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In Part I of this study (Lehmann and Scheffe, 1950), to which we shall refer 
as LSI, we defined and illustrated the concept of completeness of a family of meaS1U'es 
and developed some of its statistical applications. In this part we shall state in section 
7 some general result.':! about complete families, showing how from given families one 
can construct others, and a specific result about the completeness of a certain parametric 
family. Uniformly most powerful unbiased tests for certain statistical hypotheses 
about this parametric family are considered in section 8. Some examples are given 
in section 9. As m.entioned2 in LSI, these results on testing are extensions and simpli­
fications of earlier ones by Neyman (1941), Scheffe (194:2), Lehmann (1947), Ghosh 
(1948), and Hoel (194:8). Since then further papers have appeared on the aubject by 
Nandi (1951) and Sverdrup (HJ53); however, the present version is in a number of 
ways more general than previous ones. The notation throughout will be that of 
I~SI. 

7. SOME FURTHER RESULTS ON COMI'LETENESS 

In this and the next section we shall restrict ourselves to families of measures 
:ffi = {M0 jOt::w} for which the "label sei;" w is a Borel set in Euclidean space and for 
which certain measurability assumptions with respect to 0 are satisfied. Thus, if 
ffl is a family jlll30 = {M~IOew} of measures M~ on the additive family :f' of sets in the 
space w:v of points x, we shall denote by L9 Lebesgue measure on the family 2° of Borel 
subsets of the Borel set w in a Euclidean space. We shall also assume that all the 

1 This papot• wns propo.rod with tho po.rtio.l support of the Office of Nn.vo.l Research, U.S.A. 
~ Wo aho.ll not givo tho dl,rivn.tiou of tho solutions of tlur diffel·entinl equo.biona of Neymn.n o.nd Scheffe 

for tho po,rnmotrio fmnily of probability donaitiee, o.s nWlounced in LSI, boco.usa this is lengthy, t-edious, 
and now muinly of historico.l interoet. 
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measures .111"' for BeUJ are absolutely continuous with respect to a common <r-finite 
measure ;t'" on jf"'. The measure ;t"' is said to be <r-finite on jf"' if W"' is the union of a 
countable number of disjoint sets in jf"' on each of which ;l" is finite. Then there exists 
a function (Jg(x), measurable (jf"), which may be written g9(x) = dM~fdpi'~, such that 

M'/j(A) = J g6(x)dp:~ 
A 

for all Aejf"' and Bew; we shall assume further that g9(x) can be taken to be measurable 
(5!11 X jf"). 

We shall define the family Jl!l= to be strongly complete if it satisfies all the 
assumptions of the preceding paragraph and 

J f(x)dM~ = 0 

~ 

impliesf(x) = 0 (a.e. :ffl"'). The relation between the three kinds of completeness we 
have now defined is that strong completeness implies completeness implies bounded 
completeness. The reader may now wish to proceed directly to Theorem 7 .3, which is 
the basis for the following sections of this paper. The developments up to that point 
are of some general interest but may be a,voided. 

The concept of strong completeness permits us to formulate the following 
theorem concerning families of product measures. 

Theorem 7.1: Let X= (:;t;', x•'), W"' = W"'' X wwr, jf"' = jf3:1 X ;Jf!r.", f)= (0', 0"), 
w = w' X w'" , £0 = 5,3°' X 5!6", L9 = LV' X L8". Suppose ;ma: = {M~ 1 Oew}, where 
dM(i = g9(x)d;tx, 11-"' is rr-finite, 

g8(x) =~g~J, (x' )g0,(x"), 

g0,(x') is measu.rable (£8' x jfa'), and g~,(x") is measurable (5!0" x jf"'"). Suppose fut·ther 
there exists a meas1tre ~~a;,, on jfa;" and a "conditional measure" ;t"''iz" on jfX' depending on 
x", such that whenever the integral 

l f(x', x") g8(x)d;t"' 
w"' 

is defineda it equals the itemted integral 

where 

J F( 8', x")g'/;,(x")d;ta", 
wx" 

F(8', x") = f f(x', x")g0,(x')d#1t'lz" 

w"'' 

• We allow the values + co and - co • 

... (7.1) 

.. . (7 .2) 

(7.3) 
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is measurable (£8' X jfx"). Then ffl"' is strongly complete p?'oviding the same is tr~te of 
;ma:" = {M0Zi0"ew"}and(a.e.;tz")of;Mx'!zn = {M0;1""'!8'ew'}, tvhere dM0: = ife.(x") dp/'" 
and dM"''lz" - I ( ')d o:'Jz" 8' - g6, x jt • 

To prove the theorem we need to show that if the integral (7 .l) vanishes 
(a. e. L 6) thenf(x', x") = 0 (o..e. :fflz). Let N be the set in w where the integral (7 .1) do~s 
not vanish, so Ne£6 and L(J(N) = 0. Then by the hypothesis of the them:em the 
iterated integral (7.2) exists and equals zero for O¢N. J_,et S be the set of points (8', x") 
where F(8', x") defined in (7.3) does not vanish; Ses:!_8' x§"'". We show first that the 
product measure £8' x M0~ of S is zero for aU 8" ew": Denote by N8, the section of 
N by 8' = constant, i.e., N0, = {8" !(8', O")eN}. Since (Le' xLO")(N) = 0, LB'(N9, )= 0 
except for O'eN', where N'e)!_8' and LB'(N') = 0. For O'¢N' we now have 

f F(O', x")dM'f,. = 0 

wa:' 

and so by strong completeness of J¥1,z", F(O', x") = 0 (a.e. :ma:"). Thus all sections of 
S by 8' = constant with 8' ¢N' have M~ meR.Bure zero for all O"ew". Hence 
(L8' X M(J;;)(S) = 0 for all 811 ew". 

We may now conclude that if 8:." denotes a section of S by x" = constant, 
then the set N" in W:z11 for which £B'(S:r;~~) =1: 0 has J1(;~ measure zero for all O"ew". In 
other words, except for x"eN", a null set of :fl!ta:", 

F'(fJ', x") = J f(x', x")dM0;t:z" = 0 

WZ' 

Hence by strong completeness of ;ffiz'l:z", we have for x"¢N", f(x', x") = 0 (a.e. :lllll:z'l:zl'), 
and from this we will now conclude that j(x', x") = 0 (a.e. :f¥1"'): We may calculate 
the measure M~ of the set Q where j(x', x") =1: 0 as the integral of the characteristic 
function XQ(x', x") of Q, 

M~(Q) = J Xq(x', x")dM~, 
w:~: 

and then express this as an iterated integral 

as allowed by the hypotheses of the theorem. This gives 

M~(Q) = f [M~!=''(Q:tn)]dMr~. 
wa:" 

where Q"'" is the section of Q by x" = constant, and for x .. ¢N" the integrand vanishes. 
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fi . rt;l d rt:ll th dit' 1 
If ft'" is itself a. product of 0'- mte measures p; an Jt , e con :1ona 

measure It'"' I"-" of Theorem 7.1 obviously exists and may be taken to be Jtrr:' by the Fubini 

theorem. This gives the following important corollary for product measures: 

Corollary 7.1: Suppose jW' = {M0:IO'e(J)'} and ;Mrr:" = {M0::1B"ew"}, where 

dM0; = g0, (x')dp'"' and d]fr:, = g011(x*)dJ£rr:•, are strongly complete families of measures. 

Let x = (x', x"), etc. as in the first sentence of Theorem 7.1 and let ;m~~' = {M~ I Oew}, 

where M0 = M 0: x M0Z. Then the family .:ffl"' of product me~ures is strongly complete. 

The following theorem is also useful. 

Theorem 7.2: If :m~ = {M~jOew} is strongly complete,' and if~.,= {K3!8ew} 

is defined by dK~ = u(tJ)v(x)dJ1~, where u(8) and v(x) are non-negative, u(O) is mea­

surable (5!6), u(O) =F 0 (a.e. L8), and v(x) is measurable (.:If"'), th!--n ~"'is strongly complete. 

The absolute continuity of the family ~., of measures with respect to a 

o--finite measUl'e p/' and the measurability (.~6x.:lf") of dK~fdf£rtJ follow from the corres­

ponding properties of the family :«!"' and the relation dK8fdpi" = tt(O)v(x)dM0fdp:'. 

It will thus suffice to prove that if 

J f(x)dK~ = 0 

W'" 

... (7.4) 

then the set H1 = {x if(x) =j:. 0} is a null set of S'e". We may mite (7 .4) in the form 

J f(x)v(x)dM~ = 0 

wz 
• .. (7 .5) 

Let H, = {x lv(x) =/= 0}, H1, = {x Jf(x)v(x) =j:. 0}, so H1cH1, U ( W"' -H11). Since :ffl"' is 

complete we see from (7 .5) that Hf'v is a null set for m=, and hence for ~'". Also, 

W'"-H, is a null set for~" since t•(x) = 0 in W"' -H11• Hence H1 is a null set for S'e'". 

A completeness result for a class of families of prob-ability distributions of 

exponential form which has received much attention in statistical literature may be 

obtained by applying the above theorems to a result from the theory of Laplace 

transforms which we shall now state. 

I~emma 7 .l: If ;ffl" = { M~ I Oew} is a family of measures on the real line W'" 

with a 1·eal paramete1· 8 in a nondegenerate interval w, and if the family has a density of 

the fo?·m 

dM'fJfdfL" = O(fJ)eBxh(x) .. . (7.6) 

with respect to a o--finite measure p/' on the class jf"' of Borel sets in W"', then ;flt"' is 
strongly complete. 

• The proof will show that Theorem 7.2 rema.ins true jf "strongly complete" is replaced by "complete" 

in hypothesis and conclusion o.nd the hypotheses u(II);;;.O, u(e):;i=O (a.o. L8), u(ll) is measurable (£0) 

arf1 replaced by the hypothesis u{II)>O. 
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Since C(())efP>h(x) is measurable (r), so is h(x). Since 

O(fJ) = 1/ J e8"'h(x)dp."', 

w 

it is measurable (~6). Strong completene:;s of ;m= will then follow from Theorem 7.2 

if we can prove !H:~: = {N~!Oew} strongly complete, where dN~ = efP>dpi». But this 
is an immediate consequence of applying to the relation 

J f(x)efP:dpie = 0 ... (7.7) 
w"' 

the uniquenes$ theorem for Laplace transforms, as given for e:x:ample in Widder (1941, 

' Ch. 6, Th. 6a). The theorem in Widder requires that a(t) = J f(x)dp."' be of bounded 
0 

variation in every finite interval. Let ()0 be a value of f) for which 

J f(x)e8o"'d;l» = 0. 
wa: 

(7.8) 

Since the Lebesgue integral is an absolutely convergent integral, (7.8) implies 

J lf(x)eBo<~~l dp}' < co. 
wm 

Let P = {tla < t < b} be any finite interval. The total variation of a(t) on 11 is 

where 1'0 = {xla~x<b} and a is the minimum of e9o"' on 1"'. The theorem in Widder 
now tells us a(t) = 0; thus f(x) vanishes (a.. e. ft"'), hence (a.. e. ;ffi'"). 

We remark that in the following theorems where a family of measures is a 
family of probability distributions (in which case we agreed in LSI to write ,t)"' instead 

of Jn"'), ~"' = {P~ !Oew} with dP~ = p8(x)dp,"', it is not necessary to assume p,"' to be 
0'-fi.nite if there exists a set W~ in:/"' such that for all Osro, p8(x) =I= 0 (a.e. p,"') in W! 
and p 9(x) = 0 (a.e. p"') in We- W%; for in thiA case p"' is 0'-:finite in W!(O) = {xlp9(x) 

=1= 0} (Ha.lmos, 1950, sec. 25, Th. F), and hence in W~. and we may assume 
p"'(W"'- W!) = 0 without affecting the family t):~:. It is also understood that the 
density p6(x) is measurable (jf"') since it is integrable t:fF"', prt~). 

Theorem 7.3: If ~., = {Pe/Bero}, X= (:111, ... , a:1), a= (81, ... , (}~), wltere x, 
and (), a1·e real ( i = 1, . :. , r), if w contains a nondegenerate r-dimensional interval, and if 

P~ has a density of the form 
r 

dPMdp."' = 0({)1, ... , 8rYh(xl, ... , Xr) exp (l: eix;) 
i-1 

.. . (7.\l) 
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with respect to a measure p,'" on the class .:If" of Bm·el sets in the r-dimensional Euclidean 

space W", then ~,. is st?·ongly complete. 

This theorem may be proved with the aid of Theorems 7.1 and 7.2 and Lemma 

7 .1. A shorter proof may be made along different lines by a method used by Sverdrup 

(1953, Th. l) to obtain a similar result. 

Theorem 7~3 contains as special cases the completeness results of Examples 
3.2, 3.3, 3.5, 3.8, 3.9 of LSI, as well as many multidimensional examples that can be 
obtain.ed from thes.e. The example at the top of p. 322 of LSI, in which the sufficient 

statistic T = (T1 , T 2) consists of the mean T1 of a random sample from a normal 
population and the sum of squares T 2 of the deviations from T 1 does not fall directly 
under Theorem 7.3; however, if we let U = (U1 , U2), U1 = T1, U2 = T 2+nTi:, then 
the completeness of ~" is given immediately by Theorem 7 ,3, and it ia obvious in 

general that if t = t(u) and l3u is complete, so is ~t. 

8. UNIFORMLY MOST POWERFUL UNBIASED TESTS 

Throughout this section we shall be concerned with the case where the sample 
point X= (X1 , ... , Xn) in ann-dimensional Euclidean space W111 has a density 

dP3,efdp= = 'h ,e(x) = O(iJ., O)h(x) exp f 1?-s(x)+ ~ fJ~,t;.(x)] 
l •-1 

... . (8.1) 

with respect to a measure p'J) in the class .:Jf" of Borel sets in w•. The statistical 
hypotheses considered will be statements about the real parameter 1?- of the form 

H 1 : {} ,.;;; 1?-0 against alternatives 1?- > 1?-o, 

H 2 : {} = 1?-o against alternatives 1?- i= 1?-0 , 

H 3 : {}0 <· {} " t'}o1 against alternatives 1?- < {;0 or 1?- > 1?-1, 

H 4: 1?- ~ 1Joo or 1?- > 1?-1 against alternatives 1?-0 < 1?- < 1?-1 • 

The set of real parameters (01, ... , 8,) = 0 are nuisance parameters (r = 1, 2, ... ). 
Denote by .n the domain of(l?>, 0). We shall assume the parameter space n is convex6• 

In the problem of testing Hi we shall assume there are points of !l with 1?- > 1?-0 for 
i = 1, 2; t'Jo < 1?- 0 for i = 2, 3; {}o > {Jo1 for i = 3 ; {} < {}0 and 1?- > {} 0 for i = 4. 
Let n; denote the section of n by 1?- = constant = t'Joj(j = 0 or I), that is 
n1 = {(1?-, 8) I 8 = {};, (-8>, B)en}, and let 

... (8.2) 

It will be understood that statements about n;, ~1. and ~j (defined below) are made 
for j = 0 in the problem of testing hypotheses H1 and H~, for j = 0 and 1 in the case 
of Hs and H,... It is assumed that n; contains a non-degenerate r-dimensional interval. 

5 The assumption that o is convex is made because it ie brief to sta.te and does not seam to axcludo 
auy inte:resting applications. The proof of Theorem 8.2 is valid with leas restrictive assumptions on 0, 
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The real-valued functions h(x), .s(x), t,(x) are understood to be measurable (jf""}. Let 
t(x) = (t1(x), ... , tr(x)); then clearly T = t(X) is a sufficient statistic for ~j. We shall 
take for .:r the family of Borel sets in the Euclidean space W1, instead of the more 

inclusive additive family induced in W'. by t(x). Let P~. 8 be the probability measure 
induced on :fF by P~. 8 and t(x), and write 

,tlj = {Pi, 9 I (iJo, 8)en1}. ... (8.3) 

In order to prove ~j strongly complete we need 

Lemma 8.1: Let t = t(x) be a measurable6 transformationjrorn, (W"', jf") into 

( W', jf'). If the probability distribution of X is given by a density of the form 

dP~fdp.z = q9(t(x))h(x) 

with respect to a measure p."' on r' then there exists a measttre..; on jf1 such that the dis­
tribution of T = t(X) has the density 

dPJ/dv' = q8(t) 

with reftpect to ·-i. 

This lemma may be proved by defu:cing the measure v"' on :.:tF by dv"' = h(x)dp."", 
and the measure v' on jft by v1(B) = v=(t-1(B)) for all Bejf'. Then for all Bejft we 
have 

P~(B) = P~(t-1(B)) = f q0(t(x))h(x)dltt) = f q9(t(x))d~ = f q9(t}dvt, 

t-1(B) I -'l(B) B 

which is the desired result. 

From Lemma 8.1 and Theorem 7.3 we now have 

Theorem 8.1: If the sample point X has a probability density {8.1) and satiafies 

all the conditions stated in connection with (8.1). then, in the notation there defined, Tis 

a sufficient statistic for ~f with a probability denaity 

r 

O(t?-3, f)) exp ( i~ fJiti } 
;...1 

with respect to a measure vt on the family ::1f' of Borel sets in W1, and the family ~j is 

strongly complete. 

In problems of testing statistical hypotheses about a parameter{} in the presence 
Of UUisaUCe parameterS (fJl> ... , fJ1 ) = fJ, We Will denote the Sample Space by W,;, the 
parameter point by {iJo, fJ) the parameter space by n, the hypothesis by H: fkw, 

8 For· any given additive classes r' jf'' t = t(:v) is said to be a meaBUrabl& transjQ'Imation if for every 

Ae jf'• t-l (A)ejf'". In the application of this lemma. W"', WI wilf be Euoliclean spaces !Uld jf"', jft the 

classes of. Borel sets in each. 
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where w is a given subset of n. Any function f'(X) mel!,surable (jf"'), such that 

os;;;l'(x)"l, may be considered as acriticalfunctionfortestingH: His toberejected with 

probability <p(x) when X= x , so that the power of the test is E~.e(l'f>) with <I> = I'(X), 

as indicated in LSI, pp. 317-318, where the terminology of similar critical function, 

and Neyman structure is also defined. :By the size of the test based on <p(x) we mean 

sup E{},o(l'f>) for (t?>, O)ew. The test is said to be unbiased if for every pair of parameter 

points (8-',0')ew and (t?>", O")en-w we ha.ve E~,, 6, (<lJ)<E-a.,, 9u(<l>). Since for any critical 

function <p(x), the power .E6 ,6{!l>) is continuous (in fact, analytic ) in -8- for the family 

of distributions defined by (8.1) under the assumptions stated there, it follows that 

a critical function is similar for the family .J)~ if it gives a.n unbiased test of H 1 or H 2, 

and similar for ~~U~i if it gives an nnbia.sed test· of H8 or H 4• We can thus dispense 

with the classificatory terminology of "type B1," "best one-sided similar," eto., and 

yet apply the results of LSI about similar critical functions to get the following theorem 

about uniformly most powerful unbiased tests. 

Theorem 8.2: If the sample point X has a probability density of the fO'rm (8.I), 

then for testing any of the hypotheses H 1 , Hz, H 8 , H4 defined below (8.I), and for each 

a(O<a<l), there exists a unif&mly most powerful unbiased test of size a if the assumptions 

stated in connection with {8.I) are satisfied. The corresponding critical function <pix) 

for testing H, may be constructed as follows: The function ~.(x) is defined by means of 

four functiort.s oft, vi(t), w,(t) 8i(t), y,(t}, satisfying the inequalities v1(t)<w,(t}, 0 < 8~(t) ~1, 
O~y,(t)<l. Let I,(t) denote the interval from v,(t) to w,(t). For i = l, 2, 3 we define 

~.(x) = 0 if s(x) is inside the interval I;.(t(x)}, = I if outside the interval; if s(x) falls on 

an end point of I,(t(x)) we define ~t~;.(x) = o,(t(x)) or r,(t(x)) according as s(x) = v,(t(x)) 

or wi(t(x)). For i = 4 the definition of <p,(x} is similar except that we put ,i(x) = I inside 

the inte1'1Jal, 0 outside. The four functions vi, wi, 8,, 'Yi are determined by the conditions 

C£, below where <fl, denotes ~i(X), S denotes .s(X), and .JJ is defined by (8.3): 

C£1: v1 = -co (hence, 81 need not be defined), 

Eo0e(<l>llt) =a. (a.e. ~A). 

<!2: Eo0,o(<flalt) =a. (a.e. fA), 

Eo0 ,e(B<Il2 lt) = aEo0 , 8(Sjt) (a.e. ~5). 

(ta, (t4: E,0 ,a(<I>ilt) =a. (a.e. ~6). 

(a.e. ~n. 

The proof of the theorem will be facilitated by the following modified form 

of the Neyman-Pearson fundamental lemma . 

. ~emma . 8.2: Suppose ~= = {P~I?JeA} is a family of probability measures on 

the addttwe fam~ly :.r of sets in W"' with dP"' = P (x)dn"' and Jr~~ - {P"' I A } h 
A. . _ " . 'I ": •. -ir'• - , 7)6 i , w ere 
•C::A(~- l, .... , k) . Let U~ = ui(X) be a suffic~ent stattst~c for .flf. Suppose the fol-

low~ng an gwen: ?J*eA, ?],e.A;., constants c::i , and measurable (jf"') functions / ;.(x)"";p:.O. 
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U· U· U • 

Denote by ~/ the family of measures on the additive family jf1 t of sets in the range W ' 

of ui(x), where jf~' is such tlw.t u,(x) is a measurable transformation. If there e."Cists a 
critical function 91*(x) and B01·el-measurable functioM fh(u;,) ;;;_;, 0 such that 

(8.4) 

and 

then, among all critical functions 91(x) satisfying (8.4), 91*(x) maximizes E 11.( 91(X)). 

To prove the lemma suppose that g,(u,) and l"*(x) satisfy the conditions of 
Lemma 8.2. Then (Ji defined as 

Now consider the wider class of critical functions f(X) satisfying 

f (J;,(u._(x))/;,(x)f(X)p11;,(x)dfo"' = p, 
wa: 

(i = 1, ... , k). (8.5) 

It follows from the Neyman-Pea.rson lemma that in this wider class f*(x) maximizes 
E 11.( <I>(X) ). 

We now prove Theorem 8.2 for testing hypothesis H1 • By the remark pre­
cecling the theorem, if cp(x) gives an unbiased test then it is a similar critical function 
for the family 1\)~. By Theorem 8.1, the family ~A generated by the sufficient statistic 
T is strongly complete. Hence by Theorem 4.1 of LSI, 97(x) has the Neyman 
structure6a with respect to T, i.e., 

(a.e. ~&). (8.6) 

Since T is sufficient for ~0, the left side is independent of fJ for all 9'(x). Let (t?-* ,fJ*) 
be any alternative with fJo*>ff 0 , and let (t?-0 , 0°) be any· point in 0 0• We shall now 
apply Lemma 8.2 with A= n, k = 1, A1 = n 0 , 'r)* = (t?-*, 0*), 7}1 = (t?-0, 0°), cxt = "• 
/ 1 == l, and U1 = T. Then sc{x) will maximize E~·;o•(f(X)) subject to (8.6) if it satis­
fies (8.6) and there exists a g(t) such that y>(x) = 1 or 0 according a£ the ratio 
Po•, o•(x)jp,, e•(x) is > or <g(t(x)). This condition reduces to f(x) = 1 or 0 according 

as s(x)> or <w1{t(x)), where the function w 1(t) may depend on{}:*, {)0 , fJ*, and 0°. 

na. We have only recently become aware of Tie.rhlett'a (1937) pa.p&r published o.t about the same 
time a.a Neyman 'a, in which he uses the same construction. 
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We must determine w1(t), and a suitable value y1(t) for 'P when s = w1(t), so 

that (8.6) is satisfied. This oan be done so that w1(t) and y1(t) do not depend on {}*, 

8*, or ()0 , as follows: Write Fis) for the conditional distribution function P{).,0(S <. s! t), 

which does not depend Oll: 8, so that F1(s) = Ft(s+O) and Fis)-F,(s-0) = 

P{)
6

,9(S =sit). Then w1(t) and y1(t} are to be determined so that 

F1(w1-0):;;;; 1-a ~ F1(w1}, 

F,(w1-0)+(l~y1)[F1(w1)-F,(w1-0)] = 1-a. 

(8.7) 

(8.8) 

This is clearly possible; in particular if F1(s) is continuous a.t w1 defined by (8.7) then 

for such t the definition of y1(t) is immaterial. Since the resulting most powerful 

test against (t'J-*, 8*) does not depend on {}* > {}0 or on 8*, it is uniformly most 

powerful among those satisfying (8.6}. 

It remains to verify that the above test has the proper size, i.e. 

and is unbiased, i.e. 

EtJ, 8(Cl>) ~a for {}o<t'J-0 , 

E{), 8(<P) >a for t.'J->t.'J-0• 

... (8.9) 

... (8.10) 

The inequality (8.10) may be deduced from the fact that q>(:t) =a is in the class satis­

fying (8.6) of which the 'P defined a.bove is uimormly most powerful for {}>{}0• The 

inequality (8.9) can be demonstrated by noting tha.t the above 'P minimizes Eo, 0(<1>) 

for {}<t'J-0 subject to (8.6) and again compat'ing it with <p(x) =:a. 

The proof that tp1 thus constructed is Borel measurable, as are the other 'Pi·• 

is given in the appendix at the end of the paper. 

We next prove Theorem 8.2 for hypothesis H 2 •. As before, unbiasedness 

implies (8.6) . This time it also implies that 

E,, 8(Cl>) = J tp(X)'h, 8(x)dpiYJ ... (8.11) 
wz 

has a minimum at iJ. = t.'J-0• From well known properties of Laplace transforms, (8.11) 

has a derivative with respect to fJo, which may be oa.l.oulated by differentiation under 

the integral sign. Hence 

... (8.12) 

for all ({}0,8)c!20 , and thus, differentiating (8.11) under the integral sign and using 
(8.1), we get from (8.12) 

Since 

therefore, 

G(&, 8) = { J h(x)exp[t?os(x) + ,~1 e,ti(x)]d,uz r1
, 

r' 
aC({}, 8)/ot"J- = -0({}, e)E,, 8(S), 

... (8.13) 
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and so (8.13) may be written 

or , 

E80 ,o(S<I>) = aE00 , 8 (S), 

Eo0 , o [Eo 0 , 0 (S<I>-aSjt)] = 0 

for all e such that (11- 0 , 8)en0• The last condition implies 

(a.e. ~~) 

since .t95 is strongly complete. Conditions (8.6) and (8.14) may be written 

(a.. e. l)~) (i = 1, 2), 

(8.14) 

(8.15) 

where a"= a.E0 .,0(S1- 1 1 t), which does not depend on 8 for {19-0 , 8)en0 since T is suffi­

cient for .flb· 

Let (19-* ,8*) be an alternative in n with {}* =? {}0 , and let {1?-0 , OO)en0 • We now 

apply Lemma 8,2 with A= n, k = 2, A1 = A2 = n0 , 71* = ({}*,8*), 711 ="'a =(,9.0 , 8°}, 

f;,(x) = si-1(x}, and U1 = U2 = T: 9'{x) will maximize E,., 9.(rp(X)) subject to 

(8.14) if it satisfies (8.15} and there exist g1(t) and g2(t) such that !P(x} = l or 0 accord­

ing as the ratio P{}•, 8• (x)fp{} 1" 8o (x) is > or < than g1(t(x))+g2(t(x})s(x). Since the 

ratio is a convex function of sand depends on x only through a(x} and t(x), the existence 

of such (Jr(t) and g2(t) is equivalent to that of v2(t) and w2(t} with v2(t) < w3(t) such 

that 11(x) = 1 or 0 according as a(x) lies outside or inside the interval from v2(t) to 

w2(t). At this stage of the argument Vz(t) and w2{t) may depend on fJ.*, {}0 , 8*, and 0°. 

It remains to show that the functions v2(t) and w2(t}, and values ~2(t) and y 2(t) for 91(x) 

when a(x) = v2(t) or w2(t}, can be determined so that they do not depend on 1?-*, 8*, 

or ()0, and (8.15) is satisfied. 

In terms of v2(t), w2(t), o2(t) , y2(t), and the conditional distribution function 

F,(s) introduced above (8.7}, the conditions (8.15) become 

F1(v2-0)+l-F1(w2)+0'2[.F1(v2)-F1(v2-0)J+y2[F1(w2)-F1(w2-0)] =a, ... (8.16} 

"~>~-o "" I sdF,+ f sdF1+v282[F1(v2)-F1(v2-0)J+w2y2[F1(w2)-F1(w2-0)] = a 2 , .. . (8.17) 

-oo w.+O 

where (8.16) and (8.17) are to be satisfied (a.e. ~b). Since (8.16) and (8.17) do not depend 

on ~* . 0*, or eo (F1 depends on 19-0), neither will solutions v2(t), w2.(t), o2(t), and Y2(t), 

whose existence we shall now establish by a continuity argument: For each fixed 

t, let y be a variable with range 0 < y.;;; ct and define v ando as functions of y to satisfy 

F1(v-O) ~ y ~ F 1(v), 

y = F1(v-O)+o[F1(v)-F,(v-O)], 
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so that vis unique unless there is an interval where F, is constant and equal toy, and 

Sis unique if F,(s) is discontinuous at s = v. Next determine w andy similarly so that 

F,(w-0) < 1-a+ y < F,(w), 

l-a+y = F,(w-O)+(l-y)[Ft(w)-F,(w-0)], 

For any y (0 <; y <;a) the v, w, 8, y thus defined will satisfy (8.16). Let G,(y) denote 

the value obtained when the v, w, ~' yare substituted for the v11 , w2 , 82, 'Yll in the left 

member of (8.17}. Then G,(y) is a unique function of y even though v, w, 8, ')' are 

in general not, and is continuous in y. If we can show (a.e. ~a) that G1(0) ;;;;: a 2 

and G,(a) < a 11, then there must exist a y1 for which G(y,) = a 2• If we then define 

v2,w2,82,y2 as the v,w,8,y corresponding to y=y1, both (8.16) and (8.17) will be 

satisfied. 

To fill the above gap in the proof for H2 we note that the test fotmd above for 

for H1 corresponds to y = 0, and this maximizes E6 , 0(<ll) for every {)>ffo subject to 

(8.6) , hence it also ma.ximizes the derivative 

aE{) 6((J))fo{}l = E{) 8(SIP-ctS). 
' -IJ=t~o o• 

It must therefore maximize E,. 0 ,9(SIP-aS!t) (a.e. flA). But this has the value 0 

for Cb =a. Consequently the(J) corresponding toy= 0 makes E-1'0 ,6(Selll t) >aE00 ,0(S! t), 

or G1(0) > a 2 (a.e. ~~). By similar reasoning about the test corresponding to y =a it 

can be shown G,(a) < a 2 (a.e. ~5). Unbiasedness of the test follows as before 

from comparison with (J) = a. 

We shall treat together the cases of the theorem for hypotheses H8 a.nd If4• 

By the remark preceding the theorem unbiasedness implies similarity for ~WU ~~. 

while sufficiency of T for f)~ and for tlf and strong completeness of ~5 and of lli 
imply 

E,}1, o(Cl> It) = oc (a. e. ~j) (j = 0, l ). ... (8.18) 

Let ({}*,0*) be a point in n, ff* =1= {}0 or {} 1• We choose arbitrary eo and 81 such that 

(1'fj, e1)en1 (j = 0, 1), and we again apply Lemma 8.2, this time with lc = 2, 

Ai = nH, ?J* = (1'f*, 0*), "h = (19,_1, ei.-1), j, = I, u, = T (i = 1, 2), to find that 

l"(x) will maximize E{}•, o•(i'(X)) subject to (8.18) if it satisfies (8.18) and there exist 

g0(t}, g1(t) such that l"(x) = I or 0 according as 

... (8.19) 

Substituting from (8.1) we find (8.19) equivalent to the existence of h0 and h1 such 

that ~p(x) = 1 or 0 according as H(s) < or > 1, where 

... (8.20) 

6 1 ==*"-{}*,and where h0 and h1 xnay depend on f}*, (}-0 , f}1, 0*, eo, 01, as well as on t. 



281

COMPLETENESS, SIMILAR REGIONS, AND UNBIASED ESTIMATION 

For any v, w with -oo < v<w < +ro we shall define h0, ~ to be the unique 
solutions of the equations H(v) = H(w) = 1, namely 

where 

Suppose first {}0<{}*<{}1, so ~0<0<~1 , hence h0>0, ~>0. Then H"(s) > 0 for all 
s, and for this determination of h0 and h1 , H(.s)<l or >1 according as 8 is inside or out­
side the interval (v, w). Suppose next 19-0<{}1<{}* so ~0<~1<0, hence h0<0, 

h1 > 0. Now H(s) < or> 1 according as H(s) > or< 1, where 

Applying the previous reasoning about H(8) to H(s) we see that in the present case 

according as sis inside or outside the interval (v, w}, H(s} is <1 or >1, hence H(s} is 
> 1 or <1. The same result is found in the case -{J>*<O.o<6-1 . At this point we see 
that (8.18) is equivalent to ~(x) = 1 or 0 according as s(x) is inside or outside an interval 
(v, w) if 19-0<{}*<8), the opposite if {}*<{} 0 or {Jo*>-19-1 , where v = v(t) and w = w(t) 

may depend also on {}*, {}0, 19-1, 8*, eo, 81• 

Next we must show tbat v(t), w(t), 8(t), y(t) may be chosen so that they do not 
depend on{}*, 8*, 8°, or 81 and (8.18) is .'3atisfied, and that the resulting test has size 
ex: and is unbiased. Since this part of the proof is very similar for H 3 and H, we indi­
cate it only for H3 • Let Ft,;(s) = P,j, 8(S<.~It), which does not depend on 8 (j = 0,1). 

The conditions (8.18) are then equivalent to two equations similar to (8.16), namely, 

Ft, ;(v3- O)+ 1-Ft, j(w8 )+c5'3[Ft,;(v8 )-Ft,J(v8-0}] 

+'Y8[Ft,J(w3)-F1,j(w3-0)] = ex: (j = 0, 1). ... (8.211) 

First consider the solution (v, w, c5', y) of (8.21 0) obtained by setting v = -ro, which 
gives the uniformly most powerful unbiased teat of H 1: {}.::;,{} 0 against -8->19-0 at size a. 
For this solution the left member of (8.21 1) is the conditional power of t.his test 

against{} = {}1 and is therefore > ex: (a. e. ~i) . Next consider the solution (v, 1v, 8, r) 
of (8.21 0 ) obtained by setting w = +oo, which gives the uniformly most powerful 
unbiased test of H~: {}>-&oo against {}<19>0 at Rize a. For this (v, w) the left member 
of (8.21 1) is the conditional probability that tbi.q test will l'eject H~ when {} = {}1 

and is therefore <;a (a. e. ~i). If we now think of varying the solution (v, w, 8, y) 
of (8.21 0) between these two extremes, it follows again from continuity considerations 
that there exists a solution of (8.210 ) for which (8.21 1) i~ also satisfied, and that the 
resulting V = Va(t), W = W3(t), 0 = o3(t), y = Ya(t) do not depend on {}*, 0*, f)O, Or f)l. 

Verification of correct size and tmbiasedness follow o.gain from comparison with the 
test corresponding to c:I> = a.. 
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9. SoME EXAMPLES 

In applications of Theorem 8.2 the 19-, (}1 , .. . , 8, of the density (8.1) are usually 
not the original parameters of the statistical problem but functions of these. Suppose 
that originally the parameters are ('lfr1_, ... , lfr;,+i) = 1fr and that they appear in a density 
of the form 

r+l 
D(ifr)h(x) exp :E f;,("rfr)u.;,(x). 

i-1 

If there exist."> a 1; 1 transformation from lfr 1> , .. , lfrHl to 19-, (}1> ... , (},. SUCh that 

.. . (9.1) 

identically in 1fr and x, so that the density becomes of the form (8.1) and if the assump· 
tions stated in connection with (8.1) are satisfied, then there exist uniformly most 
powerful unbiased tests of hypotheses of the form H1 , H 2, H3 , H 4 defined at the 
beginning of section 8, and Theorem 8.2 tells us how to construct them. 

We are especially interested in determining the functions s(x), t1(x), ... , t,(x), 
since Theorem 8.2 gives the test in terms of these functions. It is obvious that if we 
put (11- . 81 , ... , 8,.) equal to a nonsingular linear transformation7 of (ft(lfr), ... ,f,.+l(lfr)), 
then (9.1) will be satisfied. We may choose any constants a11 , ... , a1,,+1 not all zero, 
and constants '19-0 , iJo1(1'Jo0 < 1'Jo1), and consider the hypotheses H,(i = 1, ... , 4) about 

... (9.2) 

Without affecting these hypotheses we can assume :Ej!~ a~ = 1, by redefinition of 
,_0 and-flo1 • We define the transformation from (1fr1 , ... ,1jr,+l)to (1'Jo,8v ... ,{},)by the 
equations 

... (9.3) 

where (ai;) is any orthogonal matrix whose first row is (a11, ... , a1, r+1). Then (9.2) 
is satisfied. If we substitute (9.3) in (9.1) and collect coefficients of{} and of ()1, ... , 0,., 
we find that 

r+l 
s(x) = 1: a11uj(x), 

.1-1 
.. . (9.4) 

that is, s(x) is the same linear form in the u.1(x) as {}is in the IJ(lfr), while t1(x), ... , t,.(x) 
are r linearly independent forms orthogonal to (9.4). 

--------------------------·-
1 It can·bo shown, Ullder mild restriations, tha.t this is the most general transformation proaorving 

(9.1). 
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Example 9.1 : Suppose X is a random sample of n from a normal population 
with unknown mean # and unlmown variance a 2• The density may be written 
D exp (j1u1 +f2u2), where / 1 = l/u2 , f.t = p,fa2, u1=-U:~x{, u2=~~x,, and Dis 
a function of the parameters. Set 

where A and Bare known constants. By specializing A, B, 1Jo0 , {}1 we get from Theorem 
8.2 UMPU (uniformly most powerful unbiased) tests of any of the following hypo­
theses: p = p,0 , p, .:;;;;,p,0 , a2 = u~, ua ;;> u3, u2 inside (or outside) an interval (<T~, uJ ). 
We do not get a test of }to<. p, <;. p,1 by this method. It is curious that UMPU tests 
fall out for such a.pparently "unnatural" hypotheses as that the point (p,,u) lies between 
two parabolas p = p,0+c1u2 and fL = f.Lo+c2u 2, tangent to each other at (f.L0 , 0). 

Example 9.2: For independent random samples from k normal populations 
with equal variance ua, the ith sample of size n, from a population with mean P,.p the 
density is of the form D exp [u0{1/a2)+~~u,(f.L,/<r2)], and so we may take 

By specializing A, Bv .. . , Bit, t'Jo0, {}1 we get UMPU tests of the hypotheses 
""1t "'' 2. 9 ll ...._ 2 2 • 'd ( ·~·d } . t a1 ( 2 2) .L.A1 CJti = c0 , .L.A 1CifL;. ~ c0 , a = cr0 , (7' ? cr0 , a mSl e or ouws1 e an In erv cr1 , u0 • 

Example 9.3: Suppose Example 9.2 is changed so that the variance of the 
ith population is crl (i = 1, ... , k). Then the density is D e:x:p [~~u;(lfcrl) + 
~~ui(p,du!)], and we may take 

yielding UMPU tests of the hypotheses that ::E~ A,(lfa'l), a linear form in the preci­
sions Iful, is = A, <;. A, inside (or outside) an interval. For lc = 2 this inoludes the 
hypotheses that uffu~ is = A, ~ A, but not the hypothesis that crVa~ is in a. given 
interval. 

Example 9.4: For independent random samples of sizes n1 and n2 from binomial 
populations with parameters p 1 and p 2 it is found that the density is of the form 
Dh(x) exp (ftu1+f2u 2) with ff. =log [p.J(l-pi)J, leading to 

Specializing A1 = -A 2 = 1 yields UMPU tests of the hypotheses that the "odds 
ratio" [p1/(l-p1))/[p2/(l-pz)J is= A, < A, inside (outside) an interval. With A= l 
we get UMPU tests of the hypotheses p1 = p 2 , P1 < P2· 
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Example 9.5: For independent observations from two Poisson populations 
with parameters ..1.1 and ..1.2 the density is Dh(x) exp [x1 log A1 +x2 log A-2], leading to 

With A1 = -A2 = 1, we get UMPU tests of the hypotheses that the ratio A1/A2 

is =A, <:A, inside (outside) an interval. 

APPENDIX 

MEASURABILITY OF PROFOSl!lD ClUTIOAL FUNCTIONS 

It is unfortunately necessary to show that our construction of the critical 
functions cp1(x) of Theorem 8.2 leads to B.m. (Borel measurable) functions. Since 
these are functions of the B.m. functions s(x) and t(x) it suffices to prove they are B.m. 
functions of (s, t). Following the above construction, the definitions of the II'~ are made 
as functions of s for each fixed t in a set which may differ from the t-space by a null 
set of J'. In this connection, we note that the qualification "(a.e. P~.8 )" for some 
(1'Jo, 8) e 0 is equivalent to "(a.e. ~)" since by (8,1) and the proof of Lemma 8.1, a 
null set of P~.e is of measure v' zero, where dv' = h(x)dp,:r., and is hence a null set 

of~'· 
Consider the critical function 911 for H1 . The conditional distribution function 

Fis) introduced above (8.7) may be chosen to be B.m. in t (for each s) and· non-de­
creasing and continuous from the right ins (for each t). It follows from the identity8 

{(s, t)J:F,(s) > c} = n ~ {(s, t) I 0 ~ri-B< 1/n, F,(r,);:.;:. c}, 
fl 1 

where(r,)denotestherationals, thatFM)isthen B.m. in (s,t). Likewise, F1(s-O)is 
also B .m. in (s, t). Define F,-1(y) as inf s for which F,(s) >y; then F1-l(y) and F,-1(y-O) 
are B.m. in (y, t). The functions w1(t) and '}'1(t) of (8:7) and {8.8) may be uniquely 
defined as w1(t) = Ft-1(1-a.), and 

(t) _ 1 . F1(w1(t)-O) 
i'l - - ' F,(w1(t))-F1(w1(t)-O) 

where, here and below, if a denominator is zero the fraction is defined to be zero. 
Then w1(t) and hence '}'1(t) are B .m. in t. Since 1"1 = 1 for s>w1(t), tp1 = 0 for s<w1(t), 
and 'P1 = '}'1(t) for s = w1(t), it follows that tp1 is B.m. in (s, t). 

In the proof for 'f'2 we shall need that 

:t:-0 

g(x, t) = I sdFtfs) 
-Ill> 

is B.m. in (x, t). This integral converges since Eoo.g is finite because of the expo­
nential form of the density (8.1}, hence the integral g(w, t) = E0 .,9(s!.t) is absolutely 

•Thia proof wa,s pointed out to us by Professor L. M. LeCnm. 
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convergent (a. e.~'). Now suppose x< +co. We may express g(x, t) as the limit of 
approximating sums Un(x, t) in which "subdivision of the ordinate" leads to 

which is B.m. in (x, t), hence g(x, t) is also. That g(co, t) = a 2(t)/a is B .m. in t follows 
from the fact that it is a conditional expectation. 

For O<y<a. define v(y, t) = Fe-1(y), w(y, t) . F,-1(1-a+y), ~nd 

8(y . t) = y-Ft(v(y, t)-0) 
· JJ't(v(y, t))-Ft(v(y, t)-0} ' 

y(y, t) = 1_ l-a+y-Ft(w(y, t)-0) 
F,(w(y, t))-Ft(w(y, t)-0) 

These four functions are then B.m. in (y, t). Let H(y, t)-f-a2(t) denote the left member 
of (8.17) with V2, w2 , 82 , y 2 replaced by v(y, t), w(y, t), 8(y, t), y(y, t), respectively, i.e., 
H(y, t) cqtHtL'ltheG,(y)introdncedabove, diminished bya2(t). Thus H{O, t)>O,H(a, t)<O, 
and H(y, t) is B.m. in (y, t) and continuous in y. Now define y1 as a on the set 
where ll(a, t) = 0 and otherwise as the inf of y for which H(y, t)<O. Because H(y, t) 
is continuous in y, Yt satisfies the desired condition H(y1, t) = 0, equivalent to (8.17); 
That Yt is :B.m. in t may be seen as follows: {tl y,<c, Il(a, t)<O} is the set oft for which 
H(a, t)<O ancl Ii(y,t)<O fm· some y<c, hence for some rational y = r,<c, because of the 
continuity of Jl(y, t) in y, and this is the union of the denumera.ble number of B.m. 
sets {ti'Fl(r,. t)<O, Il(a, t)<O} :for rational r,<c. If Va(t), w2(t), 82(t), y2(t) are defined 
as v(y, t), w{y, t), 8(y, t), y(y, t), which a.re B.m. in (y,t), withy replaced by y1, whioh is 
B.m. in t, then it is olea.r these are then B.m. in t, and hence .,2 is B.m. in (s, t). 

~rho proof for ~3. is rather similar to that for cp2• We again define functions 
v(y, t), w(y, t), t~(y, t), y(y, t) by replacing the F, in the previous definitions by F1,1 , 

where F1,; is defined above (8.211). We then define H(y, t) as the left member of (8.211) 

diminished by a 1md with v3 , eto. replaced by v(y, t), etc. The continuity of H(y, t) 
in y now depends 011 the fact that for each t except a null set of~~, the countable set 
of diacontinttities ins of li'c,;(s) is the same for j = 0 as for j = 1, and the set of inter­
vals whero JJ'1,3 is constant is the same for j = 0 and l. To show this define A; to be 
the set of points (a, t) where F1,;(s; - F,,;(s-O) = 0 and F 1,t-;(s)-Fc,1-J(s-O) > 0, 
so A; ia a B.m. se1i in (s, t). Letj3k(t) be the probability assigned by F,,~(s) to the cross­
section of A; on which t = constant {lc = 0, 1 ); so IJ3(t) = 0 a.nd Jj,I-J(t)>O for all non­
<mpty cross-sections of A3• We have 

PJ;h(A;) = f f;,.(t)dPJ,o 
wt 

for all(-&·, O)an.~:. If B3 is the pre-image of A3 in wa:, so Pt;§(A3) = ~.6(B3), we see 
from (8.1) thn.t if P~.o(B3) = 0 for some (19-, O)en, then h(x) = 0 (a.e.,u"') on B; and 
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hence P~.11(B1) = 0 for all (~,O)en. But P!:J(A5) = 0 for (~, 8) eni, therefore 

for (19-, 8) eilH, hence (a.e.~1 ).f;,1_;(t) = 0 and the cross-section of A; for t = constant 

is empty. 

This p1·oves the above assertion about the discontinuities of F1,1 and F,,2 ; 

to prove it for the intervals of constancy, denote by F 1:/(y} the inf of s for which 

F 1(s) >y, and by Fi}(y) the sup for F1)s)<y. Write K1(s, t) = Ft:l(F1,;(s)-F1:f(F1,;(s)), 

so K3(s, t) is B.m. in (s, t), and .s0 will be in an interval where Ft,;(s) is constant if 

and only if K;(s0 , t)>O. Now let D; be the set of points (s, t) where K3(s, t) > 0 and 

KH(s, t) = 0. Applying to D; an argument similar to the above for A; we can 

conclude the proof. 
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