Skip to main content

Prebiotics of Plant and Microbial Origin

  • Chapter
  • First Online:
Direct-Fed Microbials and Prebiotics for Animals

Abstract

The food industry is constantly shifting focus based on what is most important to the consumer. Products are marketed currently that are believed to provide health benefits to the consumer such as beneficial effects on health or as disease preventatives. Much of the focus is on oligosaccharides as health-promoting substrates. Many oligosaccharides are resistant to digestion and absorption by mammalian enzymes and, therefore, reach the large bowel where they may be fermented by the resident bacteria. Beyond their potential as substrates for fermentation, oligosaccharides are popular food additives due in large part to their low caloric value and their ability to enhance mineral absorption. Health benefits include alleviation of constipation, reduced risk of infection and diarrhea, and improved immune response. Many oligosaccharides modulate microbiota of the large bowel by increasing bifidobacteria and lactobacilli populations and decreasing clostridia populations. This review will describe the manufacturing processes for select non-digestible oligosaccharides and other food ingredients currently classified as prebiotics and those with prebiotic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achour, L., B. Flourie, F. Briet, et al. 1994. Gastro-intestinal effects and energy value of polydextrose in healthy non-obese men. American Journal of Clinical Nutrition 59: 1362–1368.

    CAS  Google Scholar 

  • Ballongue, J., C. Schumann, and P. Quignon. 1997. Effects of lactulose and lactitol on colonic microflora and enzymatic activity. Scandinavian Journal of Gastroenterology 222: 41–44.

    CAS  Google Scholar 

  • Bird, A.R., M. Jackson, R.A. King, et al. 2004. A novel high-amylose barley cultivar (Hordeum vulgare var. Himalaya 292) lowers plasma cholesterol and alters indices of large-bowel fermentation in pigs. British Journal of Nutrition 92: 607–615.

    Article  CAS  Google Scholar 

  • Bouhnik, Y., B. Flourié, L. D’Agay-Abensour, et al. 1997. Administration of transgalactooligosaccharides increases fecal bifidobacteria and modifies colonic fermentation metabolism in healthy humans. Journal of Nutrition 127: 444–448.

    CAS  Google Scholar 

  • Bouhnik, Y., L. Raskine, G. Simoneau, et al. 2004. The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans: A double-blind, randomized, placebo-controlled, parallel group, dose–response relation study. American Journal of Clinical Nutrition 80: 1658–1664.

    CAS  Google Scholar 

  • Brown, I. 1996. Complex carbohydrates and resistant starch. Nutrition Reviews 54: 3115–3119.

    Google Scholar 

  • Brown, I., M. Warhurst, J. Arcot, et al. 1997. Fecal numbers of bifidobacteria are higher in pigs fed Bifidobacterium longum with high amylose cornstarch than with low amylose cornstarch. Journal of Nutrition 127: 1822–1827.

    CAS  Google Scholar 

  • Campbell, J.M., G.C. Fahey Jr., and B.W. Wolf. 1997. Selected indigestible oligosaccharides affect large bowel mass, cecal and fecal short-chain fatty acids, pH, and microflora in rats. Journal of Nutrition 127: 130–136.

    CAS  Google Scholar 

  • Casci, T., and R.A. Rastall. 2006. Manufacture of prebiotic oligosaccharides. In Prebiotics: Development and application, ed. G.R. Gibson and R.A. Rastall. West Sussex, UK: Wiley.

    Google Scholar 

  • Chen, C., J.-L. Chen, and T.-Y. Lin. 1997. Purification and characterization of a xylanase from Trichoderma longibrachiatum for xylooligosaccharide production. Enzyme and Microbial Technology 21: 91–96.

    Article  CAS  Google Scholar 

  • Cherbut C (2002) Inulin and oligofructose in the dietary fibre concept. British Journal of Nutrition 87, Suppl. 2: S159–S162.

    Google Scholar 

  • Constabile, A., A. Klinder, F. Fava, et al. 2008. Whole-grain wheat breakfast cereal has a prebiotic effect on the human gut microbiota: A double-blind, placebo-controlled, crossover study. British Journal of Nutrition 99: 110–120.

    Google Scholar 

  • Coppa, G.V., S. Bruni, and L. Zampini. 2002. Prebiotics in infant formulas: Biochemical characterization by thin layer chromatography and high performance anion exchange chromatography. Digestive and Liver Disease 34: S124–S128.

    Article  CAS  Google Scholar 

  • Crittenden, R.G. 2006. Emerging prebiotic candidates. In Prebiotics: Development and application, ed. G.R. Gibson and R.A. Rastall. West Sussex: Wiley.

    Google Scholar 

  • Crittenden, R.G., and M.J. Playne. 1996. Production, properties and applications of food-grade oligosaccharides. Trends in Food Science and Technology 7: 353–361.

    Article  CAS  Google Scholar 

  • Crittenden, R.G., S. Karppinen, S. Ojanen, et al. 2002. In vitro fermentation of cereal dietary fiber carbohydrates by probiotic and intestinal bacteria. Journal of the Science of Food and Agriculture 82: 1–9.

    Article  Google Scholar 

  • Cummings, J.H., G.T. Macfarlane, and H.N. Englyst. 2001. Prebiotic digestion and fermentation. American Journal of Clinical Nutrition 73: 415S–420S.

    CAS  Google Scholar 

  • De Leenheer, L. 1996. Production and use of inulin: Industrial reality with a promising future. In Carbohydrates as organic raw materials, vol. III, ed. H. Van Bekkun, H. Röper, and H. Vorgen. Weinheim: Wiley-VCH.

    Google Scholar 

  • Debruyn, A., A.P. Alvarez, P. Sandra, et al. 1992. Isolation and identification of O-β-d-fructofuranosyl-(2  →  1)-O-β-d-fructofuranosyl-(2  →  1)-d-fructose, a product of the enzymatic hydrolysis of the inulin from Cichorium intybus. Carbohydrate Research 235: 303–308.

    Article  CAS  Google Scholar 

  • Dongowski, G., G. Jacobasch, and D. Schmiedl. 2005. Structural stability and prebiotic properties of resistant starch type 3 increase bile acid turnover and lower secondary bile acid formation. Journal of Agricultural and Food Chemistry 53: 9257–9267.

    Article  CAS  Google Scholar 

  • Fava, F., H. Mäkivuokko, H. Siljander-Rasi, et al. 2007. Effect of polydextrose and intestinal microbes and immune functions in pigs. British Journal of Nutrition 98: 123–133.

    Article  CAS  Google Scholar 

  • Figdor, S.K., and H.H. Rennhard. 1981. Caloric utilization and disposition of [14C] polydextrose in the rat. Journal of Agricultural and Food Chemistry 29: 1181–1189.

    Article  CAS  Google Scholar 

  • Fincher, G.B., and B.A. Stone. 1986. Cell walls and their components in cereal grain technology. Advances in Cereal Science and Technology 6: 207–295.

    Google Scholar 

  • Fleming, S.E., D. Marthinsen, and H. Kuhnlein. 1983. Colonic function and fermentation in men consuming high fiber diets. Journal of Nutrition 113: 2535–2544.

    CAS  Google Scholar 

  • Food and Drug Administration. 1993. Food labeling: Mandatory status of nutrition labeling and nutrient content revision, format for nutrition label. Federal Register 58: 2079.

    Google Scholar 

  • Gibson, G.R., and F. Angus. 2000. Leatherhead Ingredients Handbook: Prebiotics and Probiotics. Leatherhead, UK: Leatherhead Food Research Association.

    Google Scholar 

  • Gibson, G.R., and M.B. Roberfroid. 1995. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. Journal of Nutrition 125: 1401–1412.

    CAS  Google Scholar 

  • Gibson, G.R., H.M. Probert, J. Van Loo, R.A. Rastall, and M.B. Roberfroid. 2004. Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutrition Research Reviews 17: 259–275.

    Article  CAS  Google Scholar 

  • Grizard, D., and C. Barthomeuf. 1999. Non-digestible oligosaccharides used as prebiotic agents: Mode of production and beneficial effects on animal and human health. Reproduction Nutrition Development 39: 563–588.

    Article  CAS  Google Scholar 

  • Guigoz, Y., F. Rochat, and G. Prerruisseau-Carrier. 2002. Effects of oligosaccharide on the faecal flora and non-specific immune system in elderly people. Nutrition Research 22: 13–25.

    Article  CAS  Google Scholar 

  • Hara, H., S. Li, M. Sasaki, et al. 1994. Effective dose of lactosucrose on fecal flora and fecal metabolites of humans. Bifidobacteria Microflora 13: 51–63.

    Google Scholar 

  • Harmsen, H.J.M., P. Elfferich, F. Schut, et al. 1999. A 16S rRNA-targeted probe for detection of lactobacilli and enterocci in faecal samples by fluorescent in situ hybridization. Microbial Ecology in Health and Disease 11: 3–12.

    Article  Google Scholar 

  • Hernot, D.C., T.W. Boileau, L.L. Bauer, et al. 2008. In vitro digestion characteristics of unprocessed and processed whole grains and their components. Journal of Agricultural and Food Chemistry 56: 10721–10726.

    Article  CAS  Google Scholar 

  • Hopkins, M., J. Cummings, and G. MacFarlane. 1998. Inter-species differences in maximum specific growth rates and cell yields of bifidobacteria cultured on oligosaccharides and other simple carbohydrate sources. Journal of Applied Microbiology 85: 381–386.

    Article  CAS  Google Scholar 

  • Ito, M., Y. Deguchi, A. Miyamori, et al. 1990. Effect of administration of galacto-oligosaccarides on the human faecal flora, stool weight and abdominal sensation. Microbial Ecology in Health and Disease 3: 285–292.

    Article  Google Scholar 

  • IUP-IUPAC. 1982. Joint commission on biochemical nomenclature and (JCBN): Abbreviated terminology of oligosaccharide chains: Recommendations 1980. Journal of Biological Chemistry 257: 3347–3351.

    Google Scholar 

  • Jabocasch, G., G. Dongowski, D. Schmiedl, et al. 2006. Hydrothermal treatment of Novelose 330 results in high yield of resistant starch type 3 with beneficial prebiotic properties and decreased secondary bile acid formation in rats. British Journal of Nutrition 95: 1063–1074.

    Article  Google Scholar 

  • Jenkins, D.J.A., C.W.C. Kendall, and V. Vuksan. 1999. Inulin, oligofructose and intestinal function. Journal of Nutrition 129: 1431S–1433S.

    CAS  Google Scholar 

  • Jie, Z., B. Lou, M. Xiang, et al. 2000. Studies on the effects of polydextrose on physiological function in Chinese people. American Journal of Clinical Nutrition 72: 1503–1509.

    CAS  Google Scholar 

  • JuÅ›kiewicz, J., and Z. ZduÅ„czyk. 2002. Lactulose-induced diarrhoea in rats: Effects on caecal development and activities of microbial enzymes. Comparative Biochemistry and Physiology 133: 411–417.

    Article  Google Scholar 

  • Karppinen, S., K. Liukkonen, A.M. Aura, et al. 2000. In vitro fermentation of polysaccharides of rye, wheat and oat brans and inulin by human faecal bacteria. Journal of the Science of Food and Agriculture 80: 1469–1476.

    Article  CAS  Google Scholar 

  • Kaur, N., and A. Gupta. 2002. Applications of inulin and oligofructose in health and nutrition. Journal of Biosciences 27: 703–714.

    Article  CAS  Google Scholar 

  • Kawase, M., A. Pilgrim, T. Araki, et al. 2001. Lactosucrose production using a simulated moving bed reactor. Chemical Engineering Science 56: 453–458.

    Article  CAS  Google Scholar 

  • Kelly-Quagliana, K.A., P.D. Nelson, and R.K. Buddington. 2003. Dietary oligofructose and inulin modulate immune functions in mice. Nutrition Research 23: 257–267.

    Article  CAS  Google Scholar 

  • Kleessen, B., G. Stoof, J. Proll, et al. 1997. Feeding resistant starch affects fecal and cecal microflora and short chain fatty acids in rats. Journal of Animal Science 75: 2453–2462.

    CAS  Google Scholar 

  • Kumemura, M. 1992. Effects of administration of 4G-β-D-galactosylsucrose on fecal microflora putrefactive compounds, short chain fatty acids, weight, moisture, and subjective sensation of defecation in the elderly constipation. Journal of Clinical Biochemistry and Nutrition 13: 199–210.

    Article  Google Scholar 

  • L’Hocine, L., Z. Wang, G. Jian, and S.Y. Xu. 2000. Purification and partial characterization of fructosyltransferase and invertase from Aspergillus niger AS0023. Journal of Biotechnology 81: 73–84.

    Article  Google Scholar 

  • Li, B.W. 2010. Analysis of dietary fiber and nondigestible carbohydrates. In Handbook of pre­biotics and probiotics ingredients: Health benefits and food applications, ed. S.S. Cho and E.T. Finocchiara. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Manning, T.S., and G.R. Gibson. 2004. Prebiotics. Best Practice and Research Clinical Gasteroenterology 108: 975–982.

    Google Scholar 

  • Marteau, P. 2001. Prebiotics and probiotics for gastrointestinal health. Clinical Nutrition 40: 41–45.

    Article  Google Scholar 

  • Moro, G., I. Minoli, M. Mosca, et al. 2002. Dosage-related bifidogenic effects of galacto- and fructoligosaccharides in formula-fed term infants. Journal of Pediatrics Gastroenterology and Nutrition 34: 291–295.

    Article  CAS  Google Scholar 

  • Murphy, O. 2001. Non-polyol low-digestible carbohydrates: Food application and functional ­benefits. British Journal of Nutrition 85: S47–S53.

    Article  CAS  Google Scholar 

  • Mussatto, S.I., and I.M. Mancilha. 2007. Non-digestible oligosaccharides: A review. Carbohydrate Polymers 68: 587–597.

    Article  CAS  Google Scholar 

  • Nilsson, K.G.I. 1988. Enzymatic synthesis of oligosaccharides. Trends in Biotechnology 6: 256–264.

    Article  CAS  Google Scholar 

  • Ohkusa, T., Y. Ozaki, C. Sato, et al. 1995. Long-term ingestion of lactosucrose increases Bifidobacterium spp. in human fecal flora. Digestion 56: 415–420.

    Article  CAS  Google Scholar 

  • Okazaki, M., S. Fujikawa, and N. Mutumoto. 1990. Effect of xylooligosaccharide on the growth of bifidobacteria. Bifidobacteria Microflora 9: 77–86.

    Google Scholar 

  • Park, Y.K., and M.M. Almeida. 1991. Production of fructooligosaccharides from sucrose by tranfructosylase from Aspergillus niger. World Journal of Microbiology and Biotechnology 7: 331–334.

    Article  CAS  Google Scholar 

  • Pederson, A., B. Sanstrom, and J.M.M. van Amelsvoort. 1997. The effect of ingestion of inulin on blood lipids and gastrointestinal symptoms in healthy females. British Journal of Nutrition 78: 215–222.

    Article  Google Scholar 

  • Playne, M.J. 1994. Production of carbohydrate-based functional foods using enzyme and fermentation technologies. Int Chem Eng Symp Ser 137: 147–156.

    CAS  Google Scholar 

  • Playne, M.J., and R.G. Crittenden. 2004. Prebiotics from lactose, sucrose, starch, and plant polysaccharides. In Bioprocesses and biotechnology for functional foods and nutraceuticals, ed. J.-R. Neeser and J.B. German. New York: Marcel Dekker.

    Google Scholar 

  • Prenosil, J.E., E. Stucker, and J.R. Bourne. 1987. Formation of oligosaccharides during enzymatic lactose. Part 1: State of art. Biotechnology and Bioengineering 30: 1019–1025.

    Article  CAS  Google Scholar 

  • Rastall, R.A., and V. Maitin. 2002. Prebiotics and synbiotics: Towards the next generation. Current Opinion Biotechnology 13: 490–496.

    Article  CAS  Google Scholar 

  • Roberfroid, M.B., and J. Slavin. 2000. Nondigestible oligosaccharides.Critical Review in Food Science and Nutrition 40: 461–480.

    Google Scholar 

  • Roberfroid, M.B., and N. Delzenne. 1998. Dietary fructans. Annual Review Nutrition 18: 117–143.

    Google Scholar 

  • Roberfroid, M.B. 2007. Prebiotics: The concept revisited. Journal of Nutrition 137: 830S–837S.

    CAS  Google Scholar 

  • Roberfroid, M.B. 2008. Prebiotics: Concepts, definition, criteria, methodologies, and products. In Handbook of prebiotics, ed. G.R. Gibson and M.B. Roberfroid. Boca Raton: CRC Press.

    Google Scholar 

  • Roberfroid, M.B., and N.M. Delzenne. 1998. Dietary fructans. Annual Review of Nutrition 18: 117–143.

    Article  CAS  Google Scholar 

  • Roberfroid, M.B., J.A.E. Van Loo, and G.R. Gibson. 1998. The bifidogenic nature of chicory inulin and its hydrolysis products. Journal of Nutrition 128: 11–19.

    CAS  Google Scholar 

  • Sako, T., K. Mastumoto, and R. Tanaka. 1999. Recent progress on research and applications of non-digestible galacto-oligosaccharides. International Dairy Journal 9: 69–80.

    Article  CAS  Google Scholar 

  • Silvi, S., C.J. Rumney, A. Cresci, et al. 1999. Resistant starch modifies gut microflora and microbial metabolism in human flora-associated rats inoculated with feces from Italian and UK donors. Journal of Applied Microbiology 86: 521–530.

    Article  CAS  Google Scholar 

  • Stowell, J.D. 2009. Polydextrose. In Fiber ingredients: Food applications and health benefits, ed. S.S. Cho and P. Samuel. Boca Raton: CRC Press.

    Google Scholar 

  • Stowell, J.D. 2010. Prebiotic potential of polydextrose. In Prebiotics and probiotics science and technology, ed. D. Charalampopoulos and R.A. Rastall. New York: Springer.

    Google Scholar 

  • Swennen, K., C.M. Courtin, and J.A. Delcour. 2006. Non-digestible oligosaccharides with prebiotic properties. Critical Reviews in Food Science and Nutrition 46: 459–471.

    Article  CAS  Google Scholar 

  • Tanaka, R., H. Takayama, M. Morotomi, et al. 1983. Effects of administration of TOS and Bifidobacterium breve 4006 on the human fecal flora. Bifidobacteria Microflora 2: 17–24.

    CAS  Google Scholar 

  • Terada, A., H. Hara, S. Kato, et al. 1993. Effect of lactosucrose (4G-β-d-galactosylsucrose) on fecal flora and fecal putrefactive products of cats. The Journal of Veterinary Medical Science 55: 291–295.

    Article  CAS  Google Scholar 

  • Tiihonen, K., T. Suomalainen, S. Tynkknen, et al. 2008. Effect of prebiotic supplementation on a probiotic bacterial mixture: Comparison between a rat model and clinical trials. British Journal of Nutrition 99: 826–831.

    Article  CAS  Google Scholar 

  • Tuohy, K.M., C.J. Ziemer, A. Klinder, et al. 2002. A human volunteer study to determine the prebiotic effects of lactulose powder on human colonic microbiota. Microbial Ecology in Health and Disease 14: 165–173.

    Article  Google Scholar 

  • Tzortis, G., and J. Vulevic. 2009. Galacto-oligosaccharide prebiotics. In Prebiotics and probiotics science and technology, ed. D. Charalampopoulos and R.A. Rastall. New York: Springer.

    Google Scholar 

  • Van Loo, J., P. Coussement, L. De Leenheer, et al. 1995. On the presence of inulin and oligofructose as natural ingredients in the Western diet. Critical Reviews in Food Science and Nutrition 35: 525–552.

    Article  Google Scholar 

  • Vázquez, M.J., J.L. Alonso, H. Domínguez, et al. 2000. Xylooligo-saccharides: Manufacture and applications. Trends in Food Science and Technology 11: 387–393.

    Article  Google Scholar 

  • Wang, X., I.L. Brown, D. Khaled, et al. 2002. Manipulation of colonic bacteria and volatile fatty acid production by dietary high amylose maize (amylomaize) starch granules. Journal of Applied Microbiology 93: 390–397.

    Article  CAS  Google Scholar 

  • Yoshhikawa, J., S. Amachi, H. Shinoyama, et al. 2008. Production of fructooligosaccharides by crude enzyme preparations of β-fructofuranosidase from Aureobasidium pullulans. Biotechnology Letters 30: 535–539.

    Article  Google Scholar 

  • Yun, J.W. 1996. Fructooligosaccharides: Occurrence, preparation, and application. Enzyme and Microbial Technology 19: 107–117.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George C. Fahey Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Boler, B.M.V., Fahey, G.C. (2012). Prebiotics of Plant and Microbial Origin. In: Callaway, T., Ricke, S. (eds) Direct-Fed Microbials and Prebiotics for Animals. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1311-0_2

Download citation

Publish with us

Policies and ethics