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COMPLETENESS, SIMILAR REGIONS, AND UNBIASED
ESTIMATION—PART II*

By E. L. LEHMANN and HENRY SCHEFFE
University of California, Berkeley

In Part I of this study (Lehmann and Scheffs, 1950), to which we shall refer
as LSI, we defined and illustrated the concept of completeness of a family of measures
and developed some of its statistical applications. In this part we shall state in section
7 some general results about complete families, showing how from given families one
can construet others, and a specific result about the completeness of & certain parametric
family. Uniformly most powerful unbiased tests for certain statistical hypotheses
about this parametric family are considered in section 8. Some examples are given
in soction 9. As mentioned? in LSI, these results on testing are extensions and simpli-
fications of earlier ones by Neyman (1941), Scheffé (1942), Lehmann (1947), Ghosh
(1948), and Hoel (1948). Since then further papers have appeared on the subject by
Nandi (1951) and Sverdrup (1953); however, the present version is in a number of

ways more general than previous ones. The notation throughout will be that of
LSI.

7. SOME ¥URTHER RESULTS ON COMPLETENESS

In this and the next section wo shall restriot ourselves to families of measures
M = {M,|Ocw} for which the “label set’’  is a Borel set in Euclidean space and for
which certain measurability assumptions with respect to ¢ are satisfied. Thus, if
M is a family #1° = {M%|0cw} of measures M3 qn the additive family #* of sets in the
space W? of points , we shall denote by L? Lebesgue measure on the family 27 of Borel
subsets of the Borel set w in & Euclidean space. We shall also assume that all the

1 This papor was proparod with the partinl support of the Office of Navel Research, U.S.A.

2 Wo shall not givo the derivation of the solutions of the differential equations of Neyman end Scheffé
for tho paremotric family of probability donsibties, as announced in LSI, bocouse this is lengthy, tedious,
and now mainly of historicnl interost.
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measures J/* for few are absolutely continuous with respect to a common o-finite
measure x° on J°. The measure #° is said to be o-finite on F* if W* is the union of a
countable number of disjoint sets in 4® on each of which ” is finite. Then there exists
a function gy(x), measurable (), which may be written g,(z) = dM§/du”, such that

M54) = | gylardn®
4
for all AeF” and Ocw; we shall assume further that gy(x) can be taken to be measurable
(¥ F7).
- We shall define the family M1* to be sirongly complete if it satisfies all the
assumptions of the preceding paragraph and

| fwams =0 (ae. I9)

W’
implies f(x) = 0 (a.e. #M*). The relation between the three kinds of completeness we
have now defined is that strong completeness implies completeness implies bounded
completeness. The reader may now wish to proceed directly to Theorem 7.3, which is
the basis for the following sections of this paper. The developments up to that point
are of some general interest but may be avoided.

The concept of strong completeness permits us to formulate the following
theorem concerning families of product measures.

Theorem 7.1:  Let 2 = (%', "), W* = W X W*", #° = #¥ % F*', § = (¢, 0"),
o=0Xe", =309"xg" I#=71IVxL Suppose  M® = {MF|0cw}, where
MG = gyx)du®, u* is o-finite,

y() =:96/ (@’ )95':(1?"),

ggi(a') 18 measurable (% x F*'), and 9pi(2") is measurable (3% X #2"). Suppose further
there exists @ measure u*" on F*" and a “conditional measure” 1 on ¥ depending on
@’y such that whenever the integral

[ 7@, 2"y gadp e (1)
WG

t8 defined® it equals the sterated integral

| F@ et e, . (12)
lel
where FO, 2") = I [, x")gp (2 )dpeia” e (1.8)
Wzl

* We allow the values +e and ~ow,

270



COMPLETENESS, SIMILAR REGIONS, AND UNBIASED ESTIMATION

is measurable (8% x F4"). Then M= is strongly complete providing the same is true of
M = {M5)0"ew"} and (a.e. u*") of M7 = (M5 |6'ew'’}y, where dME, = ghla”) du™
and AME™ = gp (' )dpu=1=".

To prove the theorem we need to show that if the integral (7.1) vanishes
(a.e. L9) then f(z’, ") = O (a.e. M%). Let N be tho set in w where the integral (7.1) does
not vanish, so NeQf and Z%N) = 0. Then by the hypothesis of the theorem the
iterated integral (7.2) exists and equals zero for G¢N. Let S be the set of points (6', 2"
where F(6', z") defined in (7.3) does not vanish; SeQ% x #*". We show first that the
product measure LY x M 27 of § is zero for all §%¢w”: Denote by N, the section of
N by 6’ = constant, i.e., Ny = {8"|(0, 6")eN}. Since (L8 x L8")YN) = 0, LF"(Np)= 0
except for §’¢N’, where N'eR% and L¥(N’) = 0. For §'¢N’ we now have

| 7@, omamz =0 (a0 L"),
W

and so by strong completeness of M**, F(8', ") = 0 (a.e. M*"). Thus all sections of
8 by 0" = constant with 6¢N’ have Mj measure zero for all §ew’. Hence
(LF x M%)(8) == 0 for all 6”cc”.

We may now conclude that if S~ denotes a section of § by 2" = constant,
then the set N” in W*" for which L(S,x) # 0 has M%, measure zero for all 6"¢w”. In
other words, except for «”"eN”, a null set of M2,

PE, o) = | f@,e)dUE" =0 (ae. LY.
Wz!

Hence by strong completeness of M*'1#", we have for z"¢N”, f(z', 2") = 0 (a.e. 1),
and from this we will now conclude that f(z’, ") = 0 (a.e. M%): We may calculate
the measure M§ of the set Q where f(z’, ") 7 0 as the integral of the characteristic
fanction ygo', ") of @,

MyQ) = I Xala', 2")a M3,
we

and then express this as an iterated integral
M‘é(Q) S I [j XQ(;U" xll)dnglzn} sz;,
W W

as allowed by the hypotheses of the theorem. This gives

MyQ) = | [M5Qu)an3,

"

we

where @~ is the section of @ by 2” = constant, and for z"¢ N” the integrand vanishes,
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If 4 is itself a product of o-finite measures x* and x*’, the conditional
measure z#1* of Theorem 7.1 obviously exists and may be taken to be #*' by the Fubini
theorem. This gives the following important corollary for product measures:

Corollary 7.1: Suppose M* = (M%|0cw’} and M7 = {M5|6"c0r"}, where
dM3 = gp (2')dp™ and AME = gou(x")du™", are strongly complete fa'mzlwexs of measures.
Let x = (2, "), efc. as in the first sentenct of Theorem 1.1 and let M* = {MF|0cw},
where M§ = M5 x M§n. Then the family f° of product measgures is strongly complete.

The following theorem is also useful.

Theorem 7.2: If M7 = {IM3}0ew} is strongly complete,t and if R = {Kj|Oew}
is defined by dK§ = w(Oy(x)d M, where u(f) and vx) are mon-negative, w(8) is mea-
surable (29), u(6) # 0 (a.e. L), and v(z) is measurable (), then & 1s strongly complete.

The absolute continuity of the family &7 of measures with respect to a
o-finite measure x* and the measurability (8% x F*) of dKg(dsu® follow from the corres-
ponding properties of the family M* and the relation dK§/du® = w(0)(x)dMFdu’.
Tt will thus suffice to prove that if

[f@¥rs=0 (ae E), e (14
w=

then the set H, = {x|f(x) # 0} is a null set of §". We may write (7.4) in the form

[ Fap)dMs =0  (s.e. LP). ... (1.5)
Wx

Let H, = {z|v() # 0}, Hp = {x|f(z)v(z) # 0}, so HcH,U(W°— ). Since " is
complete we see from (7.5) that Hy, is a null set for A%, and hence for R°. Also,
We—H, is a null set for § since v(z) = 0in W*—H,. Hence H;isa null set for ]”.

A completeness result for a class of families of probability distributions of
exponential form which has received much attention in statistical literature may be

obtained by applying the above theorems to a result from the theory of Laplace
transforms which we shall now state.

Lemma 7.1: If fi® = {Mj|0cw} is a family of measures on the real line W®
with a real parameter O in a nondegenerate interval , and if the family has a density of

the form
dM3[du* = C(B)e*h(z) oo {1.6)

with respect to a o-finite measure 4° on the class FF° of Borel sets in W=, then f° is
strongly complete.

4 The proof will show that Theorem 7.2 remains true if “‘strongly complete” is replaced by ‘“‘complete’

in hypothesis end conclusion and the hypotheses u(8)>0, u(8)540 (a.c. Lo), u(8) is measurable (20)
are replaced by the hypothesis u{g)>0.
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Since C(0)efh(xz) is measurable (4f?), so is h{z). Since

o) = 1 ” () dp,
w
it is measurable (2). Strong completeness of M°® will then follow from Theorem 7.2

if we can prove N® = {N§|few} strongly complete, where dN§ = e#du®. But this
is an immediate consequence of applying to the relation

| f@erdwr =0 (ae. If) e (1.7)
Wﬂ’

the uniqueness theorem for Laplace transforms, as given for example in Widder (1941,
Ch. 6, Th. 6a). The theorem in Widder requires that a(t) = f f(x)du® be of bounded
0

variation in every finite interval. Let 6, be a value of 8 for which

| feteap = 0. e (7.8)
W{t

Since the Lebesgue integral is an absolutely convergent integral, (7.8) implies

| 1f @t |dpm < oo,
we
Lot I' = {t|a < t < b} be any finite interval. The total variation of a(f) on I' is

[17@)1d0 < o [ 17 @ |4 < o,

& In

where I = {z|a<x<b} and a is the minimum of ¢%* on I°. The theorem in Widder
now tells us af) = 0; thus f(z) vanishes (a.e. £*), hence (a.e. f1").

We remark that in the following theorems where a family of measures is a
family of probability distributions (in which case we agreed in LSI to write 3 instead
of M1°), P* = {P§|few} with dP§ = p,(x)du®, it is not necessary to assume u° to be
o-finite if there exists a set W% in F” such that for all fcw, py(x) # 0 (a.e. ) in W%
and py(z) = 0 (a.e. u°) in W*—W2; for in this case x° is o-finite in WH6) = {a]py(x)
% 0} (Halmos, 1950, sec. 25, Th. F), and hence in W%, and we may assume
M(W?—W?2) = 0 without affecting the family $°. It is also understood that the
density py(x) is measurable (F”) since it is integrable (F*, 47).

Theorem 7.3: If P° = {P§lbew}, = (21, ..., %), 0 =(0y,...,6,), where z
and 6; are real (i = 1, ..., 1), if @ contains a nondegenerate r-dimensional interval, and if
P2 has a density of the form

AP3/du® = C(b,, ..., 0,h(zy, ..., %,) XD (Zom) . (1.9)

fual
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with respect to a measure p® on the class F° of Borel sets in the r-dimensional Euclidean
space W=, then P° 1s strongly compleie.

This theorem may be proved with the aid of Theorems 7.1 and 7.2 and Lemma
7.1. A shorter proof may be made along different lines by & method used by Sverdrup
(1953, Th. 1) to obtain a similar result.

Theorem 7.3 contains as special cases the completeness results of Examples
3.2, 3.3, 3.5, 3.8, 3.9 of LSI, as well as many multidimensional examples that can be
obtained from these. The example at the top of p. 322 of LSI, in which the sufficient
statistic T' = (T, T';) consists of the mean 7'; of & random sample from a mnormal
population and the sum of squares 7', of the deviations from 7', does not fall directly
under Theorem 7.3; however, if we let U = (Uy, Uy), Uy =Ty, Up = T,+nT?%, then
the completeness of ¥ is given immediately by Theorem 7.3, and it is obvious in
general that if ¢ = #(u) and " is complete, so is F".

8. TUNIFORMLY MOST POWERFUL UNBIASED TESTS

Throughout this section we shall be concerned with the case where the sample
point X = (X, ..., X,) in an n-dimensional Euclidean space W® has a density

AP3qfdp = po ) = O3, O(z) oxp [9s(@)+ Z04(=) | oo (B

with respect to a measurs #* in the class #® of Borel sets in W®. The statistical
hypotheses considered will be statements about the real parameter 9 of the form

H,: 9 < 9, against alternatives & > 9,

H,: 9 = 9, against alternatives § % 9,

Hy: 5,< 9 < 9, against alternatives 3 < 9, or & > &y,
H;: 9 < 9y0r 9 > &, against alternatives 4, < 9 < #4.

The set of real parameters (6y,...,60,) = 6 are nuisance parameters (r =1,2,...).
Denote by O the domain of (3, ). We shall assume the parameter space Q is convex5,
In the problem of testing H; we shall assume there are points of Q@ with 9 > &, for
i=1,2; 9 <9, for i=2,3; $>9; for 1=3;0< 9, and 9 > ¥ for i =4
Let @; denote the section of @ by o = constant = 9(j =0 or 1), that is
= {(8, 0)|9 = 9y, (9, 0)et}, and let

Bf = {P3, ¢ |(3, O)ey}. .. (8.2)

It will be understood that statements about ©;, 7, and P} (defined below) are made
for j = 0 in the problem of testing hypotheses H, and H,, for j = 0 and 1 in the case
of Hg and H,. 1tis assumed that Q; contains a non-degenerate r-dimensional interval.

5 The assumption that q is convex is made becauss it is brief to state and does not seem to exclude
any interesting applications, The proof of Theorem 8.2 is valid with less restrictive assumptions on Q.
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The real-valued functions A(x), s(z), #(2) are understood to be measurable (). Let
tx) = (ty(), ..., t(x)); then clearly T' = #X) is a sufficient statistic for 7. We shall
take for j/* the family of Borel sets in the Kuclidean space W', instead of the more
inclusive additive family induced in W* by #(z). Let P4 4 be the probability measure
induced on F* by P§, 4 and t(z), and write

P = (Ph, ol (5, O)e}. o (83)

In order to prove 3} strongly complete we need

Lemma 8.1: Lef ¢ = #z) be a measurable® transformation from (W*, 4F°) inlo
(W', %), If the probability distribution of X is given by a density of the form

APG{dp” = gy(t(x))h(z)
with respect to a measure u° on IF*, then there exists a measure v on F* such that the dis-
tribution of T' = ¢(X) has the density
dP}jayt = gy(t)

with respect to V.

This lemma may be proved by defining the measure v* on J® by dv® = h(z)dp?,
and the measure v' on ¢ by v{(B) = v?(t%(B)) for all Bejf*. Then for all Bef* we
have

PYB) = P B) = q@dr =| qe)ir ={ gnis,

Flm)  im) B

which is the desired result.

From Lemma 8.1 and Theorem 7.3 we now have

Theorem 8.1: If the sample point X has a probability density (8.1) and satisfies
all the conditions stated in connection with (8.1). then, in the notaiion there defined, T is
a sufficient statistic for PP with a probability density

C(;, 0) exp ( i} 6.t )
=l

with respect to @ measure vt on the family F* of Borel sets in W', and the family § is
strongly complete.

In problems of testing statistical hypotheses about a parameter # in the presence
of nuisance parameters (4,, ..., 8,) = 6, we will denote the sample space by W¢, the
parameter point by (#, §) the parameter space by ¢, the hypothesis by H: 0Ocw,

8 For any given additive classes ¥, AFt, ¢ = t(z) is said to be & measurable transformation if for every
Aeqfl t1(4)eqf®. In the application of this lemma W%, W! will be Euclidean spaces and Af®, _—ft the

classes of.Borol sets in ocach.
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where o is a given subset of Q. Any function ¢(z) measurable (§*), such that
0< ¢(z)<1, may be considered as acritical function for testing H: His toberejected with
probability ¢(z) when X = =, so that the power of the test is B o(®) with @ = ¢(X),
as indicated in LSI, pp. 317-318, where the terminology of similar critical function,
and Neyman structure is also defined. By the size of the test based on p¢(z) we mean
sup B, 4(®) for (9, O)ew. The test is said to be unbiased if for every pair of parameter
points (9',6')ew and (9", 6")eQ—a we have By, g (D) Bn, g(D). Since for any critical
function ¢(z), the power B, o(®) is continuous (in fact, analytic ) in ¢ for the family
of distributions defined by (8.1) under the assumptions stated there, it follows that
a critical function is similar for the family 3% if it gives an unbiased test of H, or H,,
and similar for EUP? if it gives an unbiased test of Hy or H,. We can thus dispense
with the classificatory terminology of “type B,,” “best one-sided similar,” ete., and
yot apply the results of LSI about similar critical functions to get the following theorem
about uniformly most powerful unbiased tests.

Theorem 8.2: If the sample point X has a probability density of the form (8.1),
then, for testing any of the hypotheses H,, H,, Hy, H, defined below (8.1), and for each
a(0<a<1), there exists @ uniformly most powerful unbiased test of size a if the assumptions
stated in conmection with (8.1) are satisfied. The corresponding critical function o)
for testing H; may be constructed as follows: The function ¢ (x) is defined by means of
four functions of t, v;(t), wy(t) 8(t), Yi(t), satisfying the inequalities v{t)<wi(t), 0 < &ft) <1,
0y, ()<Y, Let It) denote the interval from uyt) towy(t). For i =1, 2,3 we define
pi(x) = 0 if s(z) is inside the interval I({(z)), = 1 if outside the interval; if s(x) falls on
an end point of I(t(x)) we define ¢ x) = 8,(Hz)) or y,({(z)) according as s(x) = v (=)
or wii(z)). For i = 4 the definttion of ¢,(z) is similar except that we put ¢,(x) = 1 inside
the interval, 0 outside. The four functions v;, w;, &, v; are determined by the conditions
€; below where @; denotes p,(X), S denotes s(X), and P} is defined by (8.3):

G, v; = —oo (hence, &, need not be defined),
Eod®:lt) = (ae. 3.
@2: Eﬂma(q)z!t) = (a.e. iﬂé),

By, ol SDolt) = alls, o(S1t)  (a.e. PE).
g, C4: E\sn, f(Pilt) =a (a.e. B).
B, o @) =a  (ae. Pi).

The proof of the theorem will be facilitated by the following modified form
of the Neyman-Pearson fundamental lemma.

.I.,emma.8.2>: Suppose * = {PglneA} is a family of probability measures on
the additive family J° of sets in W* with dP% = P, (x)du®, and Pr = {P2| e}, where
AFA(" = 1,...., k). Let U; = w(X) be a sufficient statistic for P2. Suppose the fol-
lowing are given: y*eA, y,eA;, constants «;, and measurable (F*) functions fix)>0.

276



COMPLETENESS, SIMILAR REGIONS, AND UNBIASED ESTIMATION

. . u.:
Denote by 35:‘ the family of measures on the additive family jfr “of sets in the range W *
of uz), where 3}':" 18 such that ux) is a measurable transformation. If there exists a
eritical function ¢*(x) and Borel-measurable functions g(u;) > 0 such that

En(fAX)pMX)lu) = & (e PI)i=1,..., %) .. (8.4)

L where ppu(e) > 5 0,0,(0)) )2 2),
and o*(z) = -

0 where p,o(x) < :élgi(ui(m)) fi(”).’!’ui(“)’

then, among all critical functions ¢(x) satisfying (8.4), ¢*(x) maximizes E(p(X)).

To prove the lemma suppose that g;(u;) and ¢*(z) satisfy the conclitions of
Lemma 8.2, Then B, defined as

By = B, (g(U,) f{X)e¥(X))
is finite since g;(uy(x)) fi(w)y*(w)p,,i(x) < pyel(z).
Hence B = Bn g Us)Bn f{ZX)0(X) |w)] = oty (TL))-

Now consider the wider class of critical functions ¢(z) satisfying

[ nw) fi@e@m @i =f; G=1,..., k). . (85)
WG?

It follows from the Neyman-Pearson lemma that in this wider class ¢*(z) maximizes
B(D(X)).

We now prove Theorem 8.2 for testing hypothesis H;. By the remark pre-
ceding the theorem, if ¢(x) gives an unbiased test then it is a similar critical function
for the family 5. By Theorem 8.1, the family P} generated by the sufficient statistic

T is strongly complete. Hence by Theorem 4.1 of LSI, ¢(z) has the Neyman
structure®* with respect to 7', i.e.,

Bpugo(X)t) = (a.e. Ph). .. (8.6)

Since 7' is sufficient for g, the left side is independent of & for all p(z). Let (9*,0*)
be any alternative with 9*>9,, and let {9, §°) be any point in Q,. We shall now
apply Lemma 8.2 with A = Q, k= 1, A; = Q;, 9* = (8*, 0%), 9, = (9, 0%, oy = @,
fi=1l,and U, =T. Then ¢(z) will maximize Ey.-(¢(X)) subject to (8.6) if it satis-
fles (8.6) and there exists a g(f) such that ¢(x) = 1 or 0 according as the ratio
Pos, g+{%)] Do, (%) is > or <g(¢(x)). This condition reduces to ¢(z) = 1 or 0 according

as s(z)> or <w(¥(x)), where the function w,(t) may depend on 9%, 9o, 0%, and 6°,

8¢ We have only recently become aware of Bartlett’'s (1937) paper published at about the same
time as Neyman’s, in which he uses the same construction.
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We must determine wy(t), and a suitable value y,(t) for ¢ when s = w(t), so
that (8.6) is satisfied. This can be done so that w;() and y4(t) do not depend on 9*,
g%, or 6°, as follows: Write F,(s) for the conditional distribution function Py o(8< 1),
which does not depend on 6, so that Fys) = Fys+0) and F(s)—Fy(s—0) =
Py o8 = s]t). Then wy(f) and y,(t) are to be determined so that

F(w,—0) < 1—a < Fw,), .. (8.
Fw,—0)+(1—y)[Fwy) —F(w;, —0)] = 1—c. .. (8.8)

This is clearly possible; in particular if Fy(s) is continuous at w, defined by (8.7) then
for such ¢ the definition of 7,(t) is immaterial. Since the resulting most powerful
test against (9*, 6%) does not depend on #* > &, or on 6%, it is uniformly most
powerful among those satisfying (8.6).

It remains to verify that the above test has the proper size, i.e.
B, o(®) < o for 9<d, ... (8.9)
and is unbiased, i.e. Ey o(@) > a for 9>, ... (8.10)

The inequality (8.10) may be deduced from the fact that p(x) =« is in the class satis-
fying (8.6) of which the ¢ defined above is uiﬁformly most powerful for 9>, The
inequality (8.9) can be demonstrated by noting that the above ¢ minimizes Ey o(P)
for 8 <, subject to (8.6) and again comparing it with ¢(z) == a.

The proof that ¢, thus constructed is Borel measurable, as are the other ¢,
is given in the appendix at the end of the paper.

We next prove Theorem 8.2 for hypothesis H,. As before, unbiasedness
implies (8.6) . This time it also implies that

By, o®) = | ol@)ps, olw)dp® . (8.11)
WZ

has a minimum at # = ;. From well known properties of Laplace transforms, (8.11)
has a derivative with respect to &, which may be calculated by differentiation under
the integral sign. Hence

D5, f(®)[39] pmg, = 0 . (8.12)

for all ($g,60)e,, and thus, differentiating (8.11) under the integral sign and using
(8.1), we get from (8.12)

Es,, o(S®) = —al=Ydy, 0)0C(3, 6)/08| gms,. .. (8.13)
. ” -1
Since o, 0) = { j h(z)exp[#s(z) + = Giti(w)]d/f} ,
TV” 1=1

therefore, 2C(8, 0)[09 = —C(3, 0)E, 48S),
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and so (8.13) may be written
E,’u’ 8 (S(I)) = aE,,o, 8 (S),

or, Et,o’o[Ego,o(S(D—“Slt)] =0

for all § such that (8, #)e?,. The last condition implies
Eo, ¢ (8®—aS|f)=0  (ae. P} .. (8.14)

since P} is strongly complete. Conditions (8.6) and (8.14) may be written
By g(S8101) = (ae. BE) (=1,2), .o (8.1B)

where a; = aly,,,(8'~|t), which does not depend on 8 for (89, §)eQ, since T' is suffi-
cient for 3p}.

Let (9*,0%) be an alternative in g with 9* % 3,, and let (9,, )e?,. We now
apply Lemma 8.2 with A = Q, k= 2, A, = A, = Q,, 7* = (8*,6%), 7, = 75 =(d0, %),
filz) =8Yz), and U, =U, =T: p(x) will maximize Eps p(p(X)) subject to
(8.14) if it satisfies (8.16) and there exist g,(2) and g,(t) such that ¢(x) = 1 or 0 accord-
ing a8 the ratio ppe ge(@)/Ds,, g0 () I8 > or < than g(Hz))+gyt(x))s(x). Since the
ratio is & convex function of s and depends on # only through s(z) and #(x}, the existence
of such g,(t) and g,(t) is equivalent to that of v,(t) and w,(f) with vy(t) < wyt) such
that g(x) = 1 or 0 according as s(z) lies outside or inside the interval from v,(f) to
wy(t). At this stage of the argument v,(t) and w,(t) may depend on 9*, By, 6*, and 6°.
It remains to show that the funoctions v,(¢) and w,(t), and values &,(t) and 7y,(t) for ¢(x)
when $(z) = v,(t) or w,(t), can be determined so that they do not depend on #*, 6%,
or &° and (8.15) is satisfied.

In terms of vy(t), wy(t), 8,(t), ¥s(t), and the conditional distribution function
F,(s) introduced above (8.7), the conditions (8.15) become

Fy(v,—0)+1—F(w,)+ 32[Fz("’2)—Fc(”z_o)]+72[Ft(w2)“Ft('wz'—o)] =, ... (8.18)

2 q—0 )
j saF,+ _[ SCZFH*”282[F:(”z)“Fz(vz—o)]"‘wz'Yz[Ft(wz)—' wy—0)] = &, ... (8.17)
-0 wa+0

where (8.16) and (8.17) are to be satisfied (a.e. 3§). Since (8.16) and (8.17) do not depend
on g*, 0%, or 8° (F, depends on &), neither will solutions vy(), wyft), 85(t), and ¥y(t),
whose existence we shall now establish by a continuity argument: For each fixed
¢, let y be a variable with range 0 <y < « and define v and & asfunctions of y to satisfy

Fv—0) <y < Fyv),
y = F{v—0)4-3[Fv)—F(v—0)],
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80 that v is unique unless there is an interval where F, is constant and equal to y, and
& is unique if F(s) is discontinuous at s = ». Next determine w and y similarly so that

Fw—0) < 1—a+ y < Fyw),
1—aty = Fw—0)+(1—y)[Fw)—Fw—0)],

For any y (0 <y < @) the v, w, &, y thus defined will satisfy (8.18). TLet Gi(y) denote
the value obtained when the v, w, 8, ¥ are substituted for the v,, w, 8, Y5 in the left
member of (8.17). Then Gyy) is a unique function of y even though v, w, 8, y are
in general hot, and is continuous in y. If we can show (a.e. §) that G(0) > a,
and @) < &y, then there must exist a y, for which G(y) = ;. If we then define
Vg, Wy, Oy, Vs 88 the v, w, 8,y corresponding to y = ¥, both (8.16) and (8.17) will be
satisfied.

To £ill the above gap in the praof for H, we note that the test found above for
for H, corresponds to y = 0, and this maximizes E; ((®) for every >, subject to
(8.8) , hence it also maximizes the derivative

OBs, ®)/33) _ = By, o(SO—a).
=17°

Tt must therefore maximize B, o(S®—aS|i) (a.e. P§). Bub this has the value 0
for ® =a. Consequently thed correspondingto y = 0 makes Iy (8D |) > ot Bpg(S|1),
or G4(0) > «, (a.e. ). By similar reasoning about the test corresponding to y = a it

can be shown Gya) < @, (a.e. P§). Unbiasedness of the test follows as before
from comparison with ® = «.

We shall treat together the cases of the theorem for hypotheses Hy and H,,

By the remark preceding the theorem unbiasedness implies similarity for PFU Bg,

while sufficiency of 7' for g and for 7 and strong completeness of P§ and of 3}
imply

By, f@1t) = (ae. B) (j=0,1). . (8.18)

Let (9*,6*) be a point in 0, $* 5 &, or 9,. We choose arbitrary 6° and 6* such that
(9;, )eq; (j = 0,1), and we again apply Lemma 8.2, this time with &k =2,
Ap==Qq, 7% =B%0%, 7,=(8_007), fi=1 U;=7T (¢=1,2), to find that
¢(z) will maximize Hg. po(p(X)) subject to (8.18) if it satisfies (8.18) and there exist
Jo(t)s g4(t) such that p(z) = 1 or 0 according as

Das, g+(2) > o < go{t(2)) Po,, g*(@)+01(H(2)) Do, g1(%): e (8.19)

Substituting from (8.1) we find (8.19) equivalent to the existence of ky, and %, such
that ¢{z) = 1 or 0 according as H(s) << or > 1, where

H(s) = hgebo® -k etr?, .. (8.20)

A, = §;—9*, and where h; and h; may depend on $*, &, 9,, 0%, 0°, 6%, as well as on ¢,
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For any v, w with —co < v<<w < +00 we shall define A, A, to be the unique
solutions of the equations H(v) = H(w) = 1, namely

hy = (e21¥—et")|D, by = (edo?—e80¥)[D,

where' D = efo?a¥__pgag¥Ha,° > ),

Suppose first $,<3* <Py, s0 Ay<O<A,, hence ky>0, 2,>0. Then H"(s) > 0 for all
s, and for this determination of A, and 4;, H(s)<1or >1 according as ¢ is inside or out-
side the interval (v, w). Suppose next 9,<d,<th* s0 A,<A,;<0, hence 7,y<<0,

hy > 0. Now H(s) < or > 1 according as f[(s) > or < 1, where
E(S) = ZJOeXn"‘*":ibleEl‘,
by = —gofg:>0, by = 1fg;> 0:'730 = Ay—4,<0, By = —A;>0.

Applying the previous reasoning about H(s) to I;[(s) we see that in the present case

according as s is inside or outside the interval (v, w), H(s)is <1 or >1, hence H(s) is
>1 or <1. The same result is found in the case $*<<g,<<9;. At this point we see
that (8.18) is equivalent to p(x) = 1 or 0 according as s(z) is inside or outside an interval
(v, w) if Yo<O*<9;, the opposite if $*<9, or $*>9,, where v = v(t) and w = w(?)
may depend also on 9%, &g, 9, 6%, 6o, o1,

Next we must show that v(t), w(t), 6(), y(f) may be chosen so that they do not
depend on §*, 6%, 8°, or 6 and (8.18) is satisfied, and that the resulting test has size
o and is unbiased. Since this part of the proof is very similar for H; and H, we indi-
cate it only for Hg. Let F, ;(s) = Py, (S<slt), which does not depend on 8 (j = 0,1),
The conditions (8.18) are then equivalent to two equations similar to (8.16), namely,

Ty, (03— 0)4-1—Fy, ;(wg)+3[Fy, 5(vg) —Fy, 5(v5—0)]

+ Vsl s, j(wg) —Fpy(wy—0)] = a (j = 0, 1). ... (8.2])
First consider the solution (v, w, 3, y) of (8.21;) obtained by setting » = —oco, which
gives the uniformly most powerful unbiased test of H,: #<9, against $>¢, at size a.
For this solution the left member of (8.21,) is the conditional power of this test
against ¢ = 9, and is therefore > o (a. e. ). Next consider the solution (v, 1w, 0, ¥)
of (8.21;) obtained by setting w = 4o, which gives the uniformly most powerful
unbiased test of H: 5>9, against <9, at size «. For this (v, w) the left member
of (8.21,) is the conditional probability that this test will reject H) when & = o,
and is therefore  a (a. e. ¢). If we now think of varying the solution (v, w, 8, y)
of (8.21,) between these two extremes, it follows again from continuity considerations
that there exists a solution of (8.21,) for which (8.21;) is also satisfied, and that the
resulting v = v,(t), w = wy(t), & = &4t), ¥ = v¥,(t) do not depend on H*, 6*, 6°, or O
Verification of correct size and unbiasedness follow again from comparison with the
test corresponding to ® = «.
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9. SOME EXAMPLES

Tn applications of Theorem 8.2 the &, 6;, ..., 6, of the density (8.1) are usually
not the original parameters of the statistical problem but functions of these. Suppose

that originally the parameters are (¥y, ..., ¥;,;) = ¥ and that they appear in a density
of the form

r+1
Dhz)exp 3 f¥ (o)
If there exists a 1:1 transformation from ¢, ..., ¥,,, to &, 6,, ..., 8, such that
7+1 r )
2z filyu(x) = 9s(x)+ z 6it,(x) v (9.1)

identically in ¥ and z, so that the density becomes of the form (8.1) and if the assump-
tions stated in connection with (8.1) are satisfied, then there exist uniformly most
powerful unbiased tests of hypotheses of the form H,, H,, H,, H, defined at the
beginning of section 8, and Theorem 8.2 tells us how to construct them.

We are especially interested in determining the functions s(z), #,(z), ..., i{%),
since Theorem 8.2 gives the test in terms of these functions. It is obvious that if we
put ($.0y, ..., 6,) equal to & nonsingular linear transformation? of (fy(¥), ..., fr41(¥)),
then (9.1) will be satisfied. We may choose any constants ay, ..., a;,,41 DOt all zero,
and constants @, #y(d < &), and consider the hypotheses H,(i =1, ..., 4) about

r+1
D= 'jzla’lj‘fj('l/f). see (9.2)

Without affecting these hypotheses we can assume Zrttaf = 1, by redefinition of

#,8nd #;. We define the transformation from (¥, ..., ¥,,4) to (8,6, ..., 6,) by the
equations

r+1
ay; 9+ Eza,ﬂ,_l:f,-(m (¢t =1,...,71), .. (9.3)

where (2;) is any orthogonal matrix whose first row is (@115 ++r5 @y, 449).  Then (9.2)

is satisfied. If we substitute (9.3) in (8.1) and collect coefficients of 5 and of 0y ..., Oy,
we find that

§(x) = jzjl ayuy(), wo (9.4)

that is, s(z) is the same linear form in the () as 9 is in the fi(¥), while t,(z), ..., t(x)
are 7 linearly independent forms orthogonal to (9.4)

7 It can-be shown, under mild restrictions, that this is the most general transformation proserving
(9.1).
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Ezample 9.1: Suppose X is a random sample of # from a normal population
with unknown mean 4 and unknown variance o2 The density may be written
D exp (frus+fous), where fi =1/0% fo = pfo?, uy=—4It2f, u,=2%x;, and D is
a function of the parameters. Set

B = A(1/o*)+B(u[0?),

where 4 and B are known constants. By specializing A, B, 9, #, we get from Theorem
8.2 UMPU (uniformly most powerful unbiased) tests of any of the following hypo-
theses: p = uy, p < py, 0% =0}, 02> o, o?inside (or outside) an interval (o}, o2).
We do not get a test of u, < < ¢, by this method. It is curious that UMPU tests
fall out for such apparently “unnatural” hypotheses as that the point (4,0 lies between
two parabolas g = p,+c,0% and g = py-+c,0?, tangent to each other at (z,, 0).

Ezample 9.2: For independent random samples from % normal populations
with equal variance o2, the sth sample of size n; from a population with mean s, the
density is of the form D exp [uy(1/o?)+ Zhu(u;/o?)], and so we may take

B = A(1/o®)4-ZEBy(w;]0?).

By specializing A4, B,, ..., By, %, 9; we get UMPU tests of the hypotheses
Zkeu, = ¢y, The, < ¢y, 0 = 0§, 0% > 0§, o? inside (or outside) an interval (o3, o3).

Bxample 9.3: Suppose Example 9.2 is changed so that the variance of the
ith population is o} (¢ =1,...,%k). Then the density is D exp [Z¥u(1/c?) +
Zu(u;/o?)], and we may take

A,

& = X A4,(1/cf)+ %Bi(/”i/o"‘z)’

Ll v R

yielding UMPU tests of the hypotheses that ¥ A4,(1/o}), a linear form in the preci-
gions 1/o?,is = A, < 4, inside (or outside) an interval. TFor k& = 2 this includes the
hypotheses that o? /o is = 4, < 4, but not the hypothesis that o}/o? is in & given
interval,

Ezample 9.4: For independent random samples of sizes %, and 7, from binomial
populations with parameters p, and p, it is found that the density is of the form
Dh(z) exp (fywus+fau,) with f; = log [p;/(1—2p;)], leading to

o =tog [ (2 )" (1 25)")

Specializing 4, = —4, = 1 yields UMPU tests of the hypotheses that the “‘odds
ratio” [py/(1—p)l/[pa/(1—pp)] is = 4, < A, inside (outside) an interval. With 4 =1
we get UMPU tests of the hypotheses p, = py, 7, < 2,
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Example 9.5: For independent observations from two Poisson populations
with parameters A; and A, the density is Dh(z) exp [z, log A;42, log A,], leading to

9 = log (AIAI /\242).

With 4, = —A4, =1, we get UMPU tests of the hypotheses that the ratio A,/A,
is = 4, < 4, inside (outside) an interval.

APPENDIX

MEASURABILITY OF PROPOSED CRITICAL FUNCTIONS

It is unfortunately necessary to show that our construction of the critical
functions ¢(z) of Theorem 8.2 leads to B.m. (Borel measurable) functions. Since
these are functions of the B.m. functions s(z) and #(x) it suffices to prove they are B.m.
functions of (s, t). Following the above construction, the definitions of the p; are made
as functions of s for each fixed ¢ in a set which may differ from the i-space by a null
set of . In this connection, we note that the qualification “(a.e. P§4)° for some
(8, 8) ¢ Q is equivalent to “(a.e. )’ since by (8.1) and the proof of Lemma 8.1, a
null set of P}, is of measure v* zero, where dv = A(x)du®, and is hence a null set
of 3.

Consider the critical function ¢, for H;. The conditional distribution function
Fs) introduced above (8.7) may be chosen to be B.m. in £ (for each s) and' non-de-
creasing and continuous from the right in ¢ (for each t). It follows from the identity®

{(s, DIF(s) > o} = n Lg{(s, 10 < r—s<ln, Fyr;) >},

where (r;) denotes therationals, that F(s)is then B.m. in (s, t). Likewise, Fys—0)is
also B.m.in (s, ¢). Define F;\(y) as inf s for which F(s) >v; then F,(y) and F,"{y—0)
are B.m. in (y, ¢). The functions () and v,(¢) of (8:7) and (8.8) may be uniquely
defined as w,(t) = F,(1—a), and

Fy{wy(t)—0)
wy(£) —Fifwy(1)—0) ’

YI(t) =1- Ft(

where, here and below, if a denominator is zero the fraction is defined to be zero.
Then w,(t) and hence vy,(t) are Bm. in {. Since ¢; = 1 for s>w,(t), ¢, = 0 for s<w,(t),
and ¢y == ,(t) for s = w,(t), it follows that ¢, is B.m. in (s, ).

In the proof for ¢, we shall need that

z—0

gz, t) = j sdF(s)

-

is B.m. in (2,2). This integral converges since B,,,, is finite because of the expo-
nential form of the density (8.1), hence the integral g(co, ) = E,,,(s|¢) is absolutely

sThis proof was pointed out to us by Professor L. M. LeCam.
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convergent (a.e.J). Now suppose z<tco. We may express g(z,t) as the limit of

approximating sums g,(z, t) in which “subdivision of the ordinate’ leads to

gz, 1) =Z(w—§)[1ﬂ; [—E2 o), (m—zﬁ,,—o)]

which is B.m. in (2, £), hence g(z, 1) is also. That g(co, t) = ay(t)/a is B.m. in ¢ follows
from the fact that it is a conditional expectation.

For 0<y<e define v(y, 1) = F;3(y), wly, ) = F,{1—aty), and

8y, t) = — Y—Fdly, 1)—0)
' Fvly, £))—F(o(y, t)—0)’
Yy, t) = —“+?/—Fz('w(?/, t) —0)

 Flwly, 0)—F iy, )—0)

These four functions are then B.m. in (y, ¢). Let H(y, t)-Foy(t) denote the left member
of (8.17) with vy, w,, 8y, v, replaced by w(y, t), wly, ), &y, t), Yy, 1), respectively, i.e.,
H(y, 1) equalsthe G(y)introduced above, diminished by a(#). Thus H(0, #)>0, H(, t)<0,
and H(y, t) is B.m. in (y, ¢) and continuous in y. Now define y, as a on the set
where H(x,t) = 0 and otherwise as the inf of y for which H(y, t)<0. Because H(y, t)
is continuous in y, y, satisfies the desired condition H(y,, ¢) = 0, equivalent to (8.17)
That g, is B.m. in ¢ may be seen as follows: {f] y,<<¢, H(e, £)<<0} is the set of ¢ for which
H(a, t)<0 and H(y,t)<0 for some y<c, hence for some rational y = r,<Cc, because of the
continuity of H(y, t) in y, and this is the union of the denumerable number of B.m.
sets {f| H{r, t)<<0, H(a, t)<<0} for rational r,<c. IFf v,(t), wy(t), 8,(t), ¥a(t) are defined
as »(y, t), w(y, ), 8y, t), y(y, t), which are B.m. in (y,t), with y replaced by y,, which is
B.m., in ¢, then it is clear these are then B.m. in ¢, and hence ¢, is B.m. in (s, £).

The proof for ¢4 is rather similar to that for ¢,, We again define functions
oy, 1), w(y, t), 8y, t), ¥(y, t) by replacing the F, in the previous definitions by F,,,
where F,; is defined above (8.21)). We then define FI(y, t) as the left member of (8.21,)
diminished by « and with v,, ete. replaced by u(y, t), etc. The continuity of H(y, #)
in y now depends on the fact that for each ¢ except a null set of 3, the countable set
of discontinuitios in s of I, ,(s) is the same for j = 0 as for j = 1, and the set of inter-
vals where F,; is constant is the same for j = 0 and 1. To show this define 4; to be
the sot of points (s,!) where Fy(s;—F;;(s—0) =0 and Fy; ;s)—Fy; 4(s~0) >0,
s0 4;is & Bm. setiin (s, 1). Let f(2) be the probability assigned by F;(s) to the cross-
section of 4, on which ¢ = constant (& = 0, 1); so f(¢) = 0 and f;,;_4(t)>0 for all non-
«mpty cross-sections of 4;, We have

PijA) = [ falhdPig
W!
for all (9, 0)e2. 1f B, is the pre-image of 4; in W?, so Pj(4;) = P34(B)), we see
from (8.1) that if P§g(B;) = 0 for some (2, 0)e, then A(z) = 0 (a.e.4”) on B; and
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hence PFg(B) =0 for all (8,0)c0. But Pgy(4) =0 for (9,0) ey, therefore
for (9, 6) esy_y, hence (a.e.3") f;,14(t) = 0 and the cross-section of 4; for ¢ = constant
is empty.

This proves the above assertion about the discontinuities of F, and F,,;
to prove it for the intervals of constancy, denote by Fj;'(y) the inf of s for which
Fs) >y, and by F;;} (y) the sup for F,;(s)<y. Write Kj(s, t) = Fi (Fy18)—Fei (Fy5(9),
so Kj(s, t) is B.m. in (s, t), and s, will be in an interval where F,;(s) is constant if
and only if Kj(s,, t)>0. Now let D; be the set of points (s,t) where Kj(s,t) > 0 and
Ky 4s.%) = 0. Applying to D;an argument similar to the above for 4; we can
conclude the proof.
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