Skip to main content

Adsorption and Desorption of Chlorpyrifos to Soils and Sediments

  • Chapter
  • First Online:
Reviews of Environmental Contamination and Toxicology

Abstract

Although the use of pesticides is as old as agriculture, the advent of synthetic pesticides in the 1940s was one of the most important achievements that spawned the “Green Revolution” (Tilman 1998). Synthetic pesticides, along with the introduction of chemical fertilizers, enabled dramatic increases in agricultural productivity and quality without the need to increase farmland and labor (Seiber and Ragsdale 1999; Cooper and Dobson 2007). Pesticide use reduces the impact of pests on agricultural productivity by about half (Oerke and Dehne 2004; Oerke 2006), and many argue that reduction or cessation of pesticide use would lead to significant crop loss, increased food prices, and lack of food for the world’s growing human population (Fernandez-Cornejo et al. 1998; Ragsdale 1999; Oerke and Dehne 2004; Cooper and Dobson 2007). Moreover, the use of pesticides alleviates food shortages in developing countries, allowing them to grow crops multiple times a year and export produce to developed nations (Ecobichon 2000, 2001; Oerke and Dehne 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agdi K, Bouaid A, Esteban AM, Hernando PF, Azmani A, Camara C (2000) Removal of atrazine and four organophosphorus pesticides from environmental waters by diatomaceous earth-remediation method. J Environ Monit 2(5):420–423

    Article  CAS  Google Scholar 

  • Agriculture Canada, Environment Canada, Department of Fisheries and Oceans (1987) Environmental chemistry and fate guidelines for registration of pesticides in Canada. Trade Memorandum T-1-255. Ottawa, Canada

    Google Scholar 

  • Ahmad R, Kookana RS, Alston AM, Skjemstad JO (2001) The nature of soil organic matter affects sorption of pesticides. 1. Relationships with carbon chemistry as determined by 13C CPMAS NMR spectroscopy. Environ Sci Technol 35(5):878–884

    Article  CAS  Google Scholar 

  • Anderson P, Davis D (2000) Evaluation of efforts to reduce pesticide contamination in cranberry bog drainage. Report No. 00–03-041. Washington State Department of Ecology, Olympia, WA.

    Google Scholar 

  • Ankley GT, Call DJ, Cox JS, Kahl MD, Hoke RA, Kosian PA (1994) Organic carbon partitioning as a basis for predicting the toxicity of chlorpyrifos in sediments. Environ Toxicol Chem 13(4):621–626

    Article  CAS  Google Scholar 

  • Arienzo M, Sanchez-Camazano M, Sanchez-Martin MJ, Cristano T (1994) Influence of exogenous organic matter in the mobility of diazinon in soils. Chemosphere 29(6):1245–1252

    Article  CAS  Google Scholar 

  • Aslam T, Deurer M, Mueller K, Clothier BE, Rahman A, Northcott G, Ghani A (2009) Does an increase in soil organic carbon improve the filtering capacity of aggregated soils for organic pesticides? – A case study. Geoderma 152(1–2):187–193

    Article  CAS  Google Scholar 

  • ASTM (1987) Standard test method for determining a sorption constant (Koc) for an organic chemical in soil and sediments. ASTM 1195–87, American Society for Testing and Materials, Philadelphia, PA, pp 731–737

    Google Scholar 

  • Attila K, Diana V (2009) Photostability and photodegradation pathways of distinctive pesticides. J Environ Qual 38(1):157–163

    Article  CAS  Google Scholar 

  • Bailey GW, White JL (1964) Review of adsorption and desorption of organic pesticides by soil colloids, with implications concerning pesticide bioactivity. J Agric Food Chem 12(4):324–332

    Article  CAS  Google Scholar 

  • Bailey HC, Alexander C, Digiorgio C, Miller M, Doroshov SI, Hinton DE, Peterson RH, Martin-Robichaud DJ, Berge O (1994) The effect of agricultural discharge on striped bass (Morone saxatilis) in California’s Sacramento-San Joaquin drainage. Ecotoxicology 3(2):123–142

    Article  Google Scholar 

  • Bailey HC, Deanovic L, Reyes E, Kimball T, Larson K, Cortright K, Connor V, Hinton DE (2000) Diazinon and chlorpyrifos in urban waterways in Northern California, USA. Environ Toxicol Chem 19(1):82–87

    Article  CAS  Google Scholar 

  • Barr DB, Allen R, Olsson AO, Bravo R, Caltabiano LM, Montesano A, Nguyen J, Udunka S, Walden D, Walker RD, Weerasekera G, Whitehead RDJ, Schober SE, Needham LL (2005) Concentrations of selective metabolites of organophosphorus pesticides in the United States population. Environ Res 99(3):314–326

    Article  CAS  Google Scholar 

  • Barriuso E, Baer U, Calvet R (1992) Dissolved organic matter and adsorption-desorption of dimefuron, atrazine, and carbetamide by soils. J Environ Qual 21:359–367

    Article  CAS  Google Scholar 

  • Barron MG, Woodburn KB (1995) Ecotoxicology of chlorpyrifos. Rev Environ Contam Toxicol 144:1–93

    Article  CAS  Google Scholar 

  • Baskaran S, Kookana RS, Naiduvel R (2003) Contrasting behavior of chlorpyrifos and its primary metabolite, TCP (3,5,6-trichloro-2-pyridinol), with depth in soil profiles. Aust J Soil Res 41(4):749–760

    Article  CAS  Google Scholar 

  • Beck AJ, Harris GL, Howsc KR, Johnston AE, Jones KC (1996) Spatial and temporal variation of isoproturon residues and associated sorption/desorption parameters at the field scale. Chemosphere 33(7):1283–1295

    Article  CAS  Google Scholar 

  • Bejarano AC, Widenfalk A, Decho AW, Chandler GT (2003) Bioavailability of the organophosphorous insecticide chlorpyrifos to the suspension-feeding bivalve, Mercenaria mercenaria, following exposure to dissolved and particulate matter. Environ Toxicol Chem 22(1):2100–2105

    Article  CAS  Google Scholar 

  • Bisutti I, Hilke I, Raessler M (2004) Determination of total organic carbon: an overview of current methods. Trends Anal Chem 23(10–11):716–726

    Article  CAS  Google Scholar 

  • Bockting GJM, van de Plassche EJ, Struijs J, Canton HJ (1993) Soil-water partition coefficients for organic compounds. Report No. 679101013. National Institute of Public Health and Environmental Protection, Bilthoven, the Netherlands

    Google Scholar 

  • Boivina A, Cherrierb R, Schiavonb M (2005) A comparison of five pesticides adsorption and desorption processes in thirteen contrasting field soils. Chemosphere 61(5):668–676

    Article  CAS  Google Scholar 

  • Bondarenko S, Gan J (2004) Degradation and sorption of selected organophosphate and carbamate insecticides in urban stream sediments. Environ Toxicol Chem 23(8):1809–1814

    Article  CAS  Google Scholar 

  • Bortoluzzi EC, Rheinheimer DS, Goncalves CS, Pellegrini JBR, Maroneze AM, Kurz MHS, Bacar NM, Zanella R (2007) Investigation of the occurrence of pesticide residues in rural wells and surface water following application to tobacco. Quim Nova 30(8):1872–1876

    Article  CAS  Google Scholar 

  • Bouchard MF, Bellinger DC, Wright RO, Weisskopf MG (2010) Attention-deficit/hyperactivity disorder and urinary metabolites of organophosphate pesticides. Pediatrics 125(6): e1270–e1277

    Article  Google Scholar 

  • Bowman BT, Sans WW (1983) Determination of octanol-water partitioning coefficients (KOW) of 61 organophosphorus and carbamate insecticides and their relationship to respective water solubility (S) values. J Environ Sci Health, Part B 18(6):667–683

    Article  Google Scholar 

  • Bowman BT, Sans WW (1985a) Partitioning behavior of insecticides in soil-water systems: I. Adsorbent concentration effects. J Environ Qual 14(2):265–269

    Article  CAS  Google Scholar 

  • Bowman BT, Sans WW (1985b) Partitioning behavior of insecticides in soil-water systems: II. Desorption hysteresis effects. J Environ Qual 14(2):270–273

    Article  CAS  Google Scholar 

  • Briggs GG (1973) A Simple relationship between soil adsorption of organic chemicals and their octanol/water partition coefficients. In: Proceedings of the 7th British Insecticide and Fungicide Conference, November 19–22, Volume 1, The Boots Company, Ltd., Nottingham, UK, pp 83–86

    Google Scholar 

  • Briggs GG (1981) Theoretical and experimental relationships between soil adsorption, octanol-water partition coefficients, water solubilities, bioconcentration factors, and the parachor. J Agric Food Chem 29(5):1050–1059

    Article  CAS  Google Scholar 

  • Briggs GG, Tinker PB, Graham-Bryce IJ (1990) Predicting the behaviour of pesticides in soil from their physical and chemical properties. Philos T Roy Soc B 329(1255):375–382

    Article  CAS  Google Scholar 

  • Bruijn JD, Busser F, Seinen W, Hermens J (1989) Determination of octanol/water partition coefficients for hydrophobic organic chemicals with the a slow-stirring method. Environ Toxicol Chem 8:499–512

    Article  Google Scholar 

  • Brust HF (1966) A summary of chemical and physical properties of dursban. Down Earth 22(3):21–22

    CAS  Google Scholar 

  • Cabrera A, Cox L, Koskinen WC, Sadowsky MJ (2008) Availability of triazine herbicides in aged soils amended with olive oil mill waste. J Agric Food Chem 56:4112–4119

    Article  CAS  Google Scholar 

  • Carlson RM, Carlson RE, Kopperman HL (1975) Determination of partition coefficients by liquid chromatography. J Chromatogr 107(1):219–223

    Article  CAS  Google Scholar 

  • Carr RL, Ho LL, Chambers JE (1997) Selective toxicity of chlorpyrifos to several species of fish during an environmental exposure: biochemical mechanisms. Environ Toxicol Chem 16(11):2369–2374

    Article  CAS  Google Scholar 

  • Carringer RD, Weber JB, Monaco TJ (1975) Adsorption-desorption of selected pesticides by organic matter and montmorillonite. J Agric Food Chem 23(3):568–572

    Article  CAS  Google Scholar 

  • Celis R, Barriuso E, Houot S (1998) Sorption and desorption of atrazine by sludge-amended soil: dissolved organic matter effects. J Environ Qual 27(6):1348–1356

    Article  CAS  Google Scholar 

  • Chapman RA, Harris CR (1980) Persistence of chlorpyrifos in a mineral and an organic soil. J Environ Sci Health, Part B 15(1):39–46

    Article  CAS  Google Scholar 

  • Chapman RA, Cole CM (1982) Observations on the influence of water and soil pH on the persistence of insecticides. J Environ Sci Health, Part B 15:39–46

    Article  Google Scholar 

  • Chen W, Kan AT, Newell CJ, Moore E, Tomson MB (2002) More realistic soil cleanup standards with dual-equilibrium desorption. Ground Water 40(2):153–164

    Article  CAS  Google Scholar 

  • Chen Z, Xing B, McGill WB, Dudas MJ (1996) A-napthol sorption as regulated by structure and composition of organic substances in soils and sediments. Can J Soil Sci 76:513–522

    Article  CAS  Google Scholar 

  • Chiou CT, Freed VH, Schmedding DW, Kohnert RL (1977) Partition coefficient and bioaccumulation of selected organic chemicals. Environ Sci Technol 11(5):475–478

    Article  CAS  Google Scholar 

  • Chiou CT, Peters LJ, Freed VH (1979) A physical concept of soil-water equilibriums for nonionic organic compounds. Science 206(4420):831–832

    Article  CAS  Google Scholar 

  • Chiou CT, Porter PE, Schmedding DW (1983) Partition equilibriums of nonionic organic compounds between soil organic matter and water. Environ Sci Technol 17(4):227–231

    Article  CAS  Google Scholar 

  • Chiou CT, Shoup TD, Porter PE (1985) Mechanistic roles of soil humus and minerals in the sorption of nonionic organic compounds from aqueous and organic solutions. Org Geochem 8(1):9–14

    Article  CAS  Google Scholar 

  • Chiou CT, Malcolm RL, Brinton TI, Kile DE (1986) Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids. Environ Sci Technol 20(5):502–508

    Article  CAS  Google Scholar 

  • Chiou CT, Kile DE, Brinton TI, Malcolm RL, Leenheer JA, MacCarthy P (1987) A comparison of water solubility enhancements of organic solutes by aquatic humic materials and commercial humic acids. Environ Sci Technol 21(12):1231–1234

    Article  CAS  Google Scholar 

  • Cho HH, Park JW, Liu CCK (2002) Effect of molecular structures on the solubility enhancement of hydrophobic organic compounds by environmental amphiphiles. Environ Toxicol Chem 21(5):999–1003

    Article  CAS  Google Scholar 

  • Ciglasch H, Busche J, Amelung W, Totrakool S, Kaupenjohann M (2008) Field aging of insecticides after repeated application to a northern Thailand ultisol. J Agric Food Chem 56(20):9555–9562

    Article  CAS  Google Scholar 

  • Clayton CA, Pellizzari ED, Whitmore RW, Quackenboss JJ, Adgate J, Sefton K (2003) Distributions, associations, and partial aggregate exposure of pesticides and polynuclear aromatic hydrocarbons in the Minnesota children’s pesticide exposure study (MNCPES). J Expo Anal Environ Epidemiol 13:100–111

    Article  CAS  Google Scholar 

  • Collander R (1951) The partition of organic compounds between higher alcohols and water. Acta Chem Scand 5:774–780

    Article  CAS  Google Scholar 

  • Cooper J, Dobson H (2007) The benefits of pesticides to mankind and the environment. Crop Prot 26(9):1337–1348

    Article  CAS  Google Scholar 

  • Coots R (2003) Pesticide reduction evaluation for cranberry bog drainage in the Grayland Area. Report No 03-03-034. Washington State Department of Ecology, Olympia, WA.

    Google Scholar 

  • Corsolini S, Romeo T, Ademolla N, Greco S, Focardi S (2002) POPs in key species of marine Antarctic ecosystem. Microchem J 73:187–193

    Article  CAS  Google Scholar 

  • Coupe RH, Manning MA, Foreman WT, Goolsby DA, Majewski MS (2000) Occurrence of pesticides in rain and air in urban and agricultural areas of Mississippi, April–September 1995. Sci Total Environ 248(2–3):227–240

    CAS  Google Scholar 

  • Cox L, Celis R, Hermosín MC, Cornejo J, Zsolnay A, Zeller K (2000) Effect of organic amendments on herbicide sorption as related to the nature of the dissolved organic matter. Environ Sci Technol 34(21):4600–4605

    Article  CAS  Google Scholar 

  • Crum SJH, van Kammen-Polman AMM, Leistra M (1999) Sorption of nine pesticides to three aquatic macrophytes. Arch Environ Contam Toxicol 37:310–316

    Article  CAS  Google Scholar 

  • Cryer SA (2005) Determining kinetic and nonequilibrium sorption behavior for chlopyrifos using a hybrid batch/column experiment. J Agric Food Chem 53(10):4103–4109

    Article  CAS  Google Scholar 

  • Dabrowski JM, Peall SKC, Reinecke AJ, Liess M, Schulz R (2002) Runoff-related pesticide input into the Lourens River, South Africa: basic data for exposure assessment and risk mitigation at the catchment scale. Water, Air, Soil Pollut 135(1–4):265–283

    Article  CAS  Google Scholar 

  • Dai H, Asakawa F, Suna S, Hirao T, Karita T, Fukunaga I, Jitsunari F (2003) Investigation of indoor air pollution by chlorpyrifos: determination of chlorpyrifos in indoor air and 3,5,6-trichloro-2-pyridinol in residents urine as an exposure index. Environ Health Prev Med 8(4):139–145

    Article  CAS  Google Scholar 

  • Dao TH (1991) Field decay of wheat straw and its effect on metribuzin and s-ethyl-metribuzin sorption and elution from crop residues. J Environ Qual 20:203–208

    Article  CAS  Google Scholar 

  • Davey RB, Meisch MV, Carter FL (1976) Toxicity of five rice field pesticides to the mosquitofish, Gambusia affinis, and green sunfish, Lepomis cyanellus, under laboratory and field conditions in Arkansas. Environ Entomol 5(6):1053–1056

    CAS  Google Scholar 

  • Delle Site A (2001) Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for selected pollutants. A review. J Phys Chem Ref Data 30(1):187–439

    Article  CAS  Google Scholar 

  • Di Toro DM, Zarba CS, Hansen DJ, Berry WJ, Swartz RC, Cowan CE, Pavlou SP, Allen HE, Thomas NA, Paquin PR (1991) Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environ Toxicol Chem 10(12):1541–1583

    Article  Google Scholar 

  • Donaldson D, Kiely T, Grube A (2002) Pesticides industry sales and usage report 1998 and 1999 market estimates. U.S. EPA, Washington, DC

    Google Scholar 

  • Doucette WJ (2003) Quantitative structure-activity relationships for predicting soil-sediment sorption coefficients for organic chemicals. Environ Toxicol Chem 22(8):1771–1788

    Article  CAS  Google Scholar 

  • Dubey HD, Sigafus RE, Freeman JF (1966) Effect of soil properties on the persistence of linuron and diphenamid in soils. Agron J 58(2):228–231

    Article  CAS  Google Scholar 

  • Dubrovsky NM, Kratzer CR, Panshin SY, Gronberg JAM, Kuivila KM (2000) Pesticide transport in the San Joaquin River basin. In: Steinhamer TR, Ross LJ, Spittler TD (eds) Agrochemical Fate and Movement, ACS Symposium Series 751. American Chemical Society, Washington, DC, pp 306–322

    Chapter  Google Scholar 

  • Eaton DL, Daroff RB, Autrup H, Bridges J, Buffler P, Costa LG, Coyle J, McKhann G, Mobley WC, Nadel L, Neubert D, Schulte-Hermann R, Spencer PS (2008) Review of the toxicology of chlorpyrifos with an emphasis on human exposure and neurodevelopment. Crit Rev Toxicol 2:1–125

    Article  CAS  Google Scholar 

  • Ecobichon DJ (2000) Our changing perspectives on benefits and risks of pesticides: a historical overview. Neurotoxicology 21(1–2):211–218

    CAS  Google Scholar 

  • Ecobichon DJ (2001) Pesticide use in developing countries. Toxicology 160:27–33

    Article  CAS  Google Scholar 

  • Eddleston M, Karalliedde L, Buckley N, Fernando R, Hutchinson G, Isbister G, Konradsen F, Murray D, Piola JC, Senanayake N, Sheriff R, Singh S, Siwach SB, Smit L (2002) Pesticide poisoning in the developing world – a minimum pesticides list. Lancet 360(9340):1163–1167

    Article  Google Scholar 

  • Elabd H, Jury WA, Cliath MM (1986) Spatial variability of pesticide adsorption parameters. Environ Sci Technol 20(3):256–260

    Article  CAS  Google Scholar 

  • El Bakouri H, Morillo J, Usero J, Ouassini A (2007) Removal of prioritary pesticides contamining R’mel ground water by using organic waste residues. Comm Agr Appl Biol Sci 72(2):197–207

    CAS  Google Scholar 

  • Eskenazi B, Marks AR, Bradman A, Harley K, Barr DB, Johnson C, Morga N, Jewell NP (2007) Organophosphate pesticide exposure and neurodevelopment in young Mexican-American children. Environ Health Perspect 115(5):792–798

    Article  CAS  Google Scholar 

  • Farenhorst A (2006) Importance of soil organic matter fractions in soil-landscape and regional assessments of pesticide sorption and leaching in soil. Soil Sci Soc Am J 70:1005–1012

    Article  CAS  Google Scholar 

  • Felsot A, Dahm PA (1979) Sorption of organophosphorus and carbamate insecticides by soil. J Agric Food Chem 27(3):557–563

    Article  CAS  Google Scholar 

  • Felsot AS, Dzantor EK (1995) Effect of alachlor concentration and an organic amendment on soil dehydrogenase activity and pesticide degradation rate. Environ Toxicol Chem 14(1):23–28

    Article  CAS  Google Scholar 

  • Fendinger NJ, Glotfelty DE (1990) Henry’s law constants for selected pesticides, PAHs and PCBs. Environ Toxicol Chem 9(6):731–735

    Article  CAS  Google Scholar 

  • Fenske RA, Lu C, Barr D, Needham L (2002) Children’s exposure to chlorpyrifos and parathion in an agricultural community in central Washington State. Environ Health Perspect 110(5):549–553

    Article  CAS  Google Scholar 

  • Fernandez-Cornejo J, Jans S, Smith M (1998) Issues in the economics of pesticide use in agriculture: a review of the empirical evidence. Rev Agr Econ 20(2):462–488

    Google Scholar 

  • Finlayson BJ, Harrington JA, Fujimura R, Isaac G (1993) Identification of methyl parathion toxicity in Colusa Basin drain water. Environ Toxicol Chem 12(2):291–303

    Article  CAS  Google Scholar 

  • Flores-Cespedes F, Gonzalez-Pradas E, Fernandez-Perez M, Villafranca-Sanchez M, Socias-Viciana M, Urena-Amate MD (2002) Effects of dissolved organic carbon on sorption and mobility of imidacloprid in soil. J Environ Qual 31(3):880–888

    Article  CAS  Google Scholar 

  • Flury M (1996) Experimental evidence of transport of pesticides through field soils: a review. J Environ Qual 25:24–45

    Article  Google Scholar 

  • Flury M, Mathison JB, Harsh JB (2002) In situ mobilization of colloids and transport of cesium in Hanford sediments. Environ Sci Technol 36(24):5335–5341

    Article  CAS  Google Scholar 

  • Fuhrer GJ, Morace JL, Johnson HM, Rinella JF, Ebbert JC, Embrey SS, Waite IR, Carpenter KD, Wise DR, Hughes CA (2004) Water quality in the Yakima River Basin, Washington, 1999–2000: U.S. Geological Survey Circular 1237. U.S. Geological Survey, Reston, VA

    Google Scholar 

  • Garbarini DR, Lion LW (1986) Influence of the nature of soil organics on the sorption of toluene and trichloroethylene. Environ Sci Technol 20(12):1263–1269

    Article  CAS  Google Scholar 

  • Garry VF, Harkins ME, Erickson LL, Long-Simpson LK, Holland SE, Burroughs BL (2002) Birth defects, season of conception, and sex of children born to pesticide applicators living in the Red River Valley of Minnesota, USA. Environ Health Perspect 110(Suppl 3):441–449

    Google Scholar 

  • Gauthier TD, Seitz WR, Grant CL (1987) Effects of structural and compositional variations of dissolved humic materials on pyrene Koc values. Environ Sci Technol 21(3):243–248

    Article  CAS  Google Scholar 

  • Gawlik BM, Sotiriou N, Feicht EA, Schulte-Hostede S, Kettrup A (1997) Alternatives for the determination of the soil adsorption coefficient, Koc, of non-ionicorganic compounds – a review. Chemosphere 34(12):2525–2551

    Article  CAS  Google Scholar 

  • Gebremariam SY, Beutel MW (2010) Effects of drain-fill cycling on chlorpyrifos mineralization in wetland sediment-water microcosms. Chemosphere 78(11):1337–1341

    Article  CAS  Google Scholar 

  • Gebremariam SY (2011) Mineralization, sorption and desorption of chlorpyrifos in aquatic sediments and soils. Doctoral dissertation, Washington State University, Pullman, WA: ProQuest/UMI, 2011. (Publication No.3460385). Accessible from http://search.proquest.com/docview/876964533?accountid=14902

  • Gerstl Z, Mingelgrin U (1984) Sorption of organic substances by soils and sediments. J Environ Sci Health, Part B 19(3):297–312

    Article  Google Scholar 

  • Gerstl Z (1990) Estimation of organic chemical sorption by soils. J Contam Hydrol 6(4):357–375

    Article  CAS  Google Scholar 

  • Getzin LW (1985) Factors influencing the persistence and effectiveness of chlorpyrifos in soil. J Econ Entomol 78:412–418

    CAS  Google Scholar 

  • Giesy JP, Solomon KR, Coats JR, Dixon KR, Giddings JM, Kenaga EE (1999) Chlorpyrifos: ecological risk assessment in North American aquatic environments. Rev Environ Contam Toxicol 160:1–129

    Article  CAS  Google Scholar 

  • Gilliom RJ, Barbash JE, Crawford CG, Hamilton PA, Martin JD, Nakagaki N, Nowell LH, Scott JC, Stackelberg PE, Thelin GP, Wolock DM (2006) The quality of our nation’s waters: Pesticides in the nation’s streams and ground water, 1992–2001. U.S. Geological Survey Circular 1225. U.S. Geological Survey, Reston, VA

    Google Scholar 

  • Glotfelty DE, Seiber JN, Liljedahl A (1987) Pesticides in fog. Nature 325:602–605

    Article  CAS  Google Scholar 

  • Gonzalez MP, Helguera AM, Collado IG (2006) A topological substructural molecular design to predict soil sorption coefficients for pesticides. Mol Diversity 10(2):109–118

    Article  CAS  Google Scholar 

  • Graber ER, Gerstl Z, Fischer E, Mingelgrin U (1995) Enhanced transport of Atrazine under irrigation with effluent. Soil Sci Soc Am J 59(6):1513–1519

    Article  CAS  Google Scholar 

  • Grandjean P, Harari R, Barr DB, Debes F (2006) Pesticide exposure and stunting as independent predictors of neurobehavioral deficits in Ecuadorian school children. Pediatrics 117(3):e546–56

    Article  Google Scholar 

  • Grathwohl P (1990) Influence of organic matter from soils and sediments from various origins on the sorption of some chlorinated aliphatic hydrocarbons: Implications on Koc correlations. Environ Sci Technol 24(11):1687–1693

    Article  CAS  Google Scholar 

  • Green AS, Chandler GT, Piegorsch WW (1996) Life-stage-specific toxicity of sediment-associated chlorpyrifos to a marine, infaunal copepod. Environ Toxicol Chem 15(7):1182–1188

    Article  CAS  Google Scholar 

  • Grolimund D, Borkovec M, Barmettler K, Sticher H (1996) Colloid-facilitated transport of strongly sorbing contaminants in natural porous media. Environ Sci Technol 30:3118–3123

    Article  CAS  Google Scholar 

  • Grube A, Donaldson D, Kiely T, Wu L (2011) Pesticides industry sales and usage 2006 and 2007 market estimates. U.S. EPA, Washington, DC

    Google Scholar 

  • Gruber SJ, Munn MD (1998) Organophosphate and carbamate insecticides in agricultural waters and cholinesterase (ChE) inhibition in common carp (Cyprinus carpio). Arch Environ Contam Toxicol 35:391–396

    Article  CAS  Google Scholar 

  • Guerin WF, Boyd SA (1992) Differential bioavailability of soil-sorbed naphthalene to two bacterial species. Appl Environ Microbiol 58(4):1142–1152

    CAS  Google Scholar 

  • Guetzloff TF, Rice JA (1996) Micellar nature of humic colloids. ACS Symp Ser 651:18–25

    Article  CAS  Google Scholar 

  • Guo L, Bicki TJ, Felsot AS, Hinesly TD (1993) Sorption and movement of alachlor in soil modified by carbon-rich wastes. J Environ Qual 22(1):186–194

    Article  CAS  Google Scholar 

  • Guo L, Jury WA, Wagenet RJ, Flury M (2000) Dependence of pesticide degradation on sorption: nonequilibrium model and application to soil reactors. J Contam Hydrol 43:45–62

    Article  CAS  Google Scholar 

  • Gustafson DI (1989) Groundwater ubiquity score: a simple method for assessing pesticide leachability. Environ Toxicol Chem 8(4):339–357

    Article  CAS  Google Scholar 

  • Hamaker JW, Thomson JM (1972) Adsorption. In: Goring CAI, Hamaker JW (eds) Organic chemicals in the soil environment Vol 1. Marcel Dekker, New York, pp 49–146

    Google Scholar 

  • Harman-Fetcho JA, McConnell LL, Baker JE (1999) Agricultural pesticides in the Patuxent River, a tributary of the Chesapeake Bay. J Environ Qual 28:928–938

    Article  CAS  Google Scholar 

  • Harris CI (1964) Movement of dicamba and diphenamid in soils. Weeds 12(2):112–115

    Article  Google Scholar 

  • Harris CI (1966) Adsorption, movement, and phytotoxicity of monuron and s-triazine herbicides in soil. Weeds 14(1):6–10

    Article  CAS  Google Scholar 

  • Harris CI (1967) Movement of herbicides in soil. Weeds 15(3):214–216

    Article  CAS  Google Scholar 

  • Helling CS, Turner BC (1968) Pesticide mobility: determination by soil thin layer chromatography. Science 162:562

    Article  CAS  Google Scholar 

  • Hill RHJ, Head SL, Baker S, Gregg M, Shealy DB, Bailey SL, Williams CC, Sampson EJ, Needham LL (1995) Pesticide residues in urine of adults living in the United States: reference range concentrations. Environ Res 71(2):99–108

    Article  CAS  Google Scholar 

  • Hodson J, Williams NA (1988) The estimation of the adsorption coefficient (Koc) for soils by high performance liquid chromatography. Chemosphere 17(1):67–77

    Article  CAS  Google Scholar 

  • Hoffman RS, Capel PD, Larson SJ (2000) Comparison of pesticides in eight urban streams. Environ Toxicol Chem 19:2249–2258

    Article  CAS  Google Scholar 

  • Huang W, Weber WJ Jr (1997) A distributed reactivity model for sorption by soils and sediments. 10. Relationships between desorption, hysteresis, and the chemical characteristics of organic domains. Environ Sci Technol 31(9):2562–2569

    Article  CAS  Google Scholar 

  • Huang X, Lee LS (2001) Effects of dissolved organic matter from animal waste effluent on chlorpyrifos sorption by soils. J Environ Qual 30(4):1258–1265

    Article  CAS  Google Scholar 

  • Hughes DN, Boyer MG, Papst MH, Fowle CD, Rees GA, Baulu P (1980) Persistence of three organophosphorus insecticides in artificial ponds and some biological implications. Arch Environ Contam Toxicol 9(3):269–279

    Article  CAS  Google Scholar 

  • Hunt JW, Anderson BS, Phillips BM, Nicely PN, Tjeerdema RS, Puckett HM, Stephenson M, Worcester K, de Vlaming V (2003) Ambient toxicity due to chlorpyrifos and diazinon in a Central California coastal watershed. Environ Monit Assess 82(1):83–112

    Article  CAS  Google Scholar 

  • Iglesias-Jimenez E, Poveda E, Sanchez-Martin MJ, Sanchez-Camazano M (1997) Effect of the nature of exogenous organic matter on pesticide sorption by the soil. Arch Environ Contam Toxicol 33(2):117–124

    Article  CAS  Google Scholar 

  • Jantunen APK, Tuikka A, Akkanen J, Kukkonen JVK (2008) Bioaccumulation of atrazine and chlorpyrifos to Lumbriculus variegatus from lake sediments. Ecotoxicol Environ Saf 71:860–868

    Article  CAS  Google Scholar 

  • Jergentz S, Mugni H, Bonetto C, Schulz R (2005) Assessment of insecticide contamination in runoff and stream water of small agricultural streams in the main soybean area of Argentina. Chemosphere 61:817–826

    Article  CAS  Google Scholar 

  • Jeyaratnam J (1990) Acute pesticide poisoning: a major global health problem. World Health Stat Q 43(3):139–144

    CAS  Google Scholar 

  • Johnson AC, Worrall F, White C, Walker A, Besien TJ, Williams RJ (1997) The potential of incorporated organic matter to reduce pesticide leaching. Toxicol Environ Chem 58(1–4):47–61

    Article  CAS  Google Scholar 

  • Johnson MD, Keinath TMI, Weber WJ Jr (2001) A distributed reactivity model for sorption by soils and sediments. 14. Characterization and modeling of phenanthrene desorption rates. Environ Sci Technol 35(8):1688–1695

    Article  CAS  Google Scholar 

  • Jones KD, Huang WH (2003) Evaluation of toxicity of the pesticides, chlorpyrifos and arsenic, in the presence of compost humic substances in aqueous systems. J Hazard Mater 103:93–105

    Article  CAS  Google Scholar 

  • Kanazawa J (1989) Relationship between the soil sorption constants for pesticides and their physicochemical properties. Environ Toxicol Chem 8(6):477–484

    Article  CAS  Google Scholar 

  • Kanthasamy AG, Kitazawa M, Kanthasamy A, Anantharam V (2005) Dieldrin-induced neurotoxicity: relevance to parkinson’s disease pathogenesis. Neurotoxicology 26(4):701–719

    Article  CAS  Google Scholar 

  • Karickhoff SW, Brown DS, Scott TA (1979) Sorption of hydrophobic pollutants on natural sediments. Water Res 13(3):241–248

    Article  CAS  Google Scholar 

  • Karickhoff SW (1981) Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soils. Chemosphere 10(8):833–846

    Article  CAS  Google Scholar 

  • Kawamoto K, Urano K (1989) Parameters for predicting fate of organochlorine pesticides in the environment. II. Adsorption constant to soil. Chemosphere 19(8–9):1223–1231

    Article  CAS  Google Scholar 

  • Kay BD, Elrick DE (1967) Adsorption and movement of lindane in soils. Soil Sci 104(5):314–322

    Article  CAS  Google Scholar 

  • Kenaga EE (1980) Predicted bioconcentration factors and soil sorption coefficients of pesticides and other chemicals. Ecotoxicol Environ Saf 4(1):26–38

    Article  CAS  Google Scholar 

  • Kladivko EJ, Scoyoc GEV, Monke EJ, Oates KM, Pask W (1991) Pesticide and nutrient movement into subsurface tile drains on a silt loam soil in Indiana. J Environ Qual 20(1):264–270

    Article  CAS  Google Scholar 

  • Kolpin DW, Barbash JE, Gilliom RJ (2000) Pesticides in ground water of the United States, 1992–1996. Ground Water 38(6):858–863

    Article  CAS  Google Scholar 

  • Kördel W, Stutte J, Kotthoff G (1995) HPLC-screening method to determine the adsorption coefficient in soil-comparison of immobilized humic acid and clay mineral phases for cyanopropyl columns. Sci Total Environ 162(2–3):119–125

    Google Scholar 

  • Kratzer CR, Zamora C, Kniflong, Knifong DL (2000) Diazinon and chlorpyrifos loads in the San Joaquin River Basin, California, January and February 2000. Water Resources Investigations Report 02–4103. U.S. Geological Survey, Sacramento, CA

    Google Scholar 

  • Kravvariti K, Tsiropoulos NG, Karpouzas DG (2010) Degradation and adsorption of terbuthylazine and chlorpyrifos in biobed biomixtures from composted cotton crop residues. Pest Manag Sci 66(10):1122–1128

    Article  CAS  Google Scholar 

  • Kuang Z, McConnell LL, Torrents A, Meritt D, Tobash S (2003) Atmospheric deposition of pesticides to an agricultural watershed of the Chesapeake Bay. J Environ Qual 32:1611–1622

    Article  CAS  Google Scholar 

  • Laabs V, Amelung W, Pinto A, Altstaedt A, Zech W (2000) Leaching and degradation of corn and soybean pesticides in an oxisol of the Brazilian Cerrados. Chemosphere 41(9):1441–1449

    Article  CAS  Google Scholar 

  • Laabs V, Amelung W (2005) Sorption and aging of corn and soybean pesticides in tropical soils of Brazil. J Agric Food Chem 53(18):7184–7192

    Article  CAS  Google Scholar 

  • Lambert SM, Porter PE, Schieferstein RH (1965) Movement and sorption of chemicals applied to the soil. Weeds 13(3):185–190

    Article  CAS  Google Scholar 

  • Lambert SM (1967) Functional relation between sorption in soil and chemical structure. J Agric Food Chem 15(4):572–576

    Article  CAS  Google Scholar 

  • Lambert SM (1968) Omega (Ω), a useful index of soil sorption equilibria. J Agric Food Chem 16(2):340–343

    Article  CAS  Google Scholar 

  • Larson SJ, Capel PD, Goolsby DA, Zaugg SD, Sandstrom MW (1995) Relations between pesticide use and riverine flux in the Mississippi River Basin. Chemosphere 31:3305–3321

    Article  CAS  Google Scholar 

  • Leong KH, Tan LLB, Mustafa AM (2007) Contamination levels of selected organochlorine and organophosphate pesticides in the Selangor River, Malaysia between 2002 and 2003. Chemosphere 66(6):1153–1159

    Article  CAS  Google Scholar 

  • Levenspiel O (1999) Chemical reaction engineering, 3rd edn. Wiley, New York, NY, pp 262–264

    Google Scholar 

  • Li K, Xing B, Torello WA (2005) Effect of organic fertilizers derived dissolved organic matter on pesticide sorption and leaching. Environ Pollut 134(2):187–194

    Article  CAS  Google Scholar 

  • Li SN, Sun Y, Yang T, Huangpu WG (2007) Relationship between mobility factors (Rf) of two hydrophobic termiticides and selected field and artificial soil parameters. Sci Total Environ 388(1–3):206–213

    CAS  Google Scholar 

  • Ling W, Xu J, Gao Y (2006) Dissolved organic matter enhances the sorption of atrazine by soil. Biol Fert Soils 42(5):418–425

    Article  CAS  Google Scholar 

  • Liu B, McConnell LL, Torrents A (2001) Hydrolysis of chlorpyrifos in natural waters of the Chesapeake Bay. Chemosphere 44(6):1315–1323

    Article  CAS  Google Scholar 

  • Louchart X, Voltz M (2007) Aging effects on the availability of herbicides to runoff transfer. Environ Sci Technol 41(4):1137–1144

    Article  CAS  Google Scholar 

  • Lu J, Wu L, Newman J, Faber B, Merhaut DJ, Gan J (2006) Sorption and degradation of pesticides in nursery recycling ponds. J Environ Qual 35(5):1795–1802

    Article  CAS  Google Scholar 

  • Lu X, Reible DD, Fleeger JW, Chai Y (2003) Bioavailability of desorption-resistant phenanthrene to the oligochaete Ilyodrilus templetoni. Environ Toxicol Chem 22(1):153–160

    CAS  Google Scholar 

  • Lynch MR (ed) (1995) Procedures for assessing the environmental fate and ecotoxicity of pesticides. Society of Environmental Toxicology and Chemistry – Europe, Belgium, pp 21–23

    Google Scholar 

  • Macalady DL, Wolfe NL (1985) Effects of sediment sorption on abiotic hydrolyses. 1. Organophosphorothioate esters. J Agric Food Chem 33(2):167–173

    Article  CAS  Google Scholar 

  • Majewski MS, Foreman WT, Goolsby DA, Nakagaki N (1998) Airborne pesticide residues along the Mississippi River. Environ Sci Technol 32(23):3689–3698

    Article  CAS  Google Scholar 

  • Majewski MS, Foreman WT, Goolsby DA (2000) Pesticides in the atmosphere of the Mississippi River Valley, part I rain. Sci Total Environ 248(2–3):201–212

    CAS  Google Scholar 

  • Matern SA, Moyle PB, Pierce LC (2002) Native and alien fishes in a California estuarine marsh: twenty-one years of changing assemblages. Trans Am Fish Soc 131:797–816

    Article  Google Scholar 

  • McCall JM (1975) Liquid–liquid partition coefficients by high-pressure liquid chromatography. J Med Chem 18(6):549–552

    Article  CAS  Google Scholar 

  • McCall PJ, Swann RL, Laskowski DA, Unger SM, Vrona SA, Dishburger HJ (1980) Estimation of chemical mobility in soil from liquid chromatographic retention times. Bull Environ Contam Toxicol 24(2):190–195

    Article  CAS  Google Scholar 

  • McCall PJ, Laskowski DA, Swann RL, Dishburger HJ (1981) Measurement of sorption coefficients of organic chemicals and their use in environmental fate analysis. In: Test protocols for environmental fate and movement of toxicants: 94th annual meeting of Association of Official Analytical Chemists, pp 89–109.

    Google Scholar 

  • McCall PJ, Agin GL (1985) Desorption kinetics of picloram as affected by residence time in the soil. Environ Toxicol Chem 4(1):37–4437

    Article  CAS  Google Scholar 

  • McConnell LL, Nelson E, Rice CP, Baker JE, Johnson WE, Harman JA, Bialek K (1997) Chlorpyrifos in the air and surface water of Chesapeake Bay: predictions of atmospheric deposition fluxes. Environ Sci Technol 31(5):1390–1398

    Article  CAS  Google Scholar 

  • Meikle RW, Youngson CR (1978) The hydrolysis rate of chlorpyrifos, O-O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate, and its dimethyl analog, chlorpyrifos-methyl, in dilute aqueous solution. Arch Environ Contam Toxicol 7(1):13–22

    Article  CAS  Google Scholar 

  • Memon GZ, Bhanger MI, Memon JR, Akhtar M (2009) Adsorption of methyl parathion from aqueous solutions using mango kernels: Equilibrium, kinetic and thermodynamic studies. Biorem J 13(2):102–106

    Article  CAS  Google Scholar 

  • Meylan W, Howard PH, Boethling RS (1992) Molecular topology/fragment contribution method for predicting soil sorption coefficients. Environ Sci Technol 26(8):1560–1567

    Article  CAS  Google Scholar 

  • Mézin LC, Hale RC (2004) Effect of humic acids on toxicity of DDT and chlorpyrifos to freshwater and estuarine invertebrates. Environ Toxicol Chem 23(3):583–590

    Article  Google Scholar 

  • Mingelgrin U, Gerstl Z (1983) Reevaluation of partitioning as a mechanism of nonionic chemicals adsorption in soils. J Environ Qual 12(1):1–11

    Article  CAS  Google Scholar 

  • Mohammad A, Khan IA, Jabeen N (2001) Thin-layer chromatographic studies of the mobility of pesticides through soil-containing static flat-beds. J Planar Chromatogr Mod TLC 14(4):283–290

    Article  CAS  Google Scholar 

  • Montone RC, Taniguchi S, Boian C, Weber RR (2005) PCBs and chlorinated pesticides (DDTs, HCHs and HCB) in the atmosphere of the Southwest Atlantic and Antarctic oceans. Mar Pollut Bull 50:778–782

    Article  CAS  Google Scholar 

  • Moore MT, Schulz R, Cooper CM, Smith S, Rodgers JH (2002) Mitigation of chlorpyrifos runoff using constructed wetlands. Chemosphere 46:827–835

    Article  CAS  Google Scholar 

  • Moorman TB, Jayachandran K, Reungsang A (2001) Adsorption and desorption of atrazine in soils and subsurface sediments. Soil Sci 166(12):921–929

    Article  CAS  Google Scholar 

  • Moreale A, van Bladel R (1976) Influence of soil properties on adsorption of pesticide-driven aniline and p-chloroaniline. Science 27(1):48–57

    CAS  Google Scholar 

  • Morgan MK, Sheldon LS, Croghan CW, Jones PA, Robertson GL, Chuang JC, Wilson NK, Lyu CW (2005) Exposures of preschool children to chlorpyrifos and its degradation product 3,5,6-trichloro-2-pyridinol in their everyday environments. J Expo Anal Environ Epidemiol 15:297–309

    Article  CAS  Google Scholar 

  • Mortland MM, Raman KV (1967) Catalytic hydrolysis of some organic phosphate pesticides by copper(II). J Agric Food Chem 15(1):163–167

    Article  CAS  Google Scholar 

  • Mullins DE, Young RW, Hetzel GH, Berry DF (1992) Pesticide wastewater cleanup using demulsification, sorption, and filtration followed by chemical and biological degradation. ACS Symp Ser 510:166–176

    Article  CAS  Google Scholar 

  • Mullins DE, Young RW, Berry DF, Gu JD, Hetzel GH (1993) Biological based sorbents and their potential use in pesticide waste disposal during composting. ACS Symp Ser 522:113–126

    Article  CAS  Google Scholar 

  • Murray RT, von Stein C, Kennedy IR, Sanchez-Bayo F (2001) Stability of chlorpyrifos for termiticidal control in six Australian soils. J Agric Food Chem 49(6):2844–2847

    Article  CAS  Google Scholar 

  • Murray WJ, Hall LH, Kier LB (1975) Molecular connectivity III: relationship to partition coefficients. J Pharm Sci 64(12):1978–1981

    Article  CAS  Google Scholar 

  • Mushtaq M, Feely WF, Syintsakos LR, Wislocki PG (1996) Immobility of emamectin benzoate in soils. J Agric Food Chem 44(3):940–944

    Article  CAS  Google Scholar 

  • Nelson SD, Letey J, Farmer WJ, Williams CF, Ben-Hur M (1998) Facilitated transport of napropamide by dissolved organic matter in sewage sludge-amended soil. J Environ Qual 27(5):1194–1200

    Article  CAS  Google Scholar 

  • Nguyen C, Do DD (2000) Simple optimization approach for the characterization of pore size distribution. Langmuir 16(3):1319–1322

    Article  CAS  Google Scholar 

  • Noblet JA, Smith LA, Suffet IH (1996) Influence of natural dissolved organic matter, temperature, and mixing on the abiotic hydrolysis of triazine and organophosphate pesticides. J Agric Food Chem 44:3685–3693

    Article  CAS  Google Scholar 

  • OECD (1981) OECD Guidelines for testing of chemicals, TG 106 adsorption-desorption in soils. Organisation for Econiomic Co-operation and Development, Paris

    Google Scholar 

  • OECD (2000) OECD Guideline for the Testing of Chemicals: Adsorption – Desorption Using a Batch Equilibrium Method. Organisation for Econiomic Co-operation and Development, Paris

    Book  Google Scholar 

  • Oerke EC, Dehne HW (2004) Safeguarding production losses in major crops and the role of crop protection. Crop Prot 23:275–285

    Article  Google Scholar 

  • Oerke EC (2006) Crop loses to pest. J Agr Sci 144:31–43

    Article  Google Scholar 

  • Ogle RE, Warren GF (1954) Fate and activity of herbicides in soils. Weeds 3(3):257–273

    Article  Google Scholar 

  • Ogram AV, Jessup RE, Ou LT, Rao PSC (1985) Effects of sorption on biological degradation rates of (2,4-dichlorophenoxy) acetic acid in soils. Appl Environ Microbiol 49(3):582–587

    CAS  Google Scholar 

  • Ostrach DJ, Low-Marchelli JM, Eder KJ, Whiteman SJ, Zinkl JG (2008) Maternal transfer of xenobiotics and effects on larval striped bass in the San Francisco estuary. Proc Natl Acad Sci USA 105(49):19354–19359

    Article  CAS  Google Scholar 

  • Payá-Pérez AB, Cortés A, Sala MN, Larsen B (1992) Organic matter fractions controlling the sorption of atrazine in sandy soils. Chemosphere 25(6):887–898

    Article  Google Scholar 

  • Phillips TA, Summerfelt RC, Wu J, Laird DA (2003) Toxicity of chlorpyrifos adsorbed on humic colloids to larval walleye (Stizostedion vitreum). Arch Environ Contam Toxicol 45:258–263

    Article  CAS  Google Scholar 

  • Pignatello JJ, Ferrandino FJ, Huang LQ (1993) Elution of aged and freshly added herbicides from a soil. Environ Sci Technol 27(8):1563–1571

    Article  CAS  Google Scholar 

  • Pignatello JJ, Xing B (1996) Mechanisms of slow sorption of organic chemicals to natural particles. Environ Sci Technol 30:1–11

    Article  CAS  Google Scholar 

  • Pignatello JJ (2000) The measurement and interpretation of sorption and desorption rates for organic compounds in soil media. Adv Agron 69:1–73

    Article  CAS  Google Scholar 

  • Pimentel D (1995) Amounts of pesticides reaching target pests: environmental impacts and ethics. J Agr Environ Ethic 8:17–29

    Article  Google Scholar 

  • Pionke HB, Chesters G (1973) Pesticide-sediment-water interactions. J Environ Qual 2(1):29–45

    Article  CAS  Google Scholar 

  • Racke KD (1993) Environmental fate of chlorpyrifos. Rev Environ Contam Toxicol 13:1–150

    Article  Google Scholar 

  • Racke KD, Fontaine DD, Yoder RN, Miller JR (1994) Chlorpyrifos degradation in soil at termiticidal application rates. Pest Sci 42(1):43–51

    Article  CAS  Google Scholar 

  • Ragsdale NN (1999) The role of pesticides in agricultural crop protection. Ann N Y Acad Sci 894:199–205

    Article  CAS  Google Scholar 

  • Ramos L, Sojo LE, Vreuls JJ, Brinkman UAT (2000) Study of the fast competitive adsorption of pesticides in soils by simultaneous filtration and solid-phase extraction with subsequent GC-MS. Environ Sci Technol 34(6):1049–1055

    Article  CAS  Google Scholar 

  • Randic M (1975) Characterization of molecular branching. J Am Chem Soc 97(23):6609–6615

    Article  CAS  Google Scholar 

  • Readman JW, Kwong LLW, Mee LD, Bartocci J, Nilve G, Rodriguez-Solano JA, Gonzalez-Farias F (1992) Persistent organophosphorus pesticides in tropical marine environments. Mar Pollut Bull 24(8):398–402

    Article  CAS  Google Scholar 

  • Regitano JB, Koskinen WC, Sadowsky MJ (2006) Influence of soil aging on sorption and bioavailability of simazine. J Agric Food Chem 54:1373–1379

    Article  CAS  Google Scholar 

  • Relyea JF (1982) Theoretical and experimental considerations for the use of the column method for determining retardation factors. Radioact Waste Manage Nuclear Fuel Cycle 3(2):151–166

    CAS  Google Scholar 

  • Rice CP, Chernyak SM, McConnell LL (1997) Henry’s law constants for pesticides measured as a function of temperature and salinity. J Agric Food Chem 45(6):2291–2298

    Article  CAS  Google Scholar 

  • Richardson EM, Epstein E (1971) Retention of three insecticides on different size soil particles suspended in water. Soil Sci Soc Am Proc 35(6):884–887

    Article  CAS  Google Scholar 

  • Richter ED, Chlamtac N (2002) Ames, Pesticides, and cancer revisited. Int J Occup Environ Health 8(1):63–72

    Google Scholar 

  • Rockne KJ, Shor LM, Young LY, Taghon GL, Kosson DS (2002) Distributed sequestration and release of PAHs in weathered sediment: the role of sediment structure and organic carbon properties. Environ Sci Technol 36(12):2636–2644

    Article  CAS  Google Scholar 

  • Rodriguez-Cruz S, Andrades MS, Sanchez-Camazano M, Sanchez-Martin MJ (2007) Relationship between the adsorption capacity of pesticides by wood residues and the properties of woods and pesticides. Environ Sci Technol 41(10):3613–3619

    Article  CAS  Google Scholar 

  • Rogers MR, Stringfellow WT (2009) Partitioning of chlorpyrifos to soil and plants in vegetated agricultural drainage ditches. Chemosphere 75(1):109–114

    Article  CAS  Google Scholar 

  • Roh JY, Choi J (2008) Ecotoxicological evaluation of chlorpyrifos exposure on the nematode Caenorhabditis elegans. Ecotoxicol Environ Saf 71(2):483–489

    Article  CAS  Google Scholar 

  • Rohlman DS, Arcury TA, Quandt SA, Lasarev M, Rothlein J, Travers R, Tamulinas A, Scherer J, Early J, Marin A, Phillips J, McCauley L (2005) Neurobehavioral performance in preschool children from agricultural and non-agricultural communities in Oregon and North Carolina. Neurotoxicology 26(4):589–598

    Article  Google Scholar 

  • Romyen S, Luepromchai E, Hawker D, Karnchanasest B (2007) Potential of agricultural by-product in reducing chlorpyrifos leaching through soil. J Appl Sci 7(18):2686–2690

    Article  CAS  Google Scholar 

  • Ruckart PZ, Kakolewski K, Bove FJ, Kaye WE (2004) Long-term neurobehavioral health effects of methyl parathion exposure in children in Mississippi and Ohio. Environ Health Perspect 112(1):46–51

    Article  CAS  Google Scholar 

  • Sabljic A (1984) Predictions of the nature and strength of soil sorption of organic pollutants by molecular topology. J Agric Food Chem 32(3):243–246

    Article  CAS  Google Scholar 

  • Sabljic A (1987) On the prediction of soil sorption coefficients of organic pollutants from molecular structure: application of molecular topology model. Environ Sci Technol 21(4):258–266

    Article  CAS  Google Scholar 

  • Sabljic A, Gusten H, Verhaar H, Hermens J (1995) QSAR modelling of soil sorption. Improvements and systematics of log Koc vs. Log Kow correlations. Chemosphere 31(11–12):4489–4514

    Article  CAS  Google Scholar 

  • Salloum MJ, Chefetz B, Hatcher PG (2002) Phenanthrene sorption by aliphatic-rich natural organic matter. Environ Sci Technol 36(9):1953–1958

    Article  CAS  Google Scholar 

  • Sánchez-Camazano M, Iglesias-Jiménez E, Sánchez-Martín MJ (1997) City refuse compost and sodium dodecyl sulphate as modifiers of diazinon leaching in soil. Chemosphere 35(12):3003–3012

    Article  Google Scholar 

  • Schimmel SC, Garnas RL, Patrick JM Jr, Moore JC (1983) Acute toxicity, bioconcentration, and persistence of AC 222,705, benthiocarb, chlorpyrifos, fenvalerate, methyl parathion, and permethrin in the estuarine environment. J Agric Food Chem 31(1):104–113

    Article  CAS  Google Scholar 

  • Schulz R, Peall SKC, Dabrowski JM, Reinecke AJ (2001) Current-use insecticides, phosphates and suspended solids in the Lourens River, Western Cape, during the first rainfall event of the wet season. Water SA 27(1):65–70

    CAS  Google Scholar 

  • Schumacher BA (2002) Methods for the determination of total organic carbon (TOC) in soils and sediments. Report No EPA/600/r-02/069 (ntis pb2003-100822). U.S. EPA, Washington, DC

    Google Scholar 

  • Schuurmann G, Ebert RU, Kuhne R (2006) Prediction of the sorption of organic compounds into soil organic matter from molecular structure. Environ Sci Technol 40(22):7005–7011

    Article  CAS  Google Scholar 

  • Schwarzenbach RP, Westall J (1981) Transport of nonpolar organic compounds from surface water to groundwater. Laboratory sorption studies. Environ Sci Technol 15(11):1360–1367

    Article  CAS  Google Scholar 

  • Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, Wehrli B (2006) The Challenge of micropollutants in aquatic systems. Science 313(5790):1072–1077

    Article  CAS  Google Scholar 

  • Scribner SL, Benzing TR, Sun S, Boyd SA (1992) Desorption and unavailability of aged simazine residues in soil from a continuous corn field. J Environ Qual 1:115–120

    Article  Google Scholar 

  • Seger MR, Maciel GE (2006) NMR investigation of the behavior of an organothiophosphate pesticide, chlorpyrifos, sorbed on montmorillonite clays. Environ Sci Technol 40(3):797–802

    Article  CAS  Google Scholar 

  • Seiber JN, Ragsdale NN (1999) Examining risks and benefits associated with pesticide use: an overview. In: Ragsdale NN, Seiber JN (eds) Pesticides: managing risks and optimizing benefits ACS Symp Ser 734. American Chemical Society, Washington, DC, pp 1–6

    Chapter  Google Scholar 

  • Sharer M, Park JH, Voice TC, Boyd SA (2003) Aging effects on the sorption-desorption characteristics of anthropogenic organic compounds in soil. J Environ Qual 32(4):1385–1392

    Article  CAS  Google Scholar 

  • Sharom MS, Miles JRW, Harris CR, McEwen FL (1980) Behavior of 12 insecticides in soil and aqueous suspensions of soil and sediment. Water Res 14(8):1095–1100

    Article  CAS  Google Scholar 

  • Sherrard RM, Bearr JS, Murray-Gulde CL, Rodgers JH, Shah YT (2004) Feasibility of constructed wetlands for removing chlorothalonil and chlorpyrifos from aqueous mixtures. Environ Pollut 127:385–394

    Article  CAS  Google Scholar 

  • Singh RP, Kumar R (2000) Evaluation of the effect of surfactants on the movement of pesticides in soils using a soil thin-layer chromatography technique. Soil Sediment Contam 9(5):407–423

    Article  CAS  Google Scholar 

  • Somasundaram L, Coats JR, Racke KD, Shanbhag VM (1991) Mobility of pesticides and their hydrolysis metabolites in soil. Environ Toxicol Chem 10(2306):185–194

    Article  CAS  Google Scholar 

  • Spark KM, Swift RS (2002) Effect of soil composition and dissolved organic matter on pesticide sorption. Sci Total Environ 298(1–3):147–161

    Article  CAS  Google Scholar 

  • Spieszalski WW, Niemczyk HD, Shetlar DJ (1994) Sorption of chlorpyrifos and fonofos on four soils and turfgrass thatch using membrane filters. J Environ Sci Health, Part B 29(6):1117–1136

    Article  Google Scholar 

  • Steinberg SM, Pignatello JJ, Sawhney BL (1987) Persistence of 1,2-dibromoethane in soils: entrapment in intraparticle micropores. Environ Sci Technol 21(12):1201–1208

    Article  CAS  Google Scholar 

  • Stevens DE, Kohlhorst DW, Miller LW, Kelley DW (1985) The decline of striped bass in the Sacramento-San Joaquin Estuary, California. Trans Am Fish Soc 114:12–30

    Article  Google Scholar 

  • Suciu NA, Capri E (2009) Adsorption of chlorpyrifos, penconazole and metalaxyl from aqueous solution by modified clays. J Environ Sci Health, Part B 44(6):525–532

    Article  CAS  Google Scholar 

  • Suntio LR, Shiu WY, Mackay D, Seiber JN, Glotfelty D (1988) Critical review of Henry’s law constants for pesticides. Rev Env Contam Toxicol 103:1–59

    Article  CAS  Google Scholar 

  • Swann RL, Laskowski DA, McCall PJ, Kuy KV, Dishburger HJ (1983) A rapid method for the estimation of the environmental parameters octanol/water partition coefficient, soil sorption constant, water to air ratio, and water solubility. Residue Rev 85:17–28

    CAS  Google Scholar 

  • Swann RL, McCall PJ, Laskowski DA, Dishburger HJ (1981) Estimation of soil sorption constants of organic chemicals by high-performance liquid chromatography. ASTM Spec Tech Publ 737:43–48

    CAS  Google Scholar 

  • Szabó G, Guczi J, Kördel W, Zsolnay A, Major V, Keresztes P (1999) Comparison of different HPLC stationary phases for determination of soil-water distribution coefficient, Koc values of organic chemicals in RP-HPLC system. Chemosphere 39(3):431–442

    Article  Google Scholar 

  • Tagatz ME, Gregory NR, Plaia GR (1982) Effects of chlorpyrifos on field- and laboratory-developed estuarine benthic communities. J Toxicol Environ Health 10:411–421

    Article  CAS  Google Scholar 

  • Tao S, Piao H, Dawson R, Lu X, Hu H (1999) Estimation of organic carbon normalized sorption coefficient (Koc) for soils using the fragment constant method. Environ Sci Technol 33(16):2719–2725

    Article  CAS  Google Scholar 

  • Thomas C, Mansingh A (2002) Dissipation of chlorpyrifos from tap, river and brackish waters in glass aquaria. Environ Technol 23(11):1219–1227

    Article  CAS  Google Scholar 

  • Thomas SM, Bodour AA, Murray KE, Inniss EC (2009) Sorption behavior of a synthetic antioxidant, polycyclic musk, and an organophosphate insecticide in wastewater sludge. Water Sci Technol 60(1):145–154

    Article  CAS  Google Scholar 

  • Tilman D (1998) The greening of the green revolution. Nature 396:211–212

    Article  CAS  Google Scholar 

  • Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292(5515):281–284

    Article  CAS  Google Scholar 

  • Tuncel SG, Oztas NB, Erduran MS (2008) Air and groundwater pollution in an agricultural region of the Turkish Mediterranean coast. J Air Waste Manag Assoc 58(9):1240–1249

    Article  CAS  Google Scholar 

  • Upchurch RP, Pierce WC (1958) The leaching of monuron from Lakeland sandy soil. Part II. The effect of soil temperature, organic matter, soil moisture and amount of herbicide. Weeds 6:24–33

    Article  CAS  Google Scholar 

  • USEPA (1986) Ambient water quality criteria for chlorpyrifos-1986. Report No EPA-440/5-86-005. U.S. EPA, Washington, DC

    Google Scholar 

  • USEPA (1998a) EPA’s contaminated sediment management strategy. Report No EPA-823-R-98-001. U.S. EPA,Washington, DC

    Google Scholar 

  • USEPA (1998b) Fate, transport and transformation test guidelines OPPTS 835.1210. Soil thin layer chromatography. Report No EPA-712-C-98-047. U.S. EPA, Washington, DC

    Google Scholar 

  • USEPA (1998c) Fate, transport and transformation test guidelines OPPTS 835.1220. Sediment and soil adsorption/desorption isotherm. Report No EPA-712-C-08-009. U.S. EPA, Washington, DC

    Google Scholar 

  • USEPA (1999) Understanding variation in partition coefficient, Kd, values Volume I: The Kd model of measurement, and application of chemical reaction codes. Report No EPA-402-R-99-004A. U.S. EPA, Washington, DC

    Google Scholar 

  • USEPA (2002a) Chlorpyrifos facts. Report No 738-F-01-006. U.S. EPA, Washington, DC.

    Google Scholar 

  • USEPA (2002b) Interim reregistration eligibility decision for chlorpyrifos. Report No EPA-738-R-01-007. U.S. EPA, Washington, DC

    Google Scholar 

  • USEPA (2011) Estimation Programs Interface SuiteTM for Microsoft Windows v 4.10. U.S. EPA, Washington, DC

    Google Scholar 

  • Valverde GA, Socias VM, Gonzalez PE, Villafranca SM (1992) Adsorption of chlorpyrifos on Almeria soils. Sci Total Environ 123–124:541–549

    Google Scholar 

  • van Emmerik TJ, Angove MJ, Johnson BB, Wells JD (2007) Sorption of chlorpyrifos to, selected minerals and the effect of humic acid. J Agric Food Chem 55:7527–7533

    Article  CAS  Google Scholar 

  • van Genuchten MT, Wierenga PJ (1986) Solute dispersion coefficients and retardation factors. In: Klute A (ed) Methods of soil analysis – part 1: physical and mineralogical methods, 2nd edn. Soil Science Society of America, Madison, WI, pp 1025–1054

    Google Scholar 

  • Veith GD, Austin NM, Morris RT (1979) A rapid method for estimating log P for organic chemicals. Water Res 13(1):43–47

    Article  CAS  Google Scholar 

  • Vowles PD, Mantourab RFC (1987) Sediment-water partition coefficients and HPLC retention factors of aromatic hydrocarbons. Chemosphere 16(1):109–116

    Article  CAS  Google Scholar 

  • Wade P (1954) Soil fumigation. I. Sorption of ethylene dibromide by soils. J Sci Food Agric 5:184–192

    Article  CAS  Google Scholar 

  • Wahid PA, Sethunathan N (1978) Sorption-desorption of parathion in soils. J Agric Food Chem 26(1):101–105

    Article  CAS  Google Scholar 

  • Walker A, Rodriguez-Cruz MS, Mitchell MJ (2005) Influence of aging of residues on the availability of herbicides for leaching. Environ Pollut 133(1):43–51

    Article  CAS  Google Scholar 

  • Wasswa J, Nkedi-Kizza P, Kiremire BT (2010) Characterization of sorption of endosulfan isomers and chlorpyrifos on container walls using mixed solvent systems. J Agric Food Chem 58(13):7902–7907

    Article  CAS  Google Scholar 

  • Wauchope RD, Yeh S, Linders JB, Kloskowski R, Tanaka K, Rubin B, Katayama A, Kördel W, Gerstl Z, Lane M, Unsworth JB (2002) Pesticide soil sorption parameters: theory, measurement, uses, limitations and reliability. Pest Manag Sci 58:419–445

    Article  CAS  Google Scholar 

  • Weber JB (1972) Interaction of organic pesticides with particulate matter in aquatic and soil systems. Adv Chem Ser 111:55–120

    Article  CAS  Google Scholar 

  • Weber WJ Jr, McGinley PM, Katz LE (1992) A distributed reactivity model for sorption by soils and sediments. 1. Conceptual basis and equilibrium assessments. Environ Sci Technol 26:1955–1962

    Article  CAS  Google Scholar 

  • Werner I, Deanovic LA, Connor V, Vlaming VD, Bailey HC, Hinton DE (2000) Insecticide – caused toxicity to Ceriodaphnia dubia (cladocera) in the Sacramento-San Joaquin River Delta, California, USA. Environ Toxicol Chem 19(1):215–227

    CAS  Google Scholar 

  • Wesseling C, Corriols M, Bravo V (2005) Acute pesticide poisoning and pesticide registration in Central America. Toxicol Appl Pharmacol 207:S697–S705

    Article  CAS  Google Scholar 

  • Whang JM, Schomburg CJ, Glotfelty DE, Taylor AW (1993) Volatilization of fonofos, chlorpyrifos, and atrazine from conventional and no-till surface soils in the field. J Environ Qual 22(1):173–180

    Article  CAS  Google Scholar 

  • WHO (1990) Public health impacts of pesticides used in agriculture. World health Organization, Geneva

    Google Scholar 

  • Wightwick A, Allinson G (2007) Pesticide residues in victorian waterways: a review. Aust J Ecotoxicol 13:91–112

    CAS  Google Scholar 

  • Wright CG, Leidy RB, Dupree HE Jr (1991) Chlorpyrifos in the air and soil of houses four years after its application for termite control. Bull Environ Contam Toxicol 46(5):686–689

    Article  CAS  Google Scholar 

  • Wright CG, Leidy RB, Dupree HE Jr (1994) Chlorpyrifos in the air and soil of houses eight years after its application for termite control. Bull Environ Contam Toxicol 52(1):131–134

    Article  CAS  Google Scholar 

  • Wu J, Laird DA (2002) Hydrolysis of chlorpyrifos in aqueous and colloidal systems. Isr J Chem 42(1):99–107

    Article  CAS  Google Scholar 

  • Wu J, Laird DA (2004) Interactions of chlorpyrifos with colloidal materials in aqueous systems. J Environ Qual 33(5):1765–1770

    Article  CAS  Google Scholar 

  • Xing B, Pignatello JJ (1996) Time-dependent isotherm shape of organic compounds in soil organic matter: Implications for sorption mechanism. Environ Toxicol Chem 15:1282–1288

    Article  CAS  Google Scholar 

  • Xing B, Pignatello JJ (1997) Dual-mode sorption of low-polarity compounds in glassy poly(vinyl chloride) and soil organic matter. Environ Sci Technol 31(3):792–799

    Article  CAS  Google Scholar 

  • Yang XB, Ying GG, Peng PA, Wang L, Zhao JL, Zhang LJ, Yuan P, He HP (2010) Influence of biochars on plant uptake and dissipation of two pesticides in an agricultural soil. J Agric Food Chem 58(13):7915–7921

    Article  CAS  Google Scholar 

  • Yu XY, Ying GG, Kookana RS (2009) Reduced plant uptake of pesticides with biochar additions to soil. Chemosphere 76(2):665–671

    Article  CAS  Google Scholar 

  • Yu YL, Wu XM, Li SN, Fang H, Zhan HY, Yu JQ (2006) An exploration of the relationship between adsorption and bioavailability of pesticides in soil to earthworm. Environ Pollut 141(3):428–433

    Article  CAS  Google Scholar 

  • Zamora KCR, Majewski MS, Knifong DL (2003) Diazinon and chlorpyrifos loads in precipitation and urban and agricultural storm runoff during January and February 2001 in the San Joaquin River Basin, California: Water-Resource Investigation Report 03-4091. U.S. Geological Survey, Sacramento, CA

    Google Scholar 

Download references

Acknowledgments

This project was funded in part by a Washington State University Faculty Seed Grant and a graduate student fellowship from the Inland Northwest Research Alliance. We especially thank Dr. Dave Whitacre, RECT Editor, for his excellent comments and editing of the manuscript. The views expressed herein are solely those of the authors and do not represent the official policies or positions of any supporting agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyoum Yami Gebremariam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gebremariam, S.Y., Beutel, M.W., Yonge, D.R., Flury, M., Harsh, J.B. (2012). Adsorption and Desorption of Chlorpyrifos to Soils and Sediments. In: Whitacre, D. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 215. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1463-6_3

Download citation

Publish with us

Policies and ethics