Skip to main content

The Coupling of Cerebral Metabolic Rate of Glucose and Cerebral Blood Flow In Vivo

  • Chapter
  • First Online:
Neural Metabolism In Vivo

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 4))

Abstract

The energy supplied to the brain by metabolic substrate is largely utilized for maintaining synaptic transmission. In this regulation cerebral blood flow and glucose consumption is tightly coupled as well in the resting condition as during activation. Quantification of cerebral blood flow and metabolism was originally performed using the Kety-Schmidt method and this method still represent the gold standard by which subsequent methods have been evaluated. However, in its classical setting, the method overestimates cerebral blood flow. Studies of metabolic changes during activation must take this into account, and subsequent methods for measurement of regional glucose metabolism must be corrected accordingly in order to allow reliable quantitative comparisons of metabolite changes in activation studies. For studies of regional metabolic changes during activation quantification poses further difficulties due to limitation in resolution and partial volume effects.

In contrast to the tight coupling between regional glucose metabolism and cerebral blood flow, there is an uncoupling between flow and oxygen consumption as the latter only increases to a limited extend. The excess glucose uptake is thus not used for aerobic metabolism. Although some of the excess glucose uptake can be explained by lactate production, this phenomenon can still not account for the excess glucose uptake. Thus, more complex metabolic patterns in the brain might be reflected in the excess glucose uptake during activation, and especially temporal relationships must be taken into account.

What triggers the flow increase during functional brain activation is not entirely elucidated. The demand for excess glucose uptake may be important and a possible oxygen deficit in tissue distant from the capillaries is probably of minor importance. The mechanism by which cerebral blood flow increases during activation may incorporate changes in glycolytic substrates or local changes in astrocytes or neurons that triggers the production of vasoactive substances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Blomqvist G, Stone-Elander S, Halldin C, Roland PE, Widen L, Lindqvist M, Swahn CG, Langstrom B, Wiesel FA (1990) Positron emission tomographic measurements of cerebral glucose utilization using [1-11C]D-glucose. J Cereb Blood Flow Metab 10:467–483

    Article  PubMed  CAS  Google Scholar 

  • Brodersen P, Paulson OB, Bolwig TG, Rogon ZE, Rafaelsen OJ, Lassen NA (1973) Cerebral hyperemia in electrically induced epileptic seizures. Arch Neurol 28:334–338

    Article  PubMed  CAS  Google Scholar 

  • Brooks RA, Hatazawa J, Di Chiro G, Larson SM, Fishbein DS (1987) Human cerebral gluocse metabolism determined by positron emission tomography: a revisit. J Cereb Blood Flow Metab 7:427–432

    Article  PubMed  CAS  Google Scholar 

  • Bryan RM Jr, You J, Phillips SC, Andresen JJ, Lloyd EE, Rogers PA, Dryer SE, Marrelli SP (2006) Evidence for two-pore domain potassium channels in rat cerebral arteries. Am J Physiol Heart Circ Physiol Aug 291(2):H770–H780

    Article  PubMed  CAS  Google Scholar 

  • Buxton RB, Frank LR (1997) A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J Cereb Blood Flow Metab 17:64–72

    Article  PubMed  CAS  Google Scholar 

  • Choi IY, Gruetter R (2003) In vivo 13C NMR assessment of brain glycogen concentration and turnover in the awake rat. Neurochem Int 43(4–5):317–322

    Article  PubMed  CAS  Google Scholar 

  • Cholet N, Pellerin L, Welker E, Lacombe P, Seylaz J, Magistretti P, Bonvento G (2001) Local injection of antisense oligonucleotides targeted to the glial glutamate transporter GLAST decreases the metabolic response to somatosensory activation. J Cereb Blood Flow Metab 21:404–412

    Article  PubMed  CAS  Google Scholar 

  • Cohen PJ, Alexander SC, Smith TC, Reivich M, Wollman H (1967) Effects of hypoxia and normocarbia on cerebral blood flow and metabolism in conscious man. J Appl Physiol 23:183–189

    PubMed  CAS  Google Scholar 

  • Cruz NF, Dienel GA (2002) High glycogen levels in brains of rats with minimal environmental stimuli: Implications for metabolic contributions of working astrocytes. J Cereb Blood Flow Metab 22(12):1476–1489

    Article  PubMed  CAS  Google Scholar 

  • Dalsgaard MK, Quistorff B, Danielsen ER, Selmer C, Vogelsang T, Secher NH (2004) A reduced cerebral metabolic ratio in exercise reflects metabolism and not accumulation of lactate within the human brain. J Physiol 554:571–578

    Article  PubMed  CAS  Google Scholar 

  • Dienel GA, Cruz NF (2003) Neighborly interactions of metabolically-activated astrocytes in vivo. Neurochem Int 43:339–354

    Article  PubMed  CAS  Google Scholar 

  • Dirnagl U, Niwa K, Lindauer U, Villringer A (1994) Coupling of cerebral blood flow to neuronal activation: role of adenosine and nitric oxide. Am J Physiol 267:H296–H301

    PubMed  CAS  Google Scholar 

  • Dringen R, Gebhardt R, Hamprecht B (1993) Glycogen in astrocytes: possible function as lactate supply for neighboring cells. Brain Res 623:208–214

    Article  PubMed  CAS  Google Scholar 

  • Filosa JA, Bonev AD, Straub SV, Meredith AL, Wilkerson MK, Aldrich RW, Nelson MT (2006) Local potassium signaling couples neuronal activity to vasodilation in the brain. Nat Neurosci 9(11):1397–1403

    Article  PubMed  CAS  Google Scholar 

  • Fox PT, Raichle ME, Mintun MA, Dence C (1988) Nonoxidative glucose consumption during focal physiologic neural activation. Science 241:462–464

    Article  PubMed  CAS  Google Scholar 

  • Graham MM, Muzi M, Spence AM, O’Sullivan F, Lewellen TK, Link JM, Krohn KA (2002) The FDG lumped constant in normal human brain. J Nucl Med 43:1157–1166

    PubMed  Google Scholar 

  • Gruetter R (2003) Glycogen: the forgotten cerebral energy store. J Neurosci Res 74(2):179–183, Oct 15

    Article  PubMed  CAS  Google Scholar 

  • Hasselbalch SG, Madsen PL, Hageman LP, Olsen KS, Justesen N, Holm S, Paulson OB (1996) Changes in cerebral blood flow and carbohydrate metabolism during acute hyperketonemia. Am J Physiol 270:E746–E751

    PubMed  CAS  Google Scholar 

  • Hasselbalch SG, Madsen PL, Knudsen GM, Holm S, Paulson OB (1998) Calculation of the FDG lumped constant by simultaneous measurements of global glucose and FDG metabolism in humans. J Cereb Blood Flow Metab 18:154–160

    Article  PubMed  CAS  Google Scholar 

  • Hertz L, Peng L, Dienel GA (2007) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 27(2):219–249

    Article  PubMed  CAS  Google Scholar 

  • Hofmann M, Pichler B, Schölkopf B, Beyer T (2009) Towards quantitative PET/MRI: A review of MR-based attenuation correction techniques. Eur J Nucl Med Mol Imaging 36(Suppl 1): S93–S104

    Article  PubMed  Google Scholar 

  • Huang SC, Phelps ME, Hoffman EJ, Sideris K, Selin CJ, Kuhl DE (1980) Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol 238:E69–E82

    PubMed  CAS  Google Scholar 

  • Jueptner M, Weiller C (1995) Review: does measurement of regional cerebral blood flow reflect synaptic activity? Implications for PET and fMRI. Neuroimage 2:148–156

    Article  PubMed  CAS  Google Scholar 

  • Kasischke KA, Vishwasrao HD, Fisher PJ, Zipfel WR, Webb WW (2004) Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 305(5680):99–103, Jul 2

    Article  PubMed  CAS  Google Scholar 

  • Kety SS (1957) The general metabolism of the brain in vivo. In: Richter D (ed) Metabolism of the nervous system. Pergamon, New York, pp 221–236

    Google Scholar 

  • Kety SS, Schmidt CF (1948) The nitrous oxide method for quantitative determinations of cerebral blood flow in man: theory, procedure, and normal values. J Clin Invest 27:476–483

    Article  Google Scholar 

  • Knudsen GM (1994) Application of the double-indicator technique for measurement of blood-brain barrier permeability in humans. Cerebrovasc Brain Metab Rev 6:1–30

    PubMed  CAS  Google Scholar 

  • Knudsen GM, Pettigrew KD, Paulson OB, Hertz MM, Patlak CS (1990) Kinetic analysis of blood-brain barrier transport of d-glucose in man: quantitative evaluation in the presence of tracer backflux and capillary heterogeneity. Microvasc Res 39(1):28–49

    Article  PubMed  CAS  Google Scholar 

  • Knudsen GM, Paulson OB, Hertz MM (1991) Kinetic analysis of the human blood-brain barrier transport of lactate and its influence by hypercapnia. J Cereb Blood Flow Metab 11:581–586

    Article  PubMed  CAS  Google Scholar 

  • Knutsson L, Börjesson S, Larsson EM, Risberg J, Gustafson L, Passant U et al (2007) Absolute quantification of cerebral blood flow in normal volunteers: correlation between xe-133 SPECT and dynamic susceptibility contrast MRI. J Magn Reson Imaging 26(4):913–920

    Article  PubMed  Google Scholar 

  • Kuschinsky W, Paulson OB (1992) Capillary circulation in the brain. Cerebrovasc Brain Metab Rev 4:261–286

    PubMed  CAS  Google Scholar 

  • Kuwabara H, Evans AC, Gjedde A (1990) Michaelis-Menten constraints improved cerebral glucose metabolism and regional lumped constant measurements with [18F]fluorodeoxyglucose. J Cereb Blood Flow Metab 10:180–189

    Article  PubMed  CAS  Google Scholar 

  • Lassen NA (1959) Cerebral blood flow and oxygen consumption in man. Physiol Rev 39:183–238

    PubMed  CAS  Google Scholar 

  • Law I, Iida H, Holm S, Nour S, Rostrup E, Svarer C, Paulson OB (2000) Quantitation of regional cerebral blood flow corrected for partial volume effect using O-15 water and PET: II. Normal values and gray matter blood flow response to visual activation. J Cereb Blood Flow Metab 20:1252–1263

    Article  PubMed  CAS  Google Scholar 

  • Leenders KL, Perani D, Lammertsma AA, Heather JD, Buckingham P, Healy MJ, Gibbs JM, Wise RJ, Hatazawa J, Herold S (1990) Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age. Brain 113(Pt 1):27–47

    Article  PubMed  Google Scholar 

  • Loaiza A, Porras OH, Barros LF (2003) Glutamate triggers rapid glucose transport stimulation in astrocytes as evidenced by real-time confocal microscopy. J Neurosci 23:7337–7342

    PubMed  CAS  Google Scholar 

  • Madsen PL, Holm S, Herning M, Lassen NA (1993) Average blood flow and oxygen uptake in the human brain during resting wakefulness: a critical appraisal of the Kety-Schmidt technique. J Cereb Blood Flow Metab 13:646–655

    Article  PubMed  CAS  Google Scholar 

  • Madsen PL, Hasselbalch SG, Hagemann LP, Olsen KS, Bulow J, Holm S, Wildschiodtz G, Paulson OB, Lassen NA (1995) Persistent resetting of the cerebral oxygen/glucose uptake ratio by brain activation: evidence obtained with the Kety-Schmidt technique. J Cereb Blood Flow Metab 15:485–491

    Article  PubMed  CAS  Google Scholar 

  • Madsen PL, Linde R, Hasselbalch SG, Paulson OB, Lassen NA (1998) Activation-induced resetting of cerebral oxygen and glucose uptake in the rat. J Cereb Blood Flow Metab 18:742–748

    Article  PubMed  CAS  Google Scholar 

  • Madsen PL, Cruz NF, Sokoloff L, Dienel GA (1999) Cerebral oxygen/glucose ratio is low during sensory stimulation and rises above normal during recovery: excess glucose consumption during stimulation is not accounted for by lactate efflux from or accumulation in brain tissue. J Cereb Blood Flow Metab 19:393–400

    Article  PubMed  CAS  Google Scholar 

  • Magistretti PJ, Pellerin L (1996) Cellular mechanisms of brain energy metabolism. Relevance to functional brain imaging and to neurodegenerative disorders. Ann N Y Acad Sci 777: 380–387

    Article  PubMed  CAS  Google Scholar 

  • Magistretti PJ, Pellerin L (1999) Cellular mechanisms of brain energy metabolism and their ­relevance to functional brain imaging. Philos Trans R Soc Lond B Biol Sci 354:1155–1163

    Article  PubMed  CAS  Google Scholar 

  • Medina JM, Tabernero A (2005) Lactate utilization by brain cells and its role in CNS development. J Neurosci Res 79(1–2):2–10

    Article  PubMed  CAS  Google Scholar 

  • Mintun MA, Raichle ME, Martin WR, Herscovitch P (1984) Brain oxygen utilization measured with O-15 radiotracers and positron emission tomography. J Nucl Med 25(2):177–187

    PubMed  CAS  Google Scholar 

  • Muller-Gartner HW, Links JM, Prince JL, Bryan RN, McVeigh E, Leal JP, Davatzikos C, Frost JJ (1992) Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. J Cereb Blood Flow Metab 12:571–583

    Article  PubMed  CAS  Google Scholar 

  • Ostergaard L, Smith DF, Vestergaard-Poulsen P, Hansen SB, Gee AD, Gjedde A, Gyldensted C (1998) Absolute cerebral blood flow and blood volume measured by magnetic resonance imaging bolus tracking: comparison with positron emission tomography values. J Cereb Blood Flow Metab 18:425–432

    Article  PubMed  CAS  Google Scholar 

  • Paulson OB, Newman EA (1987) Does the release of potassium from astrocyte endfeet regulate cerebral blood flow? Science 237:896–898

    Article  PubMed  CAS  Google Scholar 

  • Paulson OB, Hasselbalch SG, Rostrup E, Knudsen GM, Pelligrino D (2010) Cerebral blood flow response to functional activation. J Cereb Blood Flow Metab 30(1):2–14

    Article  PubMed  Google Scholar 

  • Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91:10625–10629

    Article  PubMed  CAS  Google Scholar 

  • Pellerin L, Magistretti PJ (2004) Neuroenergetics: calling upon astrocytes to satisfy hungry neurons. Neuroscientist 10:53–62

    Article  PubMed  CAS  Google Scholar 

  • Pellerin L, Bouzier-Sore AK, Aubert A, Serres S, Merle M, Costalat R, Magistretti PJ (2007) Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 55(12):1251–1262

    Article  PubMed  Google Scholar 

  • Perlmutter JS, Powers WJ, Herscovitch P, Fox PT, Raichle ME (1987) Regional asymmetries of cerebral blood flow, blood volume, and oxygen utilization and extraction in normal subjects. J Cereb Blood Flow Metab 7(1):64–67

    Article  PubMed  CAS  Google Scholar 

  • Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 6:371–388

    Article  PubMed  CAS  Google Scholar 

  • Reivich M, Alavi A, Wolf A, Fowler J, Russell J, Arnett C, MacGregor RR, Shiue CY, Atkins H, Anand A et al (1985) Glucose metabolic rate kinetic model parameter determination in humans: the lumped constants and rate constants for [18F]fluorodeoxyglucose and [11C]deoxyglucose. J Cereb Blood Flow Metab 5:179–192

    Article  PubMed  CAS  Google Scholar 

  • Rothman DL, Sibson NR, Hyder F, Shen J, Behar KL, Shulman RG (1999) In vivo nuclear magnetic resonance spectroscopy studies of the relationship between the glutamate-glutamine neurotransmitter cycle and functional neuroenergetics. Philos Trans R Soc Lond B Biol Sci 354: 1165–1177

    Article  PubMed  CAS  Google Scholar 

  • Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Wu D, Nash N, Kuncl RW (1994) Localization of neuronal and glial glutamate transporters. Neuron 13:713–725

    Article  PubMed  CAS  Google Scholar 

  • Roy CS, Sherrington CS (1890) On the regulation of the blood supply of the brain. J Physiol (Lond) 11:85–108

    CAS  Google Scholar 

  • Schousboe A, Westergaard N, Sonnewald U, Petersen SB, Huang R, Peng L, Hertz L (1993) Glutamate and glutamine metabolism and compartmentation in astrocytes. Dev Neurosci 15: 359–366

    Article  PubMed  CAS  Google Scholar 

  • Smith D, Pernet A, Hallett WA, Bingham E, Marsden PK, Amiel SA (2003) Lactate: a preferred fuel for human brain metabolism in vivo. J Cereb Blood Flow Metab 23:658–664

    Article  PubMed  CAS  Google Scholar 

  • Straub SV, Nelson MT (2007) Astrocytic calcium signaling: the information currency coupling neuronal activity to the cerebral microcirculation. Trends Cardiovasc Med 17(6):183–190

    Article  PubMed  CAS  Google Scholar 

  • Takano T, Tian GF, Peng W, Lou N, Libionka W, Han X, Nedergaard M (2006) Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 9(2):260–267

    Article  PubMed  CAS  Google Scholar 

  • Voutsinos-Porche B, Bonvento G, Tanaka K, Steiner P, Welker E, Chatton JY, Magistretti PJ, Pellerin L (2003) Glial glutamate transporters mediate a functional metabolic crosstalk between neurons and astrocytes in the mouse developing cortex. Neuron 37:275–286

    Article  PubMed  CAS  Google Scholar 

  • Wolff J, Chao TI (2004) Cytoarchitectonics of nonneuronal cells in the central nervous system. In: Hertz L (ed) Non-neuronal cells of the nervous system: function and dysfunction. Elsevier, Amsterdam, pp 1–52

    Google Scholar 

  • Zonta M, Sebelin A, Gobbo S, Fellin T, Pozzan T, Carmignoto G (2003) Glutamate-mediated cytosolic calcium oscillations regulate a pulsatile prostaglandin release from cultured rat astrocytes. J Physiol 553:407–414

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steen G. Hasselbalch M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hasselbalch, S.G., Paulson, O.B. (2012). The Coupling of Cerebral Metabolic Rate of Glucose and Cerebral Blood Flow In Vivo . In: Choi, IY., Gruetter, R. (eds) Neural Metabolism In Vivo. Advances in Neurobiology, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1788-0_14

Download citation

Publish with us

Policies and ethics