromium-resistant bacteia isolated from soils contaminated with dichromate. Appl Soil Ecol 29:193–202

    Article  Google Scholar 

  • Campos J, Martinez-Pacheco M, Cervantes C (1995) Hexavalent-chromium reduction by a chromate resistant Bacillus sp. strain. Antonie Van Leeuwenhoek 68:203–208

    Article  CAS  Google Scholar 

  • Campos VL, Moraga R, Yanez J, Zaror CA, Mondaca MA (2005) Chromate reduction by Serratia marcescens isolated from tannery effluent. Bull Environ Contam Toxicol 75:400–406

    Article  CAS  Google Scholar 

  • Canter LW (1986) Grounwater pollution control. Lewis Publishers Incorporation, Chelsea

    Google Scholar 

  • Celma PJ, Cerrio R, Choque R, Cabeza LF, Cot J (1999) Chrome recovery from sheepskins tanning baths by an ion exchange (anionic) process. Proceedings of the XXV IULTCS Congress. Pilot scale trials and in tannery chrome reuse. Tata McGraw-Hill Publishers, New Delhi, pp 458–461

    Google Scholar 

  • Cervantes C, Campos-Garica J, Gutierrez-Corona F, Loza-Tavera H, Torres-Guzman JC, Moreno-Sanchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347

    Article  CAS  Google Scholar 

  • Cha J-S, Cooksey DA (1991) Copper resistance in Pseudomonas syringae mediated by periplasmic and outer memebrane proteins. Proc Natl Acad Sci U S A 88:8915–8919

    Article  CAS  Google Scholar 

  • Chai L, Huang S, Yang Z, Peng B, Huang Y, Chen Y (2009) Cr (VI) remediation by indigenous bacteria in soils, contaminated by chromium-containing slag. J Hazard Mater 167:516–522

    Article  CAS  Google Scholar 

  • Chemical Weekly (2001) Leather units not using treatment plants fully. February 27, 74

    Google Scholar 

  • Chen JM, Hao OJ (1996) Environmental factors and modeling in microbial chromium (VI) reduction. Water Environ Res 68:1156–1164

    Article  CAS  Google Scholar 

  • Chen YX, Liu H, Chen HI (2003) Characterization of phenol biodegradation by Coman anastestosteroni ZD4-1 and Pseudomonas aeruginosa ZD4-3. Biomed Environ Sci 16:163–172

    Google Scholar 

  • Cheung KH, Lai HY, Gu JD (2006) Membrane-associated hexavalent chromium reductase of Bacillus megaterium TKW3 with induced expression. J Microbiol Biotechnol 16:855–862

    CAS  Google Scholar 

  • Chirwa EMN, Smit HER (2010) Simultaneous Cr (VI) reduction and phenol degradation in a trickle bed bioreactor: shock loading response. Chem Eng Trans 20:55–60

    Google Scholar 

  • Chirwa EMN, Wang YT (2000) Simultaneous chromium (VI) reduction and phenol degradation in an anaerobic consortium of bacteria. Water Res 33:2376–2384

    Article  Google Scholar 

  • Chirwa EMN, Wang YT (2001) Simultaneous chromium (VI) reduction and phenol degradation in a fixed-film coculture bioreactor: reactor performance. Water Res 35(8):1921–1932

    Article  Google Scholar 

  • Chirwa EMN, Wang YT (2005) Modeling hexavalent chromium reduction and phenol degradation in a coculture biofilm reactor. ASCE J Environ Eng 131(11):1495–1506

    Article  CAS  Google Scholar 

  • Choi SH, Moon S-H, Gu MB (2002) Biodegradation of chlorophenols using the cell-free culture broth of Phanerochaete chrysosporium immobilized in polyurethane foam. J Chem Technol Biotechnol 77:999–1004

    Article  CAS  Google Scholar 

  • Cifuentes FR, Lindemann WC, Barton LL (1996) Chromium sorption and reduction in soil with implications to bioremediation. Soil Sci 161:233–241

    Article  CAS  Google Scholar 

  • Clark DP (1994) Chromate reductase activity of Enterobacter aerogenes is induced by nitrite. FEMS Microbiol Lett 122:233–238

    Article  CAS  Google Scholar 

  • Collins YE, Stotzky G (1992) Heavy metals alter the electrokinetic properties of bacteria, yeasts and clay minerals. Appl Environ Microbiol 58:1592–1600

    CAS  Google Scholar 

  • Comte S, Guibaud G, Baudu M (2006) Biosorption properties of extracellular polymeric substances (EPS) resulting from activated sludge according to their type: soluble or bound. Process Biochem 41:815–823

    Article  CAS  Google Scholar 

  • Congeevaram S, Dhanarani S, Park J, Dexilin M, Thamaraiselvi K (2007) Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J Hazard Mater 146:270–277

    Article  CAS  Google Scholar 

  • Cooke VM, Hughes MN, Poole RK (1995) Reduction of chromate by bacteria isolated from the cooling water of an electricity generating station. J Ind Microbiol 14:323–328

    Article  CAS  Google Scholar 

  • Copley SD (2000) Evolution of metabolic pathway for degradation of a toxic xenobiotic: the patchwork approach. Trends Biochem Sci 25:261–265

    Article  CAS  Google Scholar 

  • Costa M (2003) Potential hazards of hexavalent chromium in our drinking water. Toxicol Appl Pharmacol 188:1–5

    Article  CAS  Google Scholar 

  • Costerton JW, Lewandowski Z, DeBeer D, Cadwell DE, Korber DE, James GA (1994) Biofilms: the customized microniche. J Bacteriol 176:2137–2142

    CAS  Google Scholar 

  • Cotta JG (1921) Buchhandling, 1858 (English translation). J Am Leather Chem Assoc 16:658

    Google Scholar 

  • Das AP, Mishra S (2010) Biodegradation of the metallic carcinogen hexavalent chromium Cr (VI) by an indigenously isolated bacterial strain. J Carcinogen 9:6

    Article  Google Scholar 

  • de Flora S, Bangnasco M, Serra D, Zanacchi P (1990) Genotoxicity of chromium compounds: a review. Mutat Res 238:99–172

    Google Scholar 

  • de Flora S, Wetterhahn KE (1989) Mechanisms of chromium metabolism and genotoxicity. Life Chem Rep 7:169–244

    Google Scholar 

  • Denizil A, Cihangir N, Rad AY, Taner M, Alsancak G (2004) Removal of chlorophenols from synthetic solutions using Phanerochaete chrysosporium. Process Biochem 39:2025–2030

    Article  CAS  Google Scholar 

  • Desai C, Jain K, Madamwar D (2008a) a) Evaluation of in vitro Cr (VI) reduction potential in cytosolic extracts of three indigenous Bacillus sp. isolated from Cr (VI) polluted industrial landfill. Biores Technol 99:6059–6069

    Article  CAS  Google Scholar 

  • Desai C, Jain K, Madamwar D (2008b) b) Hexavalent chromate reductase activity in cytosolic fractions of Pseudomonas sp. G1DM21 isolated from Cr (VI) contaminated industrial landfill. Process Biochem 43:713–721

    Article  CAS  Google Scholar 

  • Desjardin V, Bayard R, Lejeune P, Gourdon R (2003) Utilisation of supernatants of pure cultures of Streptomyces thermocarboxydus NH50 to reduce chromium toxicity and mobility in contaminated soils. Water Air Soil Pollut 3:153–160

    CAS  Google Scholar 

  • Dey S, Paul AK (2010) Occurrence and evaluation of chromium reducing bacteria in seepage water from chromite mine quarries of Orissa, India. J Water Resour Prot 2(4):380–388

    Article  CAS  Google Scholar 

  • Dhal B, Thatoi H, Das N, Pandey BD (2010) Reduction of hexavalent chromium by Bacillus sp. isolated from chromite mine soils and characterization of reduced product. J Chem Technol Biotechnol 85(11):1471–1479

    CAS  Google Scholar 

  • Donocik A, Ledin M, Pedersen K, Allard B (1996) Accumulation of zinc and cadmium by Cytophaga johnsonae. Biometals 9:169–175

    Article  CAS  Google Scholar 

  • Edgehill RU (1996) Degradation of pentachlorophenol (PCP) by Arthrobacter strain ATCC 33790 in biofilm culture. Water Res 30:357–363

    Article  CAS  Google Scholar 

  • Edgehill RU, Finn R (1983) Microbial treatment of soil to remove pentachlorophenol. Appl Environ Microbiol 45:1122–1125

    CAS  Google Scholar 

  • Elangovan R, Abhipsa S, Rohit B, Ligy P, Chandraraj K (2006) Cr (VI) reduction by a Bacillus sp. Biotechnol Lett 28:247–252

    Article  CAS  Google Scholar 

  • Elangovan R, Philip L (2009) Performance of various bioreactors for the removal of Cr (VI) and organic matter from industrial effluent. Biochem Eng J 44:174–186

    Article  CAS  Google Scholar 

  • Elizabeth KM, Esther Rani G (2004) Bioremediation of phenol, ammonia, nickel, hexavalent chromium and iron from steel plant effluent of Visakhapatnam city by live, killed and immobilized bacteria. Asian J Chem 16:1269–1273

    CAS  Google Scholar 

  • Emsely J (1999) Molecules at exhibition: portraits of intriguing materials in everyday life. Oxford University Press, Oxford

    Google Scholar 

  • Enterine PE (1974) Respiratory cancer among chromate workers. J Occup Med 16:523–526

    Google Scholar 

  • Ernest M (1991) Metals and their compounds in the environment, occurrence, analysis and biological relevance. VCH, Basel, Weinheim/NY/Cambridge

    Google Scholar 

  • Esmaeili A, Nia AM, Vazirinejad R (2005) Chromium (III) removal and recovery from tannery wastewater by precipitation process. Am J Appl Sci 2(10):1471–1473

    Article  CAS  Google Scholar 

  • Failla ML (1977) Zinc: functions and transport in microorganisms. In: Weinberg ED (ed) Microorganisms and minerals. Marcel Dekker, New York, pp 151–214

    Google Scholar 

  • Faisal M, Hameed A, Hasnain S (2005) Chromium-resistant bacteria and cyanobacteria: impact on Cr (VI) reduction potential and plant growth. J Ind Microbiol Biotechnol 32:615–621

    Article  CAS  Google Scholar 

  • Faisal M, Hasnain S (2004) Microbial conversion of Cr (VI) in to Cr (III) in industrial effluent. Afr J Biotechnol 3(11):610–617

    CAS  Google Scholar 

  • Faisal M, Hasnain S (2006) Detoxification of Cr (VI) by Bacillus cereus S-6. Res J Microbiol 1(1):45–50

    Article  CAS  Google Scholar 

  • Farag S, Zaki S (2010) Identification of bacterial strains from tannery effluent and reduction of hexavalent chromium. J Environ Biol 31(5):877–882

    CAS  Google Scholar 

  • Farrell SO, Ranallo RT (2000) Experiments in biochemistry. A hands-on approach. Saunders College Publisher, Orlando

    Google Scholar 

  • Feng Z, Hu W, Rom WN, Costa M, Tang MS (2004) Chromium (VI) exposure enhances polycyclic aromatic hydrocarbon-DNA binding at the p53 gene in human lung cells. J Carcinogen 24:771–778

    Google Scholar 

  • Findlay A (1934) The spirit of chemistry. Longmans Green and Company, London

    Google Scholar 

  • Flavio AO, Camargo C, Benedict O, Fatima M, Bento W, Frakenberger T (2004) Diversity of chromium-resistant bacteria isolated from soils contaminated with dichromate. Appl Soil Ecol 29:193–202

    Google Scholar 

  • Fourest E, Roux JC (1992) Heavy metal biosorption by fungal mycelial by-products: mechanisms and influence of pH. Appl Microbiol Biotechnol 37:399–403

    Article  CAS  Google Scholar 

  • French C, Peters W, Maxwell B, Rice G, Colli A, Bulf R, Cole J, Heath E, Turner J, Hetes B, Brown DC, Goldin D, Behling H, Loomis D, Behling H, Loomis D, Nelson C (1997) Assessment of health risks due to hazardous air pollutant emissions from electric utilities. Drug Chem Toxicol 20:375–386

    Article  CAS  Google Scholar 

  • Fude L, Harris B, Urrutia MM, Beveridge TJ (1994) Reduction of Cr (VI) by a consortium of sulfate-reducing bacteria (SRB-III). Appl Environ Microbiol 60:1525–1531

    CAS  Google Scholar 

  • Fude L, Shigui L (1992) Microbial removal and recovery of chromium (VI) from electroplating waste water. J Sichuan Univ (Nat Sci Ed) 2:266–273

    Google Scholar 

  • Gadd GM (1988) Accumulation of metals by microorganisms and algae. In: Rehm HJ, Reed G (eds) Biotechnology: a comprehensive treatise, special microbial process. VCH Verlagsgesellschaft, Weinheim, pp 401–433

    Google Scholar 

  • Gadd GM (1990) Heavy metal accumulation by bacteria and other microorganisms. Experientia 46:834–840

    Article  CAS  Google Scholar 

  • Gadd GM, White C (1993) Microbial treatment of metal pollution-a working biotechnology? Trends Biotechnol 11:353–359

    Article  CAS  Google Scholar 

  • Ganguli A, Tripathi AK (1999) Survival and chromate reducing ability of Pseudomonas aeruginosa in industrial effluents. Lett Appl Microbiol 28:76–80

    Article  CAS  Google Scholar 

  • Ganguli A, Tripathi AK (2002) Bioremediation of toxic chromium from electroplating effluent by chromate-reducing Pseudomonas aeruginosa A2Chr in two bioreactors. Appl Microbiol Biotechnol 58(3):416–420

    Article  CAS  Google Scholar 

  • Garbisu C, Alkorta I, Llama MJ, Serra JL (1998) Aerobic chromate reduction by Bacillus subtilis. Biodegradation 9:133–141

    Article  CAS  Google Scholar 

  • Gasbarro A, Beolchini F, Vegilo F (1997) Biosorption of toxic metals: an equilibrium study using free cells of Arthrobacter sp. Process Biochem 32:99–105

    Article  Google Scholar 

  • Gibb HJ, Lees PS, Pinsky PF, Rooney BC (2000a) Lung cancer among workers in chromium chemical production. Am J Ind Med 38:115–126

    Article  CAS  Google Scholar 

  • Gibb HJ, Lees PS, Pinsky PF, Rooney BC (2000b) Clinical findings of irritation among chromium chemical production workers. Am J Ind Med 38:127–131

    Article  CAS  Google Scholar 

  • Guan L, Petersen JN, Johnstone DL, Yonge DR, Brouns TM (1993a) Equilibrium sorption of Cr6+ by a consortia of denitrifying bacteria. Biotechnol Lett 15:727–732

    Article  CAS  Google Scholar 

  • Guan L, Petersen JN, Johnstone DL, Yonge DR, Brouns TM (1993b) Sorption rates for the uptake of Cr6+ by a consortia of denitrifying bacteria. Biotechnol Lett 15:733–736

    Article  CAS  Google Scholar 

  • Gulay B, Sema B, Yakup AM (2003) Biosorption of heavy metal ions on immobilized white-rot fungus Trametes versicolor. J Hazard Mater B 101:285–300

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2008) Sorption and desorption studies of chromium (VI) from nonviable cyanobacterium Nostoc miscorum biomass. J Hazard Mater B 154:347–354

    Article  CAS  Google Scholar 

  • Gvozdyak PI, Mogilevich NF, Ryl’skii AF, Grishchenko NI (1986) Reduction of hexavalent chromium by collection strains of bacteria. Mikrobiologiya 55:962–965

    CAS  Google Scholar 

  • Hafez AI, El-Manharawy MS, Khedr MA (2002) RO membrane removal of unreacted chromium from spent tanning effluent. A pilot-scale study, part 2. Desalination 14:237–242

    Article  Google Scholar 

  • Hamed TA, Bayraktar E, Mehmetoglu U, Mehmetoglu T (2004) The biodegradation of benzene, toluene and phenol in a two-phase system. Biochem Eng J 19:137–146

    Article  CAS  Google Scholar 

  • He M, Li X, Guo L, Miller SJ, Rensing C, Wang G (2010) Characterization and genomic analysis of chromate resistant and reducing Bacillus cereus strain SJ1. BMC Microbiol 10(1):221

    Google Scholar 

  • Holmes AL, Wise SS, Wise JP Sr (2008) Carcinogenicity of hexavalent chromium. Indian J Med Res 128:353–372

    CAS  Google Scholar 

  • Horitsu H, Futo S, Miyazawa Y, Ogai S, Kawai K (1987) Enzymatic reduction of hexavalent chromium by hexavalent chromium tolerant Pseudomonas ambigua G-1. J Agric Biol Chem 51:2417–2420

    Article  CAS  Google Scholar 

  • Horitsu H, Futo S, Ozawa K, Kawai K (1983) Comparison of characteristics of hexavalent chromium-tolerant bacterium, Pseudomonas ambigua G-1, and its hexavalent chromium-sensitive mutant. J Agric Biol Chem 47:2907–2908

    Article  Google Scholar 

  • Horsfall M Jr, Ogban F, Akporhonor EE (2006) Sorption of chromium (VI) from aqueous solution by cassava (Manihot sculenta CRANZ) waste biomass. J Chem Biodiver 3:161–173

    Article  CAS  Google Scholar 

  • Hu MZ-C, Reeves M (1997) Biosorption of uranium by Pseudomonas aeruginosa strain CSU-immobilized in a novel matrix. Biotechnol Prog 13:60–70

    Article  CAS  Google Scholar 

  • Huang CP, Wu MH (1977) The removal of chromium (VI) from dilute aqueous solution by activated carbon. Water Res 11:673–679

    Article  CAS  Google Scholar 

  • Huges MN, Poole RK (1989) Metals and microorganisms. Chapman and Hall, London

    Google Scholar 

  • Humphries AC, Nott KP, Hall LD, Macaskie LE (2005) Reduction of Cr (VI) by immobilized cells of Desulfovibrio vulgaris NCIMB 8303 and Microbacterium sp. NCIMB 13776. Biotechnol Bioeng 90(5):589–596

    Article  CAS  Google Scholar 

  • Ilias M, Rafiqullah IM, Debnath BC, Mannan KSB, Hoq MM (2011) Isolation and characterization of chromium (VI)-reducing bacteria from tannery effluents. Indian J Microbiol 51(1):76–81

    Article  CAS  Google Scholar 

  • Ishibashi Y, Cervantes C, Silver S (1990) Chromium reduction in Pseudomonas putida. Appl Environ Microbiol 56:2268–2270

    CAS  Google Scholar 

  • Ito M, Ohnishi Y (1982) Escherichia coli mutants which are resistant to uncouplers of oxidative phosphorylation. J Microbiol Immunol 26(11):1079–1084

    CAS  Google Scholar 

  • Iyer A, Mody K, Jha B (2004) Accumulation of hexavalent chromium by an exopolysaccharide producing marine Enterobacter cloaceae. Mar Pollut Bull 49:974–977

    Article  CAS  Google Scholar 

  • James BR, Barlett RJ (1983) Behavior of chromium in soils. VII. Adsorption and reduction of hexavalent forms. J Environ Qual 12(2):177–181

    Article  CAS  Google Scholar 

  • Janus JA, Krajnc EI (1990) Integrated criteria document chromium: effects – Appendix, National Institute of Public Health and Environmental Protection, Report No. 710401002. Bilthoven, The Netherlands, p 89

    Google Scholar 

  • Jeyasingh J, Philip L (2005) Bioremediation of chromium contaminated soils: optimization of operating parameters under laboratory conditions. J Hazard Mat B 118:113–120

    Article  CAS  Google Scholar 

  • Kapoor A, Viraraghavan T (1995) Fungal biosorption-an alternative treatment option of heavy metal bearing wastewater: a review. Biores Technol 53:195–206

    CAS  Google Scholar 

  • Kar NS, Dasgupta AK (1996) The possible role of surface charge in membrane organization in an acidophile. Indian J Biochem Biophys 33:398–402

    CAS  Google Scholar 

  • Katz SA, Salem H (1994) The biological and environmental chemistry of chromium. VCH Publishers Incorporation, New York

    Google Scholar 

  • Kazy SK, Sar P, Asthana RK, Singh SP (1999) Copper uptake and its compartmentalization in Pseudomonas aeruginosa strains: chemical nature of cellular metal. World J Microbiol Biotechnol 15:599–605

    Article  CAS  Google Scholar 

  • Keely JF, Boateng K (1987) Monitoring well installation, purging, and sampling techniques-part 2: case histories. Ground Water 25:427–439

    Article  CAS  Google Scholar 

  • Kilic NK, Donmez G (2008) Environmental conditions affecting exopolysaccharide production by Pseudomonas aeruginosa, Micrococcus sp., and Ochrobactrum sp. J Hazard Mater 154:1019–1024

    Article  CAS  Google Scholar 

  • Kimbrough DE, Cohen Y, Winer AM, Creeman L, Mabuni C (1999) A critical assessment of chromium in the environment. CRC Crit Rev Environ Sci Technol 29:1–46

    Article  CAS  Google Scholar 

  • Komori K, Rivas A, Toda K, Ohtake H (1990) Biological removal of toxic chromium using an Enterobacter cloacae strain that reduces chromate under anaerobic conditions. Biotechnol Bioeng 35:951–954

    Article  CAS  Google Scholar 

  • Komori K, Wang PC, Toda K, Ohtake H (1989) Factors affecting chromate reduction in Enterobacter cloacae strain HO1. Appl Microbiol Biotechnol 31:567–570

    Article  CAS  Google Scholar 

  • Kong S, Yonge DR, Johnstone DL, Petersen JN, Brouns TM (1992) Chromium distribution in subcellular components between fresh and subsurface bacterial consortium. Biotechnol Lett 14:521–524

    Article  CAS  Google Scholar 

  • Kong S, Yonge DR, Johnstone DL, Petersen JN, Brouns TM (1993) Competing ion effect on chromium adsorption with fresh and starved subsurface bacterial consortium. Biotechnol Lett 15:87–92

    Article  CAS  Google Scholar 

  • Kotas J, Stasicka Z (2000) Chromium occurrence in the environment and methods of its speciation. Environ Pollut 107:263–283

    Article  CAS  Google Scholar 

  • Kratochvil D, Pimentel P, Volesky B (1998) Removal of trivalent and hexavalent chromium by seaweed biosorption. Environ Sci Technol 32:2693–2698

    Article  CAS  Google Scholar 

  • Kratochvil D, Volesky B (1998) Advances in the biosorption of heavy metals. Trends Biotechnol 16:291–300

    Article  CAS  Google Scholar 

  • Kulczycki E, Ferris FG, Fortin D (2002) Impact of cell wall structure on the behaviour of bacterial cells as sorbents of cadmium & lead. Geomicrobiol J 19:553–565

    Article  CAS  Google Scholar 

  • Kumar SPA, Mahimairaja S, Ramasamy K, Naidu R (1999) Impact of treated effluent on flower crops, soil and on water quality. Proceedings of the second international conference on contaminants in the soil environment in the Australasia-Pacific region. INSCR, New Delhi, India, pp 351–352

    Google Scholar 

  • Kurek E, Czaban J, Bollag J-M (1982) Sorption of cadmium by microorganisms in competition with other soil constituents. Appl Environ Microbiol 43:1011–1015

    CAS  Google Scholar 

  • Kuyucak N, Volesky B (1988) Biosorbents for recovery of metals from industrial solutions. Biotechnol Lett 10(2):137–142

    Article  CAS  Google Scholar 

  • Kwon SI, Jung KY, Kim KH (1999) Effect of long-term application of some organic wastes on the distribution and availability of heavy metals in the soil-plant system. Proceedings of the second international conference on contaminants in the soil environment in the Australasia-Pacific region. INSCR, New Delhi, India, pp 254–255

    Google Scholar 

  • Langard S (1990) One hundred years of chromium and cancer: a review of epidemiological evidence and selected case reports. Am J Ind Med 17:189–215

    Article  CAS  Google Scholar 

  • Lange CC, Wackett LP, Minton KW, Daly MJ (1998) Engineering Deinococcus radiodurans for organopollutant degradation in radioactive mixed waste environments. Nat Biotechnol 16:929–933

    Article  CAS  Google Scholar 

  • Langley S, Beveridge TJ (1999) Effect of O-side chain-lipopolysaccharide chemistry on metal binding. Appl Environ Microbiol 65:489–498

    CAS  Google Scholar 

  • Lebedeva EV, Lyalikova NN (1979) Reduction of crocoite by Pseudomonas chromatophila sp. nov. Microbiologiya 48:517–522

    CAS  Google Scholar 

  • Leduc G, Pierce RC, McCracken IR (1982) The effects of cyanides on aquatic organisms with emphasis upon freshwater fishes. National Research Council Canada, NRCC No. 19246, p 139

    Google Scholar 

  • Lee SE, Lee JU, Chon HT, Lee JS (2008) Microbiological reduction of hexavalent chromium by indigenous chromium-resistant bacteria in sand column experiments. Environ Geochem Health 30:141–145

    Article  CAS  Google Scholar 

  • Levis AG, Bianchi V (1982) Mutagenic and cytogenic effects of chromium compounds. In: Langard S (ed) Biological and environmental aspects of chromium. Elesvier, Amsterdam, pp 171–208

    Google Scholar 

  • Lima SAC, Raposo MFJ, Castro PML, Morais RM (2004) Biodegradation of p-chlorophenol by a microalgae consortium. Water Res 38:97–102

    Article  CAS  Google Scholar 

  • Liu N, Luo S, Yang Y, Zhang T, Jin J, Liao J (2002) Biosorption of americium-241 by Saccharomyces cerevisiae. J Radioanal Nucl Chem 252:187–191

    Article  CAS  Google Scholar 

  • Liu YG, Pan C, Xia WB, Zeng GM, Zhou M, Liu YY, Ke J, Huang C (2008) Simultaneous removal of Cr (VI) and phenol in consortium culture of Bacillus anthracis and Pseudomonas putida Migula (CCTCC AB92019). Trans Nonf Met Soc China 18:1014–1020

    Article  CAS  Google Scholar 

  • Liu YG, Xu WH, Zeng GM, Li X, Gao H (2006) Cr (VI) reduction by Bacillus sp. isolated from chromium landfill. Process Biochem 41:1981–1986

    Article  CAS  Google Scholar 

  • Liu YG, Xu WH, Zeng GM, Tang CF, Li CF (2004) Experimental study on reduction by Pseudomonas aeruginosa. J Environ Sci 16(5):797–801

    CAS  Google Scholar 

  • Lock K, Janssen CR (2002) Ecotoxicology of chromium (III) to Eisenia fetida, Enchytraeus albidus and Folsomia candida. Ecotoxicol Environ Saf 51:203–205

    Article  CAS  Google Scholar 

  • Lokeshwari N, Joshi K (2009) Biosorption of heavy metal (chromium) using biomass. Global J Environ Res 3(1):29–35

    CAS  Google Scholar 

  • Losi ME, Amrhein C, Frankenberger WT (1994a) Environmental biochemistry of chromium. Rev Environ Contam Toxicol 36:91–121

    Article  Google Scholar 

  • Losi ME, Amrhein C, Frankenberger WT (1994b) Bioremediation of chromate-contaminated groundwater by reduction and precipitation in surface soils. J Environ Qual 23:1141–1150

    Article  CAS  Google Scholar 

  • Love AHG (1983) Chromium- biological and analytical considerations. In: Burrows D (ed) Chromium: metabolism and toxicity. CRC, Boca Raton, pp 1–12

    Google Scholar 

  • Lovely DR (1995) Bioremediation of organic and metal contaminants with dissimilatory metal reduction. J Ind Microbiol 14:85–93

    Article  Google Scholar 

  • Lovely DR, Coates JD (1997) Bioremediation of metal contamination. Curr Opin Biotechnol 8:285–289

    Article  Google Scholar 

  • Lovely DR, Phillips EJP (1994) Reduction of chromate by Desulfovibrio vulgaris and its c3 cytochrome. Appl Environ Microbiol 60:726–728

    Google Scholar 

  • Lovera S, Bonet R, Simon-Pujal MD, Congregado F (1993) Chromate reduction by resting cells of Agrobacterium radiobacter EPS-916. Appl Environ Microbiol 59:3516–3518

    Google Scholar 

  • Lu YL, Yang JL (1995) Long-term exposure to chromium (VI) oxide leads to defects in sulfates in sulfate transport system in Chinese hamster ovary cells. J Cell Biochem 57:655–665

    Article  CAS  Google Scholar 

  • Luo H, Lu Y, Mao Y, Shi X, Dalal NS (1996) Role of chromium (IV) in the chromium (VI)-related free radical formation, dG hydroxylation, and DNA damage. J Inorg Biochem 64:25–35

    Article  CAS  Google Scholar 

  • Mabbett AN, Macaskie LE (2001) A novel isolate of Desulfovibrio sp. with enhanced ability to reduce Cr (VI). Biotechnol Lett 23:683–687

    Article  CAS  Google Scholar 

  • Mala JGS, Nair BU, Puvanakrishnan R (2006) Bioaccumulation and biosorption of chromium by Aspergillus niger MTCC 2594. J Gen Appl Microbiol 52:179–186

    Article  CAS  Google Scholar 

  • Mance G (1987) Pollution threat of heavy metals in aquatic environments. Elesevier Applied Science, New York, pp 31–60, 134–135

    Book  Google Scholar 

  • Maria MV, Bertha AR, Carlos GSJ (1999) Health deterioration by chromium in workers of a tannery unit. Proceedings of the XXV IULTCS Congress. Tata McGraw-Hill Publishers, New Delhi, pp 725–730

    Google Scholar 

  • Marques AM, Roca X, Simon-Pujol MD, Fuste MC, Congregado F (1991) Uranium accumulation by Pseudomonas sp. EPS-5028. Appl Microbiol Biotechnol 35:406–410

    Article  CAS  Google Scholar 

  • Masood F, Malik A (2011) Hexavalent chromium reduction by Bacillus sp. Strain FM1 isolated from heavy-metal contaminated soil. Bull Environ Contam Toxicol 86:114–119

    Article  CAS  Google Scholar 

  • Mathew A, Thanga V, Salom G, Reshma JK (2010) Simultaneous phenol degradation and ­chromium (VI) reduction by bacterial isolates. Res J Biotechnol 5(1):46–49

    Google Scholar 

  • McLaughlin GD, Theis ER (1945) The chemistry of leather manufacture, vol 101, American Chemical Society in monograph. Reinhold Publishing Corporation, New York

    Google Scholar 

  • McLean J, Beveridge TJ (2001) Chromate reduction by a Pseudomonad isolated from a site contaminated with chromated copper arsenate. Appl Environ Microbiol 67:1076–1084

    Article  CAS  Google Scholar 

  • McLean J, Beveridge TJ, Phipps D (2000) Isolation and characterization of a chromium-reducing bacterium from a chromated carbon arsenate-contaminated site. Environ Microbiol 2:611–619

    Article  CAS  Google Scholar 

  • Megharaj M, Avudainayagam S, Naidu R (2003) Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Curr Microbiol 47:51–54

    Article  CAS  Google Scholar 

  • Mejare M, Bulow L (2001) Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol 19:67–73

    Article  CAS  Google Scholar 

  • Merrin JS, Sheela R, Saswathi N, Prakasham RS, Ramakrishna SV (1998) Biosorption of chromium VI using Rhizopus arrhizus. Indian J Exp Biol 36:1052–1055

    CAS  Google Scholar 

  • Mertz W (1974) Chromium as a dietary essential for man. In: Hockstra WG, Suttie JW, Ganther KE, Mertz W (eds) Trace elements metabolism. University Park Press, Baltimore, pp 185–198

    Google Scholar 

  • Mertz W (1998) Chromium research from a distance: from 1959 to 1980. J Am Coll Nutr 17:544–547

    CAS  Google Scholar 

  • Michel C, Brugna M, Aubert C, Bernadac A, Bruschi M (2001) Enzymatic reduction of chromate: comparative studies using sulfate-reducing bacteria. Appl Microbiol Biotechnol 55:95–100

    Article  CAS  Google Scholar 

  • Mishra S, Doble M (2008) Novel chromium tolerant microorganisms: isolation, characterization and their biosorption capacity. Ecotoxicol Environ Saf 71:874–879

    Article  CAS  Google Scholar 

  • Moore JW, Ramamoorthy S (2001) IUE assessment for chromium containing waste from the leather industry. http://www.ctc.fr/faq/docs/CTC_recommendations

  • Morris BW, Griffiths H, Kemp J (1988) Effect of glucose loading on concentration of chromium in plasma and urine of healthy adults. Clin Chem 34:1114–1116

    CAS  Google Scholar 

  • Mukherjee AB (1998) Chromium in the environment of Finland. Sci Total Environ 217:9–19

    Article  CAS  Google Scholar 

  • Murugesan AG, Maheswari S (2007) Uptake of hexavalent chromium from aqueous solution employing live, dead and immobilized bacterial biomass. J Appl Sci Environ Manage 11(4):71–75

    Google Scholar 

  • Myers CR, Carstens BP, Antholine WE, Myers JM (2000) Chromium (VI) reductase activity is associated with the cytoplasmic membrane of anaerobically grown Shewanella putrifaciens MR-1. J Appl Microbiol 88:98–106

    Article  CAS  Google Scholar 

  • NAS (1974) The relation of selected trace elements to health and disease. In: Geochemistry and the Environment-I. US National Academy of Engineering, Washington, DC, p 533

    Google Scholar 

  • Nath K, Singh D, Shyam S, Sharma YK (2009) Phytotoxic effects of chromium and tannery effluent on growth and metabolism of Phaseolus mungo Roxb. J Environ Biol 30:227–234

    CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  CAS  Google Scholar 

  • Nies DH, Silver S (1989) Plasmid-determined inducible efflux is responsible for resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus. J Bacteriol 171:896–900

    CAS  Google Scholar 

  • Nishioka H (1975) Mutagenic activities of metal compounds in bacteria. Mutat Res 31:185–189

    CAS  Google Scholar 

  • Niu H, Volesky B (1999) Characteristics of gold biosorption from cyanide solution. J Chem Technol Biotechnol 74:778–784

    Article  CAS  Google Scholar 

  • Norseth T (1986) The carcinogenicity of chromium and its salts. Braz J Ind Med 43:649–651

    CAS  Google Scholar 

  • Nriagu JO (1988a) Historical perspectives. In: Nriagu JO, Neiboer E (eds) Chromium in the natural and human environments. Wiley, New York, pp 1–20

    Google Scholar 

  • Nriagu JO (1988b) Production and uses of chromium. In: Nriagu JO, Neiboer E (eds) Chromium in the natural and human environments. Wiley, New York, pp 81–104

    Google Scholar 

  • Nriagu JO, Pacyna JM (1989) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139

    Article  Google Scholar 

  • Oboh OI, Aluyor EO (2008) The removal of heavy metal ions from aqueous solutions using sour sop seeds as biosorbent. Afr J Biotechnol 7(24):4508–4511

    CAS  Google Scholar 

  • Ohtake H, Cervantes C, Silver S (1987) Decreased chromate uptake in Pseudomonas fluorescens carrying a chromate resistance plasmid. J Bacteriol 169:3853–3856

    CAS  Google Scholar 

  • Ohtake H, Fujii E, Toda K (1990a) A survey of effective electron-donors for reduction of toxic hexavalent chromium by Enterobacter cloacae. J Gen Appl Microbiol 36:198–206

    Article  Google Scholar 

  • Ohtake H, Fujii E, Toda K (1990b) Reduction of toxic chromate in an industrial effluent by use of a chromate-reducing strain of Enterobacter cloacae. Environ Technol 11:663–668

    Article  CAS  Google Scholar 

  • Olson PA, Foster RF (1956) Effect of chronic exposure of sodium dichromate on young Chinook salmon and rainbow trout (Annual Report for 1955/56, HW 41500:35). Hanford Biological Research, Richland

    Google Scholar 

  • Omar NB, Merroun ML, Penalver JMA, Munaz TG (1997) Comparative heavy metal biosorption study of brewery yeast and Myxococcus xanthus biomasss. Chemosphere 35:2277–2283

    Article  CAS  Google Scholar 

  • Omoike A, Chorover J (2004) Spectroscopic study of extracellular polymeric substances from Bacillus subtilis: aqueous chemistry and adsorption effects. Biomacromolecules 5:1219–1230

    Article  CAS  Google Scholar 

  • One B-L (1988) Genetic approaches in the study of chromium toxicity and resistance in yeast and bacteria. In: Nriagu JO, Neiboer E (eds) Chromium in the natural and human environments. Wiley, New York, pp 351–368

    Google Scholar 

  • Padmesh TVN, Vijayaraghavan K, Sekaran G, Velan M (2005) Batch and column studies on biosorption of acid dyes on fresh water macro alga Azolla filiculoides. J Hazard Mater B 125:121–129

    Article  CAS  Google Scholar 

  • Paknikar KM, Puranik PR, Pethkar AV (1999) Development of microbial biosorbents-a need for standardizations of experimental protocols. In: Amils R, Ballester A (eds) Biohydrometallurgy and the environment toward the mining of the 21st century. Part B: molecular biology, biosorption, bioremediation. Elsevier, Amsterdam, pp 363–373

    Google Scholar 

  • Pal A, Dutta S, Paul AK (2005) Reduction of hexavalent chromium by cell-free extract of Bacillus sphaericus AND 303 isolated from serpentine soil. Curr Microbiol 66:327–330

    Article  CAS  Google Scholar 

  • Palmer CD, Puls RW (1994) EPA ground water issue: natural attenuation of hexavalent chromium in groundwater and soils. Washington, DC, Report 540/R-95-512. U.S. Environmental Protection Agency

    Google Scholar 

  • Palmer CD, Wittbrodt PR (1991) Processes affecting the remediation of chromium-contaminated sites. Environ Health Perspect 92:25–40

    Article  CAS  Google Scholar 

  • Parameswari E, Lakshmanan A, Thilagavathi T (2009) Biosorption of chromium (VI) and nickel (II) by bacterial isolates from an aqueous solution. Electron J Environ Agric Food Chem 8(3):150–156

    CAS  Google Scholar 

  • Park CH, Keyan M, Wielinga B, Fendorf S, Matin A (2000) Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase. Appl Environ Microbiol 66(5):1788–1795

    Article  CAS  Google Scholar 

  • Park D, Yun Y-S, Park JM (2005) Use of dead fungal biomass for the detoxification of hexavalent chromium: screening and kinetics. Process Biochem 40:2559–2565

    Article  CAS  Google Scholar 

  • Park RM, Bena JM, Stayner LT, Smith RJ, Gibb HJ, Lees PHJ (2004) Hexavalent chromium and lung cancer in the chromate industry: a quantitative risk assessment. Risk Anal 24:1099–1108

    Article  Google Scholar 

  • Parkar MA, Flint SH, Palmer JS, Brooks JD (2001) Factors influencing attachment of thermophilic bacilli to stainless steel. J Appl Microbiol 90:901–908

    Article  CAS  Google Scholar 

  • Parvathi K, Nagendran R, Nareshkumar R (2007) Effect of pH on chromium biosorption by chemically treated Saccharomyces cerevisiae. J Sci Ind Res 66:675–679

    CAS  Google Scholar 

  • Pattanapipitpaisal P, Brown NL, Macaskie LE (2001) Chromate reduction by Microbacterium liquefaciens immobilized in polyvinyl alcohol. Biotechnol Lett 23:61–65

    Article  CAS  Google Scholar 

  • Pattanapipitpaisal P, Mabbett AN, Finlay JA, Beswick AJ, Paterson-Beedle M, Essa AM, Wright J, Tolley MR, Badar U, Ahmed N, Hobman JL, Brown NL, Macaskie LE (2002) Reduction of Cr(VI) and bioaccumulation of chromium by Gram-positive and Gram-negative micro-organisms not previously exposed to Cr-stress. Environ Technol 23:731–745

    Article  CAS  Google Scholar 

  • Patterson JW (1985) Industrial wastewater treatment technology. Butterworth Publishers, Stoneham

    Google Scholar 

  • Paulsen IT, Saier MH Jr (1997) A novel family of ubiquitous heavy metal ion transport proteins. J Membr Biol 156:99–103

    Article  CAS  Google Scholar 

  • Pedersen LM, Permin H (1988) Rheumatic disease, heavy-metal pigments, and the great masters. Lancet 331(8597):1267–1269

    Article  Google Scholar 

  • Pethkar AV, Paknikar KM (1998) Recovery of gold from solutions using Cladosporium cladosporiodies biomass beads. J Biotechnol 63:121–136

    Article  CAS  Google Scholar 

  • Philip L, Iyengar L, Venkobachar C (1998) Cr (VI) reduction by Bacillus coagulans isolated from contaminated soils. J Environ Eng 124(12):1165–70

    Article  CAS  Google Scholar 

  • Polti MA, Amoroso MJ, Abate CM (2010) Chromate reductase activity in Streptomyces sp. MC1. J Gen Appl Microbiol 56:11–18

    Article  CAS  Google Scholar 

  • Polti MA, Amoroso MJ, Abate CM (2011) Intracellular chromium accumulation by Streptomyces sp. MC1. Water Air Soil Pollut 214:49–57

    Article  CAS  Google Scholar 

  • Polti MA, Gracia RO, Amoroso MJ, Abate CM (2009) Bioremediation of chromium (VI) contaminated soil by Streptomyces sp. MC1. J Basic Microbiol 49(3):285–292

    Article  CAS  Google Scholar 

  • Poopal AC, Laxman RS (2008) Hexavalent chromate reduction by immobilized Strepomyces griseus. Biotechnol Lett 30:1005–1010

    Article  CAS  Google Scholar 

  • Postgate J (1984) The sulfate-reducing bacteria. Cambridge University Press, Cambridge, pp 56–100

    Google Scholar 

  • Prakasham RS, Merrie JS, Sheela R, Saswathi N, Ramakrishna SV (1999) Biosorption of chromium VI by free and immobilized Rhizopus arrhizus. Environ Pollut 104:421–427

    Article  CAS  Google Scholar 

  • Puranik PR, Paknikar KM (1997) Biosorption of lead and zinc solutions using Streptoverticillium cinnamoneum waste biomass. J Biotechnol 55:113–124

    Article  CAS  Google Scholar 

  • Puranik PR, Paknikar KM (1999) Biosorption of lead, cadmium, and zinc by Citrobacter strain MCMB-181: characterization studies. Biotechnol Prog 15:228–237

    Article  CAS  Google Scholar 

  • Quazilbash AA, Faryal R, Naqvi KB, Ahmad S, Hameed A (2006) Efficacy of indigenous Bacillus species in the removal of chromium from industrial effluent. Biotechnology 5:12–20

    Article  Google Scholar 

  • Quintelas C, Fernandes B, Castro J, Figueiredo H, Tavares T (2008) Biosorption of Cr (VI) by three different bacterial species supported on granular activated carbon-a comparative study. J Hazard Mater 153:799–809

    Article  CAS  Google Scholar 

  • Quintelas C, Sousa E, Silva F, Neto S, Tavares T (2006) Competitive biosorption of ortho-cresol, phenol, chlorophenol and chromium (VI) from aqueous solution by a bacterial biofilm supported on granular activated carbon. Process Biochem 41:2087–2091

    Article  CAS  Google Scholar 

  • Quintelas C, Tavares T (2001) Removal of chromium (VI) and cadmium (II) from aqueous solution by a bacterial biofilm supported on granular activated carbon. Biotechnol Lett 23:1349–1353

    Article  CAS  Google Scholar 

  • Quintelas C, Tavares T (2002) Lead (II) and iron (II) removal from aqueous solution: biosorption by a bacterial biofilm supported on granular activated carbon. J Res Environ Biotechnol 3:196–202

    Google Scholar 

  • Rahman MU, Gul S, Haq MZU (2007) Reduction of chromium (VI) by locally isolated Pseudomonas sp. C-171. Turkish J Biol 31:161–166

    CAS  Google Scholar 

  • Rajamani S, Ramasami T, Langerwerf JSA, Schappman JE (1995) Environment management in tanneries, feasible chromium recovery and reuse system. Proceedings of the third international conference on appropriate waste management technologies for developing countries. Nagpur, pp 965–973

    Google Scholar 

  • Rajwade JM, Saluke PB, Paknikar KM (1999) Biochemical basis of chromate reduction by Pseudomonas mendocina. In: Amils R, Ballester A (eds) Biohydrometallurgy and the environment toward the mining of the 21st century. Elsevier, Amsterdam, pp 105–114

    Google Scholar 

  • Rama Krishna K, Philip L (2005) Bioremediation of Cr (VI) in contaminated soils. J Hazard Mater B 121:109–117

    Article  CAS  Google Scholar 

  • Rao JR, Chandrababu NK, Rao PS, Ramesh R, Suthanthararajan R, Nair BU, Nair KM, Warrier KGK, Rajamani S, Ramasami T, Langerwerf JSA (1999) Surveillance of chromium in tanning: a revisit. Proceedings of the XXV IULTCS Congress. Tata McGraw-Hill Publishers, New Delhi, pp 295–301

    Google Scholar 

  • Ray SA, Ray MK (2009) Bioremediation of heavy metal toxicity-with special reference to chromium. Al Ameen J Med Sci 2(2):57–63

    CAS  Google Scholar 

  • Rehman A, Shakoori FR, Shakoori AR (2007) Heavy metal resistant Distigma proteus (Euglenophyta) isolated from industrial effluents and its possible role in bioremediation of contaminated wastewaters. World J Microbiol Biotechnol 23:753–758

    Article  CAS  Google Scholar 

  • Rehman A, Zahoor A, Muneer B, Hasnain S (2008) Chromium tolerance and reduction potential of a Bacillus sp.ev3 isolated from metal contaminated wastewater. Bull Environ Contam Toxicol 81:25–29

    Article  CAS  Google Scholar 

  • Reid VM, Wyatt KW, Horn JA (1994) A new angle on groundwater remediation. J Civil Eng 64:56–58

    Google Scholar 

  • Reidske JH (1956) Chromium toxicity to plants (Annual Report for 1955/56, HW 41500:48). Hanford Biological Research, Richland

    Google Scholar 

  • Richard EC, Bourg ACM (1991) Aqueous geochemistry of chromium: a review. Water Res 25:807–816

    Article  CAS  Google Scholar 

  • Roe FJC, Carter RL (1969) Chromium carcinogenesis: calcium chromate as a potent carcinogen from the subcutaneous tissues of the rat. Br J Cancer 23:172–176

    Article  CAS  Google Scholar 

  • Sag Y, Acikel U, Aksu Z, Kustal T (1998) A comparative study of the simultaneous biosorption of Cr (VI) and Fe (III) on C. vulgaris and R. arrhizus: application of the competitive adsorption models. Process Biochem 33:273–281

    Article  CAS  Google Scholar 

  • Sag Y, Kustal T (1989) The use of Zoogloea ramigera in waste water treatment containing Cr (VI) and Cd (II) ions. Biotechnol Lett 11:145–148

    Article  CAS  Google Scholar 

  • Sag Y, Kustal T (1996a) The selective biosorption of chromium (VI) and copper (III) ions from binary metal mixtures by R. arrhizus. Process Biochem 31:561–572

    Article  CAS  Google Scholar 

  • Sag Y, Kustal T (1996b) Fully competitive biosorption of chromium (VI) and iron (III) ions from binary metal mixtures by R. arrhizus: use of the competitive Langmuir model. Process Biochem 31:573–585

    Article  CAS  Google Scholar 

  • Saifuddin N, Raziah AZ (2007) Removal of heavy metals from industrial effluent using Saccharomyces cerevisiae (Baker’s yeast) immobilized in chitosan/ lignosulphonate matrix. J Appl Sci Res 3(12):2091–2099

    CAS  Google Scholar 

  • Sakthivel S, Civakaran J, Ramasamy K, Naidu R (1999) Impact of tannery effluent irrigation on soil, groundwater and tree growth. Proceedings of the second international conference on contaminants in the soil environment in the Australasia-Pacific region. INSCR, New Delhi, India, pp 355–356

    Google Scholar 

  • Salunkhe PB, Dhakephalkar PK, Paknikar KM (1998) Bioremediation of hexavalent chromium in soil microcosms. Biotechnol Lett 20:749–751

    Article  CAS  Google Scholar 

  • Sarkar KT (1991) Theory and practice of leather manufacture. K. T. Sarkar Publisher, India

    Google Scholar 

  • Sarvanan K, Mahimairaja S, Ramasamy K, Naidu R (1999) Is there potential for use of tannery sludge for plant production? Proceedings of the second international conference on contaminants in the soil environment in the Australasia-Pacific region. INSCR, New Delhi, India, pp 349–350

    Google Scholar 

  • Sau GB, Chatterjee S, Mukherjee SK (2010) Chromate reduction by cell-free extract of Bacillus firmus KUCr1. Polish J Microbiol 59(3):185–190

    CAS  Google Scholar 

  • Sau GB, Chatterjee S, Sinha S, Mukherjee SK (2008) Isolation and characterization of a Cr (VI) reducing Bacillus firmus from industrial effluents. Polish J Microbiol 57:327–332

    CAS  Google Scholar 

  • Sauter S, Buxton KS, Macek KJ, Petrocelli SR (1976) Effects of exposure of heavy metals on selected freshwater fish. Toxicity of copper, cadmium, chromium and lead to eggs and fry of seven fish species (EPA-600/3-76-105). U. S. Environmental Protection Agency, Washington

    Google Scholar 

  • Saxena DK, Murthy RC, Jain VK, Chandra SV (1990) Fetoplacental–maternal uptake of hexavalent chromium administered orally in rats and mice. Bull Environ Contam Toxicol 45:430–435

    Article  CAS  Google Scholar 

  • Sepehr MN, Nasseri S, Assadi MM, Yaghmaian K (2005) Chromium bioremoval from tannery industries effluent by Aspergillus oryzae. Iranian J Environ Health Sci Eng 2(4):273–279

    CAS  Google Scholar 

  • Shah S, Thakur IS (2002) Enrichment and characterization of a microbial community from tannery effluent for degradation of pentachlorophenol. World J Microbiol Biotechnol 18:693–698

    Article  CAS  Google Scholar 

  • Shakoori AR, Makhdoom M, Haq RU (2000) Hexavalent chromium reduction by a dichromate-resistant gram-positive bacterium isolated from effluents of tanneries. Appl Microbiol Biotechnol 53:348–351

    Article  CAS  Google Scholar 

  • Sharma A, Thakur IS (2008) Characterization of pentachlorophenol degrading bacterial consortium from chemostat. Bull Environ Contam Toxicol 81:12–18

    Article  CAS  Google Scholar 

  • Sharma DC, Chatterjee C, Sharma CP (1995) Chromium accumulation and its effects on wheat (Triticum aestivum L. cv. HD 2204) metabolism. Plant Sci 111:145–151

    Article  CAS  Google Scholar 

  • Sharma DC, Forster CF (1993) Removal of hexavalent chromium using Sphagnum moss peat. Water Res 27:1201–1208

    Article  CAS  Google Scholar 

  • Sharma DC, Forster CF (1994a) A preliminary examination into the adsorption of hexavalent chromium using low-cost adsorbents. Biores Technol 47:257–264

    Article  CAS  Google Scholar 

  • Sharma DC, Forster CF (1994b) The treatment of chromium wastewaters using the sorptive potential of leaf mould. Biores Technol 49:31–40

    Article  CAS  Google Scholar 

  • Shen H, Wang YT (1993) Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456. Appl Environ Microbiol 59:3771–3777

    CAS  Google Scholar 

  • Shen H, Wang YT (1994a) Modeling hexavalent chromium reduction in Escherichia coli ATCC 33456. Biotechnol Bioeng 43(4):293–300

    Article  CAS  Google Scholar 

  • Shen H, Wang YT (1994b) Biological reduction of chromium by E. coli. J Environ Eng 120:560–572

    Article  CAS  Google Scholar 

  • Shen H, Wang YT (1995) Modeling simultaneous hexavalent chromium reduction and phenol degradation by a defined coculture of bacteria. Biotechnol Bioeng 48:606–616

    Article  CAS  Google Scholar 

  • Shi X, Dalal NS (1990) On the hydroxyl radical formation in the reaction between hydrogen peroxide and biologically generated chromium (V) species. Arch Biochem Biophys 277:342–350

    Article  CAS  Google Scholar 

  • Shi X, Ding M, Ye J, Wang S, Leonard SS, Zang L, Castranova V, Vallyathan V, Chiu A, Dalal N, Liu K (1999) Cr (VI) causes activation of nuclear transcription factor-Kb, DNA strand breaks and Dg hydroxylation via free radical reactions. J Inorg Biochem 75:37–44

    Article  CAS  Google Scholar 

  • Shukla OP, Rai UN, Dubey S (2009) Involvement and interaction of microbial communities in the transformation and stabilization of chromium during the composting of tannery effluent treated biomass of Vallisneria spiralis L. Biores Technol 100:2198–2203

    Article  CAS  Google Scholar 

  • Shumate SE, Strandberg GW (1985) Accumulation of metals by microbial cells. In: Moo-Young M, Robinson CW, Howell JA (eds) Comprehensive biotechnology. Pergamon, New York, pp 235–247

    Google Scholar 

  • Siegel S, Keller P, Galun M, Lehr H, Siegel B, Galun B (1986) Biosorption of lead and chromium by Penicillium preparations. Water Air Soil Pollut 27:69–75

    Article  CAS  Google Scholar 

  • Silva B, Figueiredo H, Neves IC, Tavares T (2009) The role of pH on Cr (VI) reduction and removal by Arthrobacter viscosus. Int J Chem Biomol Eng 2:100–103

    CAS  Google Scholar 

  • Silver S, Walderhaug M (1992) Gene regulation of plasmid-and chromosome-determined inorganic ion transport in bacteria. Microbiol Rev 56:195–228

    CAS  Google Scholar 

  • Simmons P, Singleton I (1996) A method to increase silver biosorption by an industrial strain of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 45:278–285

    Article  CAS  Google Scholar 

  • Singh S, Chandra R, Patel DK, Rai V (2007) Isolation and characterization of novel Serratia marcescens (AY927692) for pentachlorophenol degradation from pulp and paper mill waste. World J Microbiol Biotechnol 23:1747–1754

    Article  CAS  Google Scholar 

  • Smillie RH, Hunter K, Loutit M (1981) Reduction of chromium (VI) by bacterially produced hydrogen sulphide in a marine environment. Water Res 15:1351–1354

    Article  CAS  Google Scholar 

  • Smith WL, Gadd GM (2000) Reduction and precipitation of chromate by mixed culture sulphate-reducing bacterial biofilms. J Appl Microbiol 88:983–991

    Article  CAS  Google Scholar 

  • Song H, Liu Y, Xu W, Zeng G, Aibibu N, Xu L, Chen B (2009) Simultaneous Cr (VI) reduction and phenol degradation in pure cultures of Pseudomonas aeruginosa CCTCC AB91095. Biores Technol 100:5079–5084

    Article  CAS  Google Scholar 

  • Sreeram KJ, Ramasami T (2003) Sustaining tanning process through conservation, recovery and better utilization of chromium resources. Resour Conserv Recycl 38:185–212

    Article  Google Scholar 

  • Srinath T, Garg SK, Ramteke PW (2002a) Cr (VI) accumulation by Bacillus circulans: effect of various growth conditions. Indian J Microbiol 42:141–146

    Google Scholar 

  • Srinath T, Garg SK, Ramteke PW (2003a) Biosorption and elution of chromium from immobilized Bacillus coagulans biomass. Indian J Exp Biol 41:986–990

    CAS  Google Scholar 

  • Srinath T, Garg SK, Ramteke PW (2003b) Biosorption and elution of Cr (VI): A detoxification strategy. In: Roussos R, Soccol CR, Pandey A, Augus C (eds) New horizons in biotechnology. Kluwer Academic Publishers, Netherlands, pp 251–265

    Google Scholar 

  • Srinath T, Khare S, Ramteke PW (2001) Isolation of hexavalent chromium-reducing Cr-tolerant facultative anaerobes from tannery effluent. J Gen Appl Microbiol 47:307–312

    Article  CAS  Google Scholar 

  • Srinath T, Ramteke PW (1999) Heavy metals contamination in sludge of tannery effluent treatment plants and their toxicity. Proceedings of the second international conference on contaminants in the soil environment in the Australasia-Pacific region. INSCR, New Delhi, India, pp 72–73.

    Google Scholar 

  • Srinath T, Verma T, Ramteke PW, Garg SK (2002b) Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere 48:427–435

    Article  CAS  Google Scholar 

  • Srivastava A, Pathak AN (1997) Status report on tannery wastes and special reference to tanneries at Kanpur, U.P. J Sci Ind Res 58:453–459

    Google Scholar 

  • Srivastava J, Chandra H, Tripathi K, Naraian R, Sahu RK (2008) Removal of chromium (VI) through biosorption by the Pseudomonas spp. isolated from tannery effluent. J Basic Microbiol 48:135–139

    Article  CAS  Google Scholar 

  • Srivastava S, Ahmad AH, Thakur IS (2007) Removal of chromium and pentachlorophenol from tannery effluent. Biores Technol 98:1128–1132

    Article  CAS  Google Scholar 

  • Srivastava S, Thakur IS (2003) Bioadsorption potentiality of Acinetobacter sp. strain IST103 of a bacterial consortium for removal of chromium from tannery effluent. Biores Technol 97:1167–1173

    Article  CAS  Google Scholar 

  • Srivastava S, Thakur IS (2006) Biosorption potency of Aspergillus niger for removal of chromium (VI). Curr Microbiol 53(3):232–237

    Article  CAS  Google Scholar 

  • Srivastava S, Thakur IS (2007) Evaluation of biosorption potency of Acinetobacter sp. for removal of hexavalent chromium from tannery effluent. Biodegradation 18:637–646

    Article  CAS  Google Scholar 

  • Standeven AM, Wetterhahn KE (1991) Possible role of glutathione in chromium (VI) metabolism and toxicity in rats. Pharmacol Toxicol 68:469–476

    Article  CAS  Google Scholar 

  • Sugden KD, Geer RD, Rogers SJ (1992) Oxygen radical-mediated DNA damage by redox-active Cr (III) complexes. Biochemistry 31:11626–11631

    Article  CAS  Google Scholar 

  • Sugiyama M (1992) Role of physiological antioxidants in chromium (VI)-induced cellular injury. Free Radical Biol Med 12:397–407

    Article  CAS  Google Scholar 

  • Sultan S, Hasnain S (2007) Reduction of toxic hexavalent chromium by Ochrobactrum intermedium strain SDCr-5 stimulated by heavy metals. Biores Technol 98(2):340–344

    Article  CAS  Google Scholar 

  • Suzuki T, Miyata N, Horitsu H, Kawai K, Tsakamizawa K, Tai Y, Okazaki M (1992) NAD(P)H dependent chromium (VI) reductase of Pseudomonas ambigua G-1: a Cr(V) intermediate is formed during the reduction of Cr (VI) to Cr(III). J Bacteriol 174:5340–5345

    CAS  Google Scholar 

  • Szulczewski MD, Helmke PA, Bleam WF (1997) Comparison of XANES analysis and extractions to determine chromium speciation in contaminated soils. Environ Sci Technol 31:2954–2959

    Article  CAS  Google Scholar 

  • Tadesse I, Isoaho A, Green FB, Puhakka JA (2006) Lime enhanced chromium removal in advanced integrated wastewater pond system. Biores Technol 97(4):529–534

    Article  CAS  Google Scholar 

  • Tarangini K, Kumar A, Satpathy GR, Sangal VK (2009) Statistical optimization of process parameters for Cr (VI) biosorption onto mixed cultures of Pseudomonas aeruginosa and Bacillus subtilis. Clean-Soil Air Water 37:319–327

    Article  CAS  Google Scholar 

  • Taseli BK, Gokcay CF (2005) Degradation of chlorinated compounds by Penicillium camemberti in batch and up-flow column reactors. Process Biochem 40:917–923

    Article  CAS  Google Scholar 

  • Thacker U, Parikh R, Shouche Y, Madamwar D (2006) Hexavalent chromium reduction by Providencia sp. Process Biochem 41:1332–1337

    Article  CAS  Google Scholar 

  • Thakur IS, Verma P, Upadhyaya KC (2001) Involvement of plasmid in degradation of pentachlorophenol by Pseudomonas sp. from a chemostat. Biochem Biophys Res Comm 286:109–113

    Article  CAS  Google Scholar 

  • The Environmental Protection Act (1991). Ministry of environment and land use. Government of Mauritius, Pat X, 182

    Google Scholar 

  • Thorstensen EB (1958) Practice of chrome tannage. In: Flaherty FO, Roddy WT, Lollar RM (eds) The chemistry and technology of leather, American Chemical Society monograph series. Reinhold Publication Corporation, New York

    Google Scholar 

  • Tobin JM, Cooper DG, Neufeld RJ (1984) Uptake of metal ions by Rhizopus arrhizus biomass. Appl Environ Microbiol 47:821–824

    CAS  Google Scholar 

  • Trevors JT, Stratton GW, Gadd GM (1986) Cadmium transport, resistance, and toxicity in bacteria, algae, and fungi. Can J Microbiol 32:447–464

    Article  CAS  Google Scholar 

  • Tripathi M, Garg SK (2010) Studies on selection of efficient bacterial strain simultaneously tolerant to hexavalent chromium and pentachlorophenol isolated from treated tannery effluent. Res J Microbiol 5(8):707–716

    Article  CAS  Google Scholar 

  • Tripathi M, Mishra SS, Tripathi VR, Garg SK (2011a) Predictive approach for simultaneous biosorption of hexavalent chromium and pentachlorophenol degradation by Bacillus cereus RMLAU1. Afr J Biotechnol 10(32):6052–6061

    CAS  Google Scholar 

  • Tripathi M, Vikram S, Jain RK, Garg SK (2011b) Isolation and growth characteristics of chromium (VI) and pentachlorophenol tolerant bacterial isolate from treated tannery effluent for its possible use in simultaneous bioremediation. Indian J Microbiol 51(1):61–69

    Article  CAS  Google Scholar 

  • Tucker MD, Barton LL, Thomson BM (1998) Reduction of Cr, Mo, Se and U by Desulfovibrio desulfuricans immobilized in polyacrylamide gels. J Ind Microbiol Biotechnol 20:13–19

    Article  CAS  Google Scholar 

  • Turick CE, Camp CE, Apel WA (1998) Bioremediation potential of Cr (VI) contaminated soil using indigenous microorganisms. Biorem J 2:1–6

    Article  CAS  Google Scholar 

  • Tziotzios G, Dermou E, Eftychia P, Dorothea V, Dimitris V (2008) Simultaneous phenol removal and biological reduction of hexavalent chromium in a packed-bed reactor. J Chem Technol Biotechnol 83(7):829–835

    Article  CAS  Google Scholar 

  • U.S. EPA (1979). Economics of wastewater treatment alternatives for the electroplating industry. In: U.S. EPA technology transfer report, Environment Protection Agency 625/5-79-016, June, U. S. Environmental Protection Agency, Washington

    Google Scholar 

  • Uchiyama H, Yagi O, Oguri K, Kokufuta E (1994) Immobilization of trichloroethylene-degrading bacterium. Methylocystis sp. strain M in different matrices. J Ferment Bioeng 77:173–177

    Article  CAS  Google Scholar 

  • Ueno S (1992) Protective effects of thiol containing chelating agents against liver injury induced by hexavalent chromium in mice. Kitasato Arch Exp Med 65:87–96

    CAS  Google Scholar 

  • Ueno S, Kashimoto T, Susa N, Furukawa Y, Ishii M, Yokoi K, Yasuno M, Sasaki YF, Ueda J-I, Nishimura Y, Sugiyama M (2001) Detection of dichromate (VI)-induced DNA strand breaks and formation of paramagnetic chromium in multiple mouse organs. Toxicol Appl Pharmacol 170:56–62

    Article  CAS  Google Scholar 

  • Urrutia MM (1997) General bacterial sorption processes. In: Waste J, Forster C (eds) Biosorbent for metal ions. Taylor and Francis Publishers, London, pp 39–66

    Google Scholar 

  • Valdman E, Erijman L, Pessoa FLP, Leite SGF (2001) Continuous biosorption of Cu and Zn by immobilized waste biomass Sargassum sp. Process Biochem 36:869–873

    Article  CAS  Google Scholar 

  • van Hullebusch ED, Zandvoort MH, Lens PNL (2003) Metal immobilization by biofilms: mechanisms and analytical tools. Rev Environ Sci Bio/Technol 2:9–33

    Article  Google Scholar 

  • Veglio F, Beolchini F (1997) Removal of metals by biosorption: a review. Hydrometallurgy 44:301–316

    Article  CAS  Google Scholar 

  • Venba R, Jawahar M, Babu NKC (1999) Studies on the effect of recovered chrome on dyeing of leathers. Proceedings of the XXV IULTCS Congress. Tata McGraw-Hill Publishers, New Delhi, pp 446–452

    Google Scholar 

  • Venitt S, Levy LS (1974) Mutagenicity of chromates in bacteria and its relevance to chromate carcinogenesis. Nature (Lond) 250:493–495

    Article  CAS  Google Scholar 

  • Verma SK, Singh RK (1995) Multiple metal resistance in the cyanobacterium Nostoc muscorum. Bull Environ Contam Toxicol 54:614–619

    Article  CAS  Google Scholar 

  • Verma T, Garg SK, Ramteke PW (2009) Genetic correlation between chromium resistance and reduction in Bacillus brevis isolated from tannery effluent. J Appl Microbiol 107:1425–1432

    Article  CAS  Google Scholar 

  • Verschoor MA, Braget PC, Herber RFM, Zielhuis RL, Zwennis WCM (1988) Renal function of chrome-plating workers and welders. Int Arch Occup Environ Health 60:67–70

    Article  CAS  Google Scholar 

  • Viamajala S, Peyton BM, Petersen JN (2003) Modeling chromate reduction in Shewanella oneidensis MR-1: development of a novel dual-enzyme kinetic model. Biotechnol Bioeng 83:790–797

    Article  CAS  Google Scholar 

  • Viamajala S, Peyton R, Apel WA, Petersen JN (2002) Chromate/nitrite interactions in Shewanella oneidensis MR-1: evidence for multiple hexavalent chromium [Cr (VI)] reduction mechanisms dependent on physiological growth conditions. Biotechnol Bioeng 78:770–778

    Article  CAS  Google Scholar 

  • Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73(7):1163–1172

    Article  CAS  Google Scholar 

  • Viraraghavan T, Kapoor A (1998) Removal of heavy metals from aqueous solutions using immobilized fungal biomass in continuous mode. Water Res 32:1968–1977

    Article  Google Scholar 

  • Viti C, Pace A, Giovanetti L (2003) Characterization of Cr (VI)-resistant bacteria isolated from chromium-contaminated soil by tannery activity. Curr Microbiol 46:1–5

    Article  CAS  Google Scholar 

  • Volesky B (1990) Biosorption and biosorbents. In: Volesky B (ed) Biosorption of heavy metals. CRC, Boca Raton

    Google Scholar 

  • Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250

    Article  CAS  Google Scholar 

  • Walker SG, Flemming CA, Ferris FG, Beveridge TJ, Bailey GW (1989) Physicochemical interaction of Escherichia coli cell envelopes and Bacillus subtilis cell walls with two clays and the ability of the composite to immobilize heavy metals from solution. Appl Environ Microbiol 55:2976–2984

    CAS  Google Scholar 

  • Wang PC, Mori T, Komori K, Sasatu M, Toda K, Ohtake H (1989) Isolation and characterization of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions. Appl Environ Microbiol 55:1665–1669

    CAS  Google Scholar 

  • Wang PC, Mori T, Toda K, Ohtake H (1990) Membrane-associated chromate activity from Enterobacter cloacae. J Bacteriol 172:1670–1672

    CAS  Google Scholar 

  • Wang PC, Toda K, Ohtake H, Kusaka I, Yabe I (1991) Membrane-bound respiratory system of Enterobacter cloacae strain H01 grown anaerobically with chromate. FEMS Microbiol Lett 78:11–16

    Article  CAS  Google Scholar 

  • Wang Y, Xu W, Luo Y, Ma L, Li Y, Yang S, Huang K (2009) Bioeffects of chromium (III) on the growth of Spirulina platensis and its biotransformation. J Sci Food Agric 89(6):947–952

    Article  CAS  Google Scholar 

  • Wang YT, Chirwa EM (1998) Simultaneous removal of Cr (VI) and phenol in chemostat culture of E. coli ATCC 33456 and P. putida DMP-1. Water Sci Technol 38:113–119

    CAS  Google Scholar 

  • Wang YT, Nikhalambayausi-Chirwa EM (2001) Simultaneous Cr (VI) reduction and phenol degradation in a fixed-film coculture bioreactor: reactor performance. Water Res 35:1951–1932

    Article  Google Scholar 

  • Wang YT, Shen H (1995) Bacterial reduction of hexavalent chromium. J Ind Microbiol 14:159–163

    Article  CAS  Google Scholar 

  • Wang YT, Xiao CS (1995) Factors affecting hexavalent chromium reduction in pure cultures of bacteria. Water Res 29(11):2467–2474

    Article  CAS  Google Scholar 

  • Weber WJ Jr (1985) Adsorption theory, concepts and models. In: Slejko FL (ed) Adsorption technology: a step-by-step approach to process evaluation and application. Marcel Dekker, New York, pp 1–35

    Google Scholar 

  • White C, Gadd GM (1997) An internal sedimentation bioreactor for laboratory-scale removal of toxic chemicals from leachates using biogenic sulfide precipitation. J Ind Microbiol Biotechnol 18:414–421

    Article  CAS  Google Scholar 

  • White C, Gadd GM (1998) Accumulation and effects of cadmium on sulfate-reducing bacterial films. Microbiology 144:1407–1415

    Article  CAS  Google Scholar 

  • WHO (1988) Environmental health criteria 61. Chromium. World Health Organisation, Geneva, p 197

    Google Scholar 

  • Wilhelmi BS, Duncan JR (1995) Metal recovery from Saccharomyces cerevisiae biosorption columns. Biotechnol Lett 17:1007–1012

    Article  CAS  Google Scholar 

  • Wilson JA (1948) Modern practice in leather manufacture. Reinhold Publishing Corporation, New York

    Google Scholar 

  • Wong PK, So CM (1993) Copper accumulation by a strain of Pseudomonas putida. Microbios 73:113–121

    CAS  Google Scholar 

  • Xing L, Okrent D (1993) Future risk from a hypothesized RCRA site disposing of carcinogenic metals should a loss of societal memory occur. J Hazard Mater 38:363–384

    Google Scholar 

  • Xu WH, Liu YG (2005) Experimental study on Cr (VI) reduction by Pseudomonas aeruginosa. Environ Sci Technol 28:1–3

    Google Scholar 

  • Xu WH, Liu YG, Zeng GM, Li X, Song HX, Peng QQ (2009) Characterization of Cr (VI) resistance and reduction by Pseudomonas aeruginosa. Trans Nonf Met Soc China 19:1336–1341

    Article  CAS  Google Scholar 

  • Xu XR, Li HB, Gu J-D (2004) Reduction of hexavalent chromium by ascorbic acid in aqueous solutions. Chemosphere 57:609–613

    Article  CAS  Google Scholar 

  • Xu XR, Li HB, Gu J-D, Li XY (2005) Kinetics of the reduction of chromium (VI) by vitamin C. Environ Toxicol Chem 24:1310–1314

    Article  CAS  Google Scholar 

  • Yang CF, Lee CM, Wang CC (2006) Isolation and physiological characterization of the pentachlorophenol degrading bacterium Sphingomonas chlorophenolica. Chemosphere 69:709–714

    Article  CAS  Google Scholar 

  • Yang RD, Humphrey AE (1975) Dynamic and steady state studies of phenol biodegradation in pure and mixed cultures. Biotechnol Bioeng 17:1211–1235

    Article  CAS  Google Scholar 

  • Yao J, Tian L, Wang Y, Djah A, Wang F, Chen H, Su C, Zhuang R, Zhou Y, Choi MM, Barmanti E (2008) Microcalorimetric study the toxic effect of hexavalent chromium on microbial activity of Wuhan brown sandy soil: an in vitro approach. Ecotoxicol Environ Saf 69:289–295

    Article  CAS  Google Scholar 

  • Yassi A, Nieboer E (1988) Carcinogenicity of chromium compounds. In: Nriagu JO, Neiboer E (eds) Chromium in the natural and human environments. Wiley, New York, pp 443–496

    Google Scholar 

  • Yuann JP, Liu KJ, Hamilton J-W, Wetterhahn KE (1999) In vivo effects of ascorbate and glutathione on the uptake of chromium, formation of chromium (V), chromium-DNA binding and 8-hydroxyl-2’-deoxy-guanosine in liver and kidney of osteogenic disorder shionogi rats following treatment with chromium (VI). J Carcinogen 20:1267–1275

    Article  CAS  Google Scholar 

  • Zayed AM, Terry N (2003) Chromium in the environment: factors affecting biological remediation. Plant Soil 249:139–156

    Article  CAS  Google Scholar 

  • Zhao M, Duncan JR (1998) Column sorption of Cr (VI) from electroplating effluent using formaldehyde cross-linked Sacchromyces cerevisae. Biotechnol Lett 20(6):603–606

    Article  CAS  Google Scholar 

  • Zhao Y, Zouboulis AI, Matis KA (1996) Removal of molybdate and arsenate from aqueous solutions by floatation. Sep Sci Technol 31:769–785

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyendra Kumar Garg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Garg, S.K., Tripathi, M., Srinath, T. (2012). Strategies for Chromium Bioremediation of Tannery Effluent. In: Whitacre, D. (eds) Reviews of Environmental Contamination and Toxicology Volume 217. Reviews of Environmental Contamination and Toxicology, vol 217. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2329-4_2

Download citation

Publish with us

Policies and ethics