Skip to main content

Polymer-Modified Nanoparticles as Targeted MR Imaging Agents

  • Chapter
  • First Online:
Multifunctional Nanoparticles for Drug Delivery Applications

Abstract

A novel surface modification technique was employed to produce a polymer-modified, positive contrast agent nanoparticle for targeted magnetic resonance imaging (MRI). A range of both hydrophilic and hydrophobic homopolymers, along with novel multifunctional copolymers of poly(N-(2-hydroxypropyl) methacrylamide)-co-poly(N-methacryloxysuccinimide)-co-poly(fluorescein O-methacrylate), were synthesized using reversible addition-fragmentation chain transfer (RAFT) polymerization. These polymers were subsequently used to modify the surface of gadolinium (Gd) metal-organic framework (MOF) nanoparticles. The succinimide functionality of the copolymer was utilized as a scaffold for attachment of the targeting ligands, H-glycine-arginine-glycine-aspartate-serine-NH2 peptide or the antibody for epidermal growth factor. Reduction of the trithiocarbonate RAFT polymer end groups to thiolates provided a means of polymer attachment through vacant orbitals on the Gd3+ ions at the surface of the Gd MOF nanoparticles. MRI confirmed that the relaxivity rates of these novel polymer-modified structures were easily tuned by changes in size and shape of the nanoparticles or by modifying the molecular weight and chemical structure of the polymers attached to the surface of the nanoparticles. In most cases, the relaxivity values were significantly higher than both the unmodified Gd MOF nanoparticles and the clinically employed contrast agents, Magnevist® and MultiHance®. These versatile, polymer-modified nanoscale scaffolds were shown to provide biocompatibility, cancer cell targeting, and diagnostic imaging through positive contrast in MRI and fluorescence microscopy. This unique method provided a simple yet versatile route of producing polymer-modified nanoparticles for targeted MRI of cancer with an unprecedented degree of flexibility in the construct, potentially allowing for tunable loading capacities and spatial loading of targeting agents while incorporating bimodal imaging capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5:161–171

    Article  Google Scholar 

  2. Allen TM (2002) Ligand-targeted therapeutics in anticancer therapy. Nat Rev Drug Discov 2:750–763

    Article  Google Scholar 

  3. Jain RK (1998) The next frontier of molecular medicine: delivery of therapeutics. Nat Med 4:655–657

    Article  Google Scholar 

  4. Yezhelyev MV, Gao X, Xing Y, Al-Hajj A, Nie S, O’Regan RM (2006) Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol 7:657–667

    Article  Google Scholar 

  5. Nasongkla N, Bey E, Ren J, Al H, Khemtong C, Guthi JS, Chin S-F, Sherry AD, Boothman DA, Gao J (2006) Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett 6:2427–2430

    Article  Google Scholar 

  6. Panchapakesan B (2005) Nanotechnology: part 2 – tiny technology – tremendous therapeutic potential. Oncol Issues 20:20–23, November/December

    Google Scholar 

  7. Park K (2007) Nanotechnology: what it can do for drug delivery. J Control Release 120:1–3

    Article  Google Scholar 

  8. Wickline SA, Lanza GM (2003) Nanotechnology for molecular imaging and targeted therapy. Circulation 107:1092–1095

    Article  Google Scholar 

  9. Wang X, Yang L, Chen Z, Shin DM (2008) Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin 58:97–110

    Article  Google Scholar 

  10. Salamanca-Buentello F, Persad DL, Court EB, Martin DK, Daar AS, Singer PA (2005) Nanotechnology and the developing world. PLoS Med 2:383–386

    Article  Google Scholar 

  11. Cheon J, Lee J-H (2008) Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology. Acc Chem Res 41:1630–1640

    Article  Google Scholar 

  12. Sharma P, Brown S, Walter G, Santra S, Moudgil B (2006) Nanoparticles for bioimaging. Adv Colloid Interface Sci 123–126:471–485

    Article  Google Scholar 

  13. Zhang Y, Shang M (2004) Self-assembled coatings on individual monodisperse magnetite nanoparticles for efficient cellular uptake. Microdevices 6:33–40

    Article  Google Scholar 

  14. Cohen MH, Melnik K, Boiasrki A, Ferrari M, Martin FJ (2003) Microfabrication of silicon-based nanoporous particulates for medical applications. Biomed Microdevices 5:253–259

    Article  Google Scholar 

  15. He XX, Li J (2003) Bioconjugated nanoparticles for DNA protection from cleavage. J Am Chem Soc 125:7168–7169

    Article  Google Scholar 

  16. Chithrani BD, Chan WCW (2007) Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7:1542–1550

    Article  Google Scholar 

  17. Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  Google Scholar 

  18. Everts M, Saini V, Leddon JL, Kok RJ, Stoff-Khalili M, Preuss MA, Millican CL, Perkins G, Brown JM, Bagaria H, Nikles DE, Johnson DT, Zharov VP, Curiel DT (2006) Covalently linked Au nanoparticles to a viral vector: potential for combined photothermal and gene cancer therapy. Nano Lett 6:587–591

    Article  Google Scholar 

  19. Kim D, Park S, Lee JH, Jeong YY, Jon S (2007) Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J Am Chem Soc 129:7661–7665

    Article  Google Scholar 

  20. Su C-H, Sheu H-S, Lin C-Y, Huang C-C, Lo Y-W, Pu Y-C, Weng J-C, Shieh D-B, Chen J-H, Yeh C-S (2007) Nanoshell magnetic resonance imaging contrast agents. J Am Chem Soc 129:2139–2146

    Article  Google Scholar 

  21. Bharali DJ, Lucey DW, Jayakumar H, Pudavar HE, Prasad PN (2005) Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy. J Am Chem Soc 127:11364–11371

    Article  Google Scholar 

  22. Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5:709–711

    Article  Google Scholar 

  23. McCarthy JR, Weissleder R (2008) Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 60:1241–1251

    Article  Google Scholar 

  24. Sanvicens N, Marco MP (2008) Multifunctional nanoparticles – properties and prospects for their use in human medicine. Trends Biotechnol 26:425–433

    Article  Google Scholar 

  25. Smith AM, Duan H, Mohs AM, Nie S (2008) Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev 60:1226–1240

    Article  Google Scholar 

  26. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120

    Article  Google Scholar 

  27. Hifumi H, Yamaoka S, Tanimoto A, Citterio D, Suzuki K (2006) Gadolinium-based hybrid nanoparticles as a positive MR contrast agent. J Am Chem Soc 128:15090–15091

    Article  Google Scholar 

  28. Artemov D, Bhujwalla ZM, Bulte JWM (2004) Magnetic resonance imaging of cell surface receptors using targeted contrast agents. Curr Pharm Biotechnol 5:485–494

    Article  Google Scholar 

  29. Rinck PA, Bjørnerud A (2001) Magnetic resonance in medicine. Wiley-Blackwell, New York

    Google Scholar 

  30. Reynolds CH, Annan N, Beshah K, Huber JH, Shaber SH, Lenkinske RE, Wortman JA (2000) Gadolinium-loaded nanoparticles: new contrast agents for magnetic resonance imaging. J Am Chem Soc 122:8940–8945

    Article  Google Scholar 

  31. Rieter WJ, Taylor KML, An H, Lin W, Lin W (2006) Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents. J Am Chem Soc 128:9024–9025

    Article  Google Scholar 

  32. Rieter WJ, Taylor KML, Lin W (2007) Surface modification and functionalization of nanoscale metal-organic frameworks for controlled release and luminescence sensing. J Am Chem Soc 129:9852–9853

    Article  Google Scholar 

  33. Oyewumi MO, Mumper RJ (2002) Engineering tumor-targeted gadolinium hexanedione nanoparticles for potential applications in neutron capture therapy. Bioconjug Chem 13:1328–1335

    Article  Google Scholar 

  34. Bridot J-L, Faure A-C, Laurent S, Riviere C, Billotey C, Hiba B, Janier M, Josserand V, Coll J-L, Vander Elst L, Muller R, Roux S, Perriat P, Tillement O (2007) Hybrid gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging. J Am Chem Soc 129:5076–5084

    Article  Google Scholar 

  35. Oyewumi MO, Liu S, Moscow JA, Mumper RJ (2003) Specific association of thiamine-coated gadolinium nanoparticles with human breast cancer cells expressing thiamine transporters. Bioconjug Chem 14:404–411

    Article  Google Scholar 

  36. Oyewumi MO, Yokel RA, Jay M, Coakley T, Mumper RJ (2004) Comparison of cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor-bearing mice. J Control Release 95:613–626

    Article  Google Scholar 

  37. Evanics F, Diamente PR, van Veggel FCJM, Stanisz GJ, Prosser RS (2006) Water-soluble GdF3 and GdF3/LaF3 nanoparticles – physical characterization and NMR relaxation properties. Chem Mater 18:2499–2505

    Article  Google Scholar 

  38. Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL (2007) Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett 7:1929–1934

    Article  Google Scholar 

  39. Taylor KML, Jin A, Lin W (2008) Surfactant-assisted synthesis of nanoscale gadolinium metal-organic frameworks for potential multimodal imaging. Angew Chem Int Ed Engl 47:7722–7725

    Article  Google Scholar 

  40. Rowe MD, Chang C-C, Thamm DH, Kraft SL, Harmon JF Jr, Vogt AP, Sumerlin BS, Boyes SG (2009) Tuning the magnetic resonance imaging properties of positive contrast agent nanoparticles by surface modification with RAFT polymers. Langmuir 25:9487–9499

    Article  Google Scholar 

  41. Rowe MD, Thamm DH, Kraft SL, Boyes SG (2009) Polymer-modified gadolinium metal-organic framework nanoparticles used as multifunctional nanomedicines for the targeted imaging and treatment of cancer. Biomacromolecules 10:983–993

    Article  Google Scholar 

  42. Lai JT, Filla D, Shea R (2002) Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient RAFT agents. Macromolecules 35:6754–6756

    Article  Google Scholar 

  43. Kopecek J, Bazilova H (1973) Poly[N-(2-hydroxypropyl)methacrylamide]. 1. Radical polymerization and copolymerization. Eur Polym J 9:7–14

    Article  Google Scholar 

  44. Perrier S, Takolpuckdee P, Westwood J, Lewis DM (2004) Versatile chain transfer agents for reversible addition fragmentation chain transfer (RAFT) polymerization to synthesize functional polymer architectures. Macromolecules 37:2709–2717

    Article  Google Scholar 

  45. Le TP, Moad G, Rizzardo E, Thang SH (1998) PCT Int Appl WO 98 01478 A1 980115

    Google Scholar 

  46. Yanjarappa MJ, Gujraty KV, Joshi A, Saraph A, Kane RS (2006) Synthesis of copolymers containing an active ester of methacrylic acid by RAFT: controlled molecular weight scaffolds for biofunctionalization. Biomacromolecules 7:1665–1670

    Article  Google Scholar 

  47. Hong C-Y, Pan C-Y (2006) Direct synthesis of biotinylated stimuli-responsive polymer and diblock copolymer by RAFT polymerization using biotinylated trithiocarbonate as RAFT agent. Macromolecules 39:3517–3524

    Article  Google Scholar 

  48. Nguyen TL, Tey SY, Pourgholami MH, Morris DL, Davis TP, Barner-Kowollik C, Stenzel MH (2007) Synthesis of semi-biodegradable crosslinked microspheres for the delivery of 1,25 dihydroxyvitamin D3 for the treatment of hepatocellular carcinoma. Eur Polym J 43:1754–1767

    Article  Google Scholar 

  49. Scales CW, Huang F, Li N, Vasilieva YA, Ray J, Convertine AJ, McCormick CL (2006) Corona-stabilized interpolyelectrolyte complexes of SiRNA with nonimmunogenic, hydrophilic/cationic block copolymers prepared by aqueous RAFT polymerization. Macromolecules 39:6871–6881

    Article  Google Scholar 

  50. Zelikin AN, Such GK, Postma A, Caruso F (2007) Poly(vinylpyrrolidone) for bioconjugation and surface ligand immobilization. Biomacromolecules 8:2950–2953

    Article  Google Scholar 

  51. Li M, De P, Gondi SR, Sumerlin BS (2008) Responsive polymer-protein bioconjugates prepared by RAFT polymerization and copper-catalyzed azide-alkyne click chemistry. Macromol Rapid Commun 29:1172–1176

    Article  Google Scholar 

  52. De P, Li M, Gondi SR, Sumerlin BS (2008) Temperature-regulated activity of responsive polymer−protein conjugates prepared by grafting-from via RAFT polymerization. J Am Chem Soc 130:11288–11289

    Article  Google Scholar 

  53. Sumerlin BS, Lowe AB, Stroud PA, Zhang P, Urban MW, McCormick CL (2003) Modification of gold surfaces with water-soluble (co)polymers prepared via aqueous reversible addition-fragmentation chain transfer polymerization. Langmuir 19:5559–5562

    Article  Google Scholar 

  54. Hotchkiss JW, Lowe AB, Boyes SG (2007) Surface modification of gold nanorods with RAFT synthesized polymers. Chem Mater 19:6–13

    Article  Google Scholar 

  55. Zhang Q, Gupta S, Emrick T, Russell TP (2006) Surface-functionalized CdSe nanorods for assembly in diblock copolymer templates. J Am Chem Soc 128:3898–3899

    Article  Google Scholar 

  56. Lowe AB, Sumerlin BS, Donovan MS, McCormick CL (2002) Facile preparation of transition metal nanoparticles stabilized by well-defined (co)polymers synthesized via aqueous reversible addition-fragmentation chain transfer polymerization. J Am Chem Soc 124:11562–11563

    Article  Google Scholar 

  57. Hartman KB, Laus S, Bolskar RD, Muthupillai R, Helm L, Toth E, Merbach AE, Wilson LJ (2008) Gadonanotubes as ultrasensitive pH-smart probes for magnetic resonance imaging. Nano Lett 8:415–419

    Article  Google Scholar 

  58. Kim JS, Rieter WJ, Taylor KML, An H, Lin W, Lin W (2007) Self-assembled hybrid nanoparticles for cancer-specific multimodal imaging. J Am Chem Soc 129:8962–8963

    Article  Google Scholar 

  59. Allen M, Bulte JWM, Liepold L, Basu G, Zywicke HA, Frank JA, Young M, Douglas T (2005) Paramagnetic viral nanoparticles as potential high-relaxivity magnetic resonance contrast agents. Magn Reson Med 54:807–812

    Article  Google Scholar 

  60. Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and application. Chem Rev 99:2293–2352

    Article  Google Scholar 

  61. Lin W, Rieter WJ, Taylor KML (2009) Modular synthesis of functional nanoscale coordination polymers. Angew Chem Int Ed 48:650–658

    Article  Google Scholar 

  62. Rodrigues RK, da Silva MA, Sabadini E (2008) Worm-like micelles of CTAB and sodium salicylate under turbulent flow. Langmuir 24:13875–13879

    Article  Google Scholar 

  63. Shukla A, Rehage H (2008) Zeta potentials and Debye screening lengths of aqueous viscoelastic surfactant solutions (cetyltrimethylammonium bromide/sodium salicylate system). Langmuir 24:8507–8513

    Article  Google Scholar 

  64. Boyes SG, Granville AM, Baum M, Akgun B, Mirous BK, Brittain WJ (2004) Recent Advances in the synthesis and rearrangement of block copolymer brushes. In: Advincula RC, Brittain WJ, Caster KC, Ruhe J (eds) Polymer brushes. Weinheim, Wiley-VCH Verlag GmbH & Co, pp 151–165

    Google Scholar 

  65. Boyes SG, Granville AM, Baum M, Akgun B, Mirous BK, Brittain WJ (2004) Polymer brushes-surface immobilized polymers. Surf Sci 570:1–12

    Article  Google Scholar 

  66. Jordan R (ed) (2006) Surface initiated polymerization I and II: advances in polymer science. Springer, Berlin, p 214

    Google Scholar 

  67. Liu Y, Klep V, Zdyrko B, Luzinov I (2004) Polymer grafting via ATRP initiated from macroinitiator synthesized on surface. Langmuir 20:6710–6718

    Article  Google Scholar 

  68. Motornov M, Sheparovych R, Katz E, Minko S (2008) Chemical gating with nanostructured responsive polymer brushes: mixed brush versus homopolymer brush. ACS Nano 2:41–52

    Article  Google Scholar 

  69. Muthukrishnan S, Erhard DP, Mori H, Muller AHE (2006) Synthesis and characterization of surface-grafted hyperbranched glycomethacrylates. Macromolecules 39:2743–2750

    Article  Google Scholar 

  70. Gao H, Matyjaszewski K (2007) Synthesis of molecular brushes by “grafting onto” method: combination of ATRP and click reactions. J Am Chem Soc 129:6633–6639

    Article  Google Scholar 

  71. Vihola H, Laukkanen A, Valtola L, Tenhu H, Hirvonen J (2005) Cytotoxicity of thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam) and amphiphilically modified poly(N-vinylcaprolactam). Biomaterials 26:3055–3064

    Article  Google Scholar 

  72. Favier A, D’Angosto F, Charreyre M-T, Pichot C (2004) Synthesis of N-acryloxysuccinimide copolymers by RAFT polymerization, as reactive building blocks with full control of composition and molecular weight. Polymer 45:7821–7830

    Article  Google Scholar 

  73. Rizzardo E, Chiefari J, Mayadunne RTA, Moad G, Thang SH (2000) Synthesis of defined polymer by reversible addition-fragmentation chain transfer (the RAFT process). ACS Symp Ser 768:278

    Article  Google Scholar 

  74. Lowe AB, McCormick CL (2007) Reversible addition–fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co)polymers under homogeneous conditions in organic and aqueous media. Prog Polym Sci 32:283–351

    Article  Google Scholar 

  75. Ye Y, Bloch S, Xu B, Achilefu S (2006) Design, synthesis, and evaluation of near infrared fluorescent multimeric RGD peptides for targeting tumors. J Med Chem 49:2268–2275

    Article  Google Scholar 

  76. Ciardiello F, Tortora G (2003) Epidermal growth factor receptor (EGFR) as a target in cancer therapy: understanding the role of receptor expression and other molecular determinants that could influence the response to anti-EGFR drugs. Eur J Cancer 39:1348–1354

    Article  Google Scholar 

  77. Brigger I, Dubernet C, Couvreur P (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54:631–651

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen G. Boyes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Boyes, S.G. et al. (2012). Polymer-Modified Nanoparticles as Targeted MR Imaging Agents. In: Svenson, S., Prud'homme, R. (eds) Multifunctional Nanoparticles for Drug Delivery Applications. Nanostructure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2305-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-2305-8_9

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-2304-1

  • Online ISBN: 978-1-4614-2305-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics