Skip to main content

Extraction and Characterization of Bioactive Compounds with Health Benefits from Marine Resources: Macro and Micro Algae, Cyanobacteria, and Invertebrates

  • Chapter
  • First Online:
Book cover Marine Bioactive Compounds

Abstract

The occurrence and incidence of different diseases such as cancer, cardiovascular diseases, obesity, and diabetes may be related to the consumption of high calorie calorie-containing diets combined with sedentary lifestyles. The concept of functional foods first appeared in Japan where it was considered to be a tool to promote health and well-being. In 1992, the Japanese government established a policy of “Foods of Specific Health Uses” (FOSHU). This concept was further developed in Europe within the “Functional Food Science in Europe” (FUFOSE) project supported by the European Commission (EC) and co-ordinated by the International Life Sciences Institute (ILSI). Several interesting points were observed at the end of this project (Bellisle, F., A.T. Diplock, G. Hornstra, B. Koletzko, M. Roberfroid, S. Salminen, et al. 1998. Functional food science in Europe. British Journal of Nutrition 80:1–193; Diplock, A.T., P.J. Agget, M. Ashwell, F. Bornet, E.B. Fern, M.B. Roberfroid. 1999. Scientific concepts of functional foods in Europe: Consensus document. British Journal of Nutrition 81:S1–S27), including a definition of a functional food as “a food which is demonstrated to positively affect one or more physiological functions, so that it is able to increase the well-being and/or to reduce the risk to suffer a disease” (Diplock, A.T., P.J. Agget, M. Ashwell, F. Bornet, E.B. Fern, M.B. Roberfroid. 1999. Scientific concepts of functional foods in Europe: Consensus document. British Journal of Nutrition 81:S1–S27). This definition implies that a functional food must maintain the shape of the food (thereby excluding pills and capsules) and that the functional food must impart a physiological effect following consumption that is above and beyond any observed nutritional effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bellisle, F., A.T. Diplock, G. Hornstra, B. Koletzko, M. Roberfroid, S. Salminen, et al. 1998. Functional food science in Europe. British Journal of Nutrition 80: 1–193.

    Google Scholar 

  • Diplock, A.T., P.J. Agget, M. Ashwell, F. Bornet, E.B. Fern, and M.B. Roberfroid. 1999. Scientific concepts of functional foods in Europe: consensus document. British Journal of Nutrition 81: S1–S27.

    CAS  Google Scholar 

  • Plaza, M., M. Herrero, A. Cifuentes, and E. Ibañez. 2009. Innovative natural functional ingredients from Microalgae. Journal of Agricultural and Food Chemistry 57: 7159–7170.

    PubMed  CAS  Google Scholar 

  • Plaza, M., A. Cifuentes, and E. Ibañez. 2008. In the search of new functional food ingredients from algae. Trends in Food Science & Technology 19: 31–39.

    CAS  Google Scholar 

  • Kadam, S.U., and P. Prabhasankar. 2010. Marine foods as functional ingredients in bakery and pasta products. Food Research International 43: 1975–1980.

    Google Scholar 

  • Kim, S.K., and I. Wijesekara. 2010. Development and biological activities of marine-derived bioactive peptides: a review. Journal of Functional Foods 2: 1–9.

    CAS  Google Scholar 

  • Wollgast, J., and E. Anklam. 2000. Review on polyphenols in Theobroma cacao: changes in composition during the manufacture of chocolate and methodology for identification and quantification. Food Research International 33: 423–447.

    CAS  Google Scholar 

  • Madhavi, D.V., S.S. Despande, and D.K. Salunkhe. 1996. Food antioxidants. New York: Marcel Dekker.

    Google Scholar 

  • Bravo, L. 1998. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews 56: 317–333.

    PubMed  CAS  Google Scholar 

  • Wijesekara, I., N.Y. Yoon, and S.K. Kim. 2010. Phlorotannins from Ecklonia cava (Phaeophyceae): biological activities and potential health benefits. BioFactors 36: 408–414.

    PubMed  CAS  Google Scholar 

  • Nagayama, K., Y. Iwamura, T. Shibata, I. Hirayama, and T. Nakamura. 2002. Bactericidal activity of phlorotannins from the brown alga Ecklonia kurome. Journal of Antimicrobial Chemotherapy 50: 889–893.

    PubMed  CAS  Google Scholar 

  • Kang, K., Y. Park, H.J. Hwang, S.H. Kim, J.G. Lee, and H.C. Shin. 2003. Antioxidative properties of brown algae polyphenolics and their perspectives as chemopreventive agent against vascular risk factors. Archives of Pharmacal Research 26: 286–293.

    PubMed  CAS  Google Scholar 

  • Artan, M., Y. Li, F. Karadeniz, S.H. Lee, M.M. Kim, and S.K. Kim. 2008. Anti-HIV-1 activity of phloroglucinol derivative, 6, 6′-bieckol, from Ecklonia cava. Bioorganic & Medicinal Chemistry 16: 7921–7926.

    CAS  Google Scholar 

  • Kong, C.S., J.A. Kim, N.Y. Yoon, and S.K. Kim. 2009. Induction of apoptosis by phloroglucinol derivative from Ecklonia cava in MCF-7 human breast cancer cells. Food and Chemical Toxicology 47: 1653–1658.

    PubMed  CAS  Google Scholar 

  • Eide, I., S. Myklestad, and S. Melson. 1980. Longterm uptake and release of heavy metals by Ascophyllum nodosum (L.). Environmental Pollution 23: 19–28.

    CAS  Google Scholar 

  • Lee, S.H., Y. Li, F. Karadeniz, M.M. Kim, and S.K. Kim. 2009. α-Glycosidase and α-amylase inhibitory activities of phloroglucinal derivatives from edible marine brown alga, Ecklonia cava. Journal of the Science of Food and Agriculture 89: 1552–1558.

    CAS  Google Scholar 

  • Jung, H.A., S.K. Hyun, H.R. Kim, and J.S. Choi. 2006. Angiotensin-converting enzyme I inhibitory activity of phlorotannins from Ecklonia stolonifera. Fisheries Science 72: 1292–1299.

    CAS  Google Scholar 

  • Yoon, N.Y., S.H. Lee, Y. Li, and S.K. Kim. 2009. Phlorotannins from Ishige okamurae and their acetyl- and butyry-lcholinesterase inhibitory effects. Journal of Functional Foods 1: 331–335.

    CAS  Google Scholar 

  • Li, Y., Z.J. Qian, B.M. Ryu, S.H. Lee, M.M. Kim, and S.K. Kim. 2009. Chemical components and its antioxidant properties in vitro: an edible marine brown alga, Ecklonia cava. Bioorganic & Medicinal Chemistry 17: 1963–1973.

    CAS  Google Scholar 

  • Duan, X.J., W.W. Zhang, X.M. Li, and B.G. Wang. 2006. Evaluation of antioxidant property of extract and fractions obtained from a red alga, Polysiphonia urceolata. Food Chemistry 95: 37–43.

    CAS  Google Scholar 

  • De Spirt, S., K. Lutter, and W. Stahl. 2010. Carotenoids in photooxidative stress. Current Nutrition & Food Science 6: 36–43.

    Google Scholar 

  • Silberstein, J.L., and J.K. Parsons. 2010. Evidence-based principles of bladder cancer and diet. Current Nutrition & Food Science 6: 2–12.

    Google Scholar 

  • Riccioni, G., B. Mancini, E. Di Ilio, T. Bucciarelli, and N. D’Orazio. 2008. Protective effect of lycopene in cardiovascular disease. European Review for Medical and Pharmacological Sciences 12: 183–190.

    PubMed  CAS  Google Scholar 

  • Snodderly, M.D. 1995. Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins. American Journal of Clinical Nutrition 62: S1448–S1461.

    Google Scholar 

  • Zhu, Y.H., and J.G. Jiang. 2008. Continuous cultivation of Dunaliella salina in photobioreactor for the production of β-carotene. European Food Research and Technology 227: 953–959.

    CAS  Google Scholar 

  • Kotate-Nara, E., M. Kushiro, H. Zhang, T. Sagawara, K. Miyashita, and A. Nagao. 2001. Carotenoids affect proliferation of human prostate cancer cells. Journal of Nutrition 131: 3303–3306.

    Google Scholar 

  • Hosokawa, M., S. Wanezaki, K. Miyauchi, H. Kurihara, H. Kohno, J. Kawabata, et al. 1999. Apoptosis inducing effect of fucoxanthin on human leukemia cell HL-60. Food Science and Technology Research 5: 243–246.

    CAS  Google Scholar 

  • Shiratori, K., K. Ohgami, I. Ilieva, X.H. Jin, Y. Koyama, K. Miyashita, et al. 2005. Effects of fucoxanthin on lipopolysaccaride-induced inflammation in vitro and in vivo. Experimental Eye Research 81: 422–428.

    PubMed  CAS  Google Scholar 

  • Maeda, H., M. Hosokawa, T. Sashima, and K. Miyashita. 2007. Dietary combination of fucoxanthin and fish oil attenuates the weight gain of white adipose tissue and decreases blood glucose in obese/diabetic KK-Ay mice. Journal of Agricultural and Food Chemistry 55: 7701–7706.

    PubMed  CAS  Google Scholar 

  • Sachindra, N.M., E. Sato, H. Maeda, M. Hosokawa, Y. Niwano, M. Kohno, et al. 2007. Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites. Journal of Agricultural and Food Chemistry 55: 8516–8522.

    PubMed  CAS  Google Scholar 

  • Yuan, J.P., and F. Chen. 2000. Purification of trans-astaxanthin from a high-yielding astaxanthin ester-producing strain of the alga Haematococcus pluvialis. Food Chemistry 68: 443–448.

    CAS  Google Scholar 

  • Higuera-Ciapara, I., L. Felix-Valenzuela, and F.M. Goycoolea. 2006. Astaxanthin: A review of its chemistry and applications. Critical Reviews in Food Science and Nutrition 46: 185–196.

    PubMed  CAS  Google Scholar 

  • Bruno, A., C. Rossi, G. Marcolongo, A. Di Lena, A. Venzo, C.P. Berrie, et al. 2005. Selective in vivo anti-inflammatory action of the galactolipid monogalactosyldiacylglycerol. European Journal of Pharmacology 524: 159–168.

    PubMed  CAS  Google Scholar 

  • Larsen, E., A. Kharazmi, L.P. Christensen, and S.B. Christensen. 2003. An antiinflammatory galactolipid from rose hip (Rosa canina) that inhibits chemotaxis of human peripheral blood neutrophils in vitro. Journal of Natural Products 66: 994–995.

    PubMed  CAS  Google Scholar 

  • Calzolari, I., S. Fumagalli, N. Marchionni, and M. Di Bari. 2009. Polyunsaturated fatty acids and cardiovascular disease. Current Pharmaceutical Design 15: 4149–4156.

    Google Scholar 

  • Schuchardt, J.P., M. Huss, M. Stauss-Grabo, and A. Hahn. 2010. Significance of long-chain ­polyunsaturated fatty acids (PUFAs) for the development and behaviour of children. European Journal of Pediatrics 169: 149–164.

    PubMed  CAS  Google Scholar 

  • Zuliani, G., M. Galvani, E. Leitersdorf, S. Volpato, M. Cavelieri, and R. Fellin. 2009. The role of polyunsaturated fatty acids (PUFA) in the treatment of dyslipidemias. Current Pharmaceutical Design 15: 4173–4185.

    Google Scholar 

  • Sahena, F., I.S.M. Zaidul, S. Jinap, N. Saari, H.A. Jahurul, K.A. Abbas, et al. 2009. PUFAs in fish: extraction, fractionation, importance in health. Comprehensive Reviews in Food Science and Food Safety 8: 59–74.

    CAS  Google Scholar 

  • Wu, T.H., and P.J. Bechtel. 2008. Salmon by-product storage and oil extraction. Food Chemistry 111: 868–871.

    CAS  Google Scholar 

  • Juárez, M., A. Juárez, N. Aldai, C. Avilés, and O. Polvillo. 2010. Validation of a gas-liquid chromatographic method for analysing samples rich in long chain n-3 polyunsaturated fatty acids: application to seafood. Journal of Food Composition and Analysis 23: 665–670.

    Google Scholar 

  • Francavilla, M., P. Trotta, and R. Luque. 2010. Phytosterols from Dunaliella tertiolecta and Dunaliella salina: a potentially novel industrial application. Bioresource Technology 101: 4144–4150.

    PubMed  CAS  Google Scholar 

  • Cardozo, K.H.M., T. Guaratini, M.P. Barros, V.R. Falcão, A.P. Tonon, N.P. Lopes, et al. 2007. Metabolites from algae with economical impact. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology 146: 60–78.

    PubMed  Google Scholar 

  • Kanazawa, A. 2001. Sterols in marine invertebrates. Fisheries Science 67: 997–1007.

    Google Scholar 

  • Li, B., F. Lu, X. Wei, and R. Zhao. 2008. Fucoidan: Structure and bioactivity. Molecules 13: 1671–1695.

    PubMed  CAS  Google Scholar 

  • Qi, H., Q. Zhang, T. Zhao, R. Chen, H. Zhang, X. Niu, et al. 2005. Antioxidant activity of different sulfate content derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta) invitro. International Journal of Biological Macromolecules 37: 195–199.

    PubMed  CAS  Google Scholar 

  • Ngo, D.H., I. Wijesekara, T.S. Vo, Q.V. Ta, and S.V. Kim. 2011. Marine food-derived functional ingredients as potential antioxidants in the food industry: an overview. Food Research International 44: 523–529.

    CAS  Google Scholar 

  • Liu, B., W.S. Liu, B.Q. Han, and Y.Y. Sun. 2007. Antidiabetic effects of chitooligosaccharides on pancreatic islet cells in streptozotocin-induced diabetic rats. World Journal of Gastroenterology 13: 725–731.

    PubMed  CAS  Google Scholar 

  • Liao, F.H., M.J. Shieh, N.C. Chang, and Y.C. Chien. 2007. Chitosan supplementation lowers serum lipids and maintains normal calcium, magnesium, and iron status in hyperlipidemic patients. Nutrition Research 27: 146–151.

    CAS  Google Scholar 

  • Muzzarelli, R.A.A., P. Morganti, G. Morganti, P. Palombo, M. Palombo, G. Biagini, et al. 2007. Chitin nanofibrils/chitosan glycolate composites as wound medicaments. Carbohydrate Polymers 70: 274–284.

    CAS  Google Scholar 

  • Bhat, B.V., N.W. Gaikwad, and K.M. Madyastha. 1998. Hepatoprotective effect of C-phycocyanin: protection for carbon tetrachloride and R-(+)-pulegone-mediated hepatotoxicty in rats. Biochemical and Biophysical Research Communications 249: 428–431.

    Google Scholar 

  • Romay, C.H., R. Gonzalez, N. Ledón, D. Remirez, and V. Rimbau. 2003. C-Phycocyanin; Abiliprotein with antioxidante, anti-inflammatory and neuroprotective effects. Current Protein & Peptide Science 4: 207–216.

    CAS  Google Scholar 

  • Bhat, B.V., and K.M. Madyastha. 2000. C-Phycocyanin: a potent peroxyl radical scavenger in vivo and in vitro. Biochemical and Biophysical Research Communications 275: 20–25.

    PubMed  CAS  Google Scholar 

  • Moraes, C.C., J.F. De Medeiros Burkert, and S.J. Kalil. 2010. C-phycocyanin extraction process for large-scale use. Journal of Food Biochemistry 34: 133–148.

    Google Scholar 

  • Patil, G., S. Chethana, M.C. Madhusudhan, and K.S.M.S. Raghavarao. 2008. Fractionation and purification of the phycobiliproteins from Spirulina platensis. Bioresource Technology 99: 7393–7396.

    PubMed  CAS  Google Scholar 

  • Byun, H.G., J.K. Lee, H.G. Park, J.K. Jeon, and S.K. Kim. 2009. Antioxidant peptides isolated from the marine rotifer, Brachionus rotundiformis. Process Biochemistry 44: 842–846.

    CAS  Google Scholar 

  • Majors, R., and D. Raynie. 2011. The greening of the chromatography laboratory. LCGC Europe. 24: 72–78.

    Google Scholar 

  • Anastas, P.T., and J.C. Warner. 1998. Green chemistry: theory and practice. New York: Oxford University Press.

    Google Scholar 

  • Anastas, P.T., and J.B. Zimmerman. 2003. Design through the twelve principles of green engineering. Environmental Science and Technology 37: 94A–101A.

    PubMed  Google Scholar 

  • Hosikian, A., Lim, S., Halim, R., and M.K. Danquah. 2010. Chlorophyll extraction from Microalgae: a Review on the process engineering aspects. International Journal of Chemical Engineering. Article ID 391632, 11 pages. doi:10.1155/2010/391632.

  • Mendiola, J.A., M. Herrero, A. Cifuentes, and E. Ibáñez. 2007a. Use of compressed fluids for sample preparation: food applications. Journal of Chromatography. A 1152: 234–246.

    PubMed  CAS  Google Scholar 

  • Herrero, M., A. Cifuentes, and E. Ibáñez. 2006a. Sub- and supercritical fluid extraction of functional ingredients from different natural sources: plants, food-by-products, algae and microalgae: a review. Food Chemistry 98: 136–148.

    CAS  Google Scholar 

  • Björklund, E., C. Sparr-Eskilsson, W. Paul, T. Alan, and P. Colin. 2005. EXTRACTION: supercritical Fluid Extraction. In Encyclopedia of Analytical Science, ed. P. Worsfold, A. Townshend, and C. Poole, 597–604. Oxford: Elsevier.

    Google Scholar 

  • El Hattab, M., G. Culioli, L. Piovetti, S.E. Chitour, and R.J. Valls. 2007. Comparison of various extraction methods for identification and determination of volatile metabolites from the brown alga Dictyopteris membranacea. Journal of Chromatography. A 1143: 1–7.

    PubMed  Google Scholar 

  • Mendiola, J.A., S. Santoyo, A. Cifuentes, G. Reglero, E. Ibáñez, and F.J. Señoráns. 2008a. Antimicrobial activity of sub- and supercritical CO2 extracts of the green alga Dunaliella salina. Journal of Food Protection 71: 2138–2143.

    PubMed  CAS  Google Scholar 

  • Cheung, P.C.K. 1999. Temperature and pressure effects on supercritical carbon dioxide extraction of n  −  3 fatty acids from red seaweed. Food Chemistry 65: 399–403.

    CAS  Google Scholar 

  • Qiuhui, H. 1999. Supercritical carbon dioxide extraction of Spirulina platensis component and removing the stench. Journal of Agricultural and Food Chemistry 47: 2705–2706.

    PubMed  CAS  Google Scholar 

  • Mendiola, J.A., D. García-Martínez, F.J. Rupérez, P.J. Martín-Álvarez, G. Reglero, A. Cifuentes, et al. 2008b. Enrichment of vitamin E from Spirulina platensis microalga by SFE. Journal of Supercritical Fluids 43: 484–489.

    CAS  Google Scholar 

  • Mendes, R.L., H.L. Fernandes, J.P. Coelho, E.C. Reis, J.M.S. Cabral, J.M. Novais, et al. 1995. Supercritical CO2 extraction of carotenoids and other lipids from Chlorella vulgaris. Food Chemistry 53: 99–103.

    CAS  Google Scholar 

  • Mendiola, J.A., F.R. Marín, S.F. Hernández, B.O. Arredondo, F.J. Señoráns, E. Ibañez, et al. 2008c. Characterization via liquid chromatography coupled to diode array detector and tandem mass spectrometry of supercritical fluid antioxidant extracts of Spirulina platensis microalga. Journal of Separation Science 28: 1031–1038.

    Google Scholar 

  • Mendes, R.L., B.P. Nobre, M.T. Cardoso, A.P. Pereira, and A.F. Palabra. 2003. Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorganica Chimica Acta 356: 328–334.

    CAS  Google Scholar 

  • Klejdus, B., L. Lojková, M. Plaza, M. Šnóblová, and D. Štěrbová. 2010. Hyphenated technique for the extraction and determination of isoflavones in algae: ultrasound-assisted supercritical fluid extraction followed by fast chromatography with tandem mass spectrometry. Journal of Chromatography. A 1217(51): 7956–7965.

    PubMed  CAS  Google Scholar 

  • Wang, H.M., J.L. Pan, C.Y. Chen, C.C. Chiu, M.H. Yang, H.W. Chang, et al. 2010. Identification of anti-lung cancer extract from Chlorella vulgaris C-C by antioxidant property using supercritical carbon dioxide extraction. Process Biochemistry 45: 1865–1872.

    CAS  Google Scholar 

  • Félix-Valenzuela, L., I. Higuera-Ciaparai, and F. Goycoolea-Valencia. 2001. Supercritical CO2/ethanol extraction of astaxanthin from blue crab (callinectes sapidus) shell waste. Journal of Food Process Engineering 24: 101–112.

    Google Scholar 

  • Yamaguchi, K., M. Murakami, H. Nakano, S. Konosu, T. Kokura, H. Yamamoto, et al. 1986. Supercritical carbon dioxide extraction of oils from Antarctic Krill. Journal of Agricultural and Food Chemistry 34: 904–907.

    CAS  Google Scholar 

  • Charest, D.J., M.O. Balaban, M.R. Marshall, and J.A. Cornell. 2001. Astaxanthin extraction from crawfish shells by supercritical CO2 with ethanol as cosolvent. Journal of Aquatic Food Product Technology 10: 79–93.

    CAS  Google Scholar 

  • Lin, W.-C., J.-T. Chien, and B.-H. Chen. 2005. Determination of carotenoids in spear shrimp shells (Parapenaeopsis hardwickii) by liquid chromatography. Journal of Agricultural and Food Chemistry 53: 5144–5149.

    PubMed  CAS  Google Scholar 

  • Kang, K.-Y., D.-H. Ahn, G.T. Wilkinson, and B.-S. Chun. 2005a. Extraction of lipids and cholesterol from squid oil with supercritical carbon dioxide. Korean Journal of Chemical Engineering 22: 399–405.

    CAS  Google Scholar 

  • Zhu, B.-W., L. Qin, D.-Y. Zhou, H.-T. Wu, J. Wu, J.-F. Yang, et al. 2010. Extraction of lipid from sea urchin (Strongylocentrotus nudus) gonad by enzyme-assisted aqueous and supercritical carbon dioxide methods. European Food Research and Technology 230: 737–743.

    CAS  Google Scholar 

  • Chun, B.-H., H. Kishimura, H. Kanzawa, S. Klomklao, S. Nalinanon, S. Benjakul, et al. 2010. Application of supercritical carbon dioxide for preparation of starfish phospholipase A2. Process Biochemistry 45: 689–693.

    CAS  Google Scholar 

  • Ferraro, V., I.B. Cruz, R. Ferreira Jorge, F.X. Malcata, M.E. Pintado, and P.M.L. Castro. 2010. Valorization of natural extracts from marine source focused on marine by-products: A review. Food Research International 43: 2221–2233.

    Google Scholar 

  • Rubio-Rodríguez, N., S. Beltrán, I. Jaime, S.M. de Diego, M.T. Sanz, and J. Rovilla Carballido. 2010. Production of omega-3 polyunsaturated fatty acid concentrates: a review. Innovative Food Science & Emerging Technologies 11: 1–12.

    Google Scholar 

  • Dunford, N.T., F. Temelli, and E. LeBlanc. 1997. Supercritical CO2 extraction of oil and residual proteins from atlantic mackerel (Scomber scombrus) as affected by moisture content. Journal of Food Science 62: 289–294.

    CAS  Google Scholar 

  • Dunford, N.T., M. Goto, and F. Temelli. 1998. Modeling of oil extraction with supercritical CO2 from Atlantic Mackerel (Scomber scombrus) at different moisture contents. The Journal of Supercritical Fluids 13: 303–309.

    CAS  Google Scholar 

  • Esquível, M.M., N.M. Bandarra, I. Fontan, M.G. Bernardo-Gil, I. Batista, M.L. Nunes, et al. 1997. Supercritical carbon dioxide extraction of sardine Sardina pilchardus oil. LWT-Food Science and Technology 30: 715–720.

    Google Scholar 

  • Létisse, M., M. Rozières, A. Hiol, M. Sergent, and L. Comeaua. 2006. Enrichment of EPA and DHA from sardine by supercritical fluid extraction without organic modifier I. Optimization of extraction conditions. Journal of Supercritical Fluids 38: 27–36.

    Google Scholar 

  • Rubio-Rodríguez, N., S.M. de Diego, S. Beltrán, I. Jaime, M.T. Sanz, and J. Rovira. 2008. Supercritical fluid extraction of the omega-3 rich oil contained in hake (Merluccius capensis–Merluccius paradoxus) by-products: study of the influence of process parameters on the extraction yield and oil quality. Journal of Supercritical Fluids 47: 215–226.

    Google Scholar 

  • Sahena, F., I.S.M. Zaidul, S. Jinap, M.H.A. Jahurul, A. Khatib, and N.A.N. Norulaini. 2010. Extraction of fish oil from the skin of Indian mackerel using supercritical fluids. Journal of Food Engineering 99: 63–69.

    CAS  Google Scholar 

  • Kang, K.-Y., D.-H. Ahn, S.-M. Jung, D.-H. Kim, and B.-S. Chun. 2005b. Separation of protein and fatty acids from tuna viscera using supercritical carbon dioxide. Biotechnology and Bioprocess Engineering 10: 315–321.

    CAS  Google Scholar 

  • Létisse, M., and L. Comeau. 2008. Enrichment of eicosapentaenoic acid and docosahexaenoic acid from sardine by-products by supercritical fluid fractionation. Journal of Separation Science 31: 1374–1380.

    PubMed  Google Scholar 

  • Chang, L.-H., C.-T. Shen, S.-J. Hsieh, S.-L. Hsu, H.-C. Chang, J. Chieh-Ming, et al. 2008. Recovery and enhancement of unsaturated fatty acids in soft-shelled turtle fish oil using supercritical carbon dioxide and associated catalase release activity. Separation and Purification Technology 64: 213–220.

    CAS  Google Scholar 

  • Fleck, U., C. Tiegs, and G. Brunner. 1998. Fractionation of fatty acid ethyl esters by supercritical CO2: High separation efficiency using an automated countercurrent column. Journal of Supercritical Fluids 14: 67–74.

    CAS  Google Scholar 

  • Perretti, G., A. Motori, E. Bravi, F. Favati, L. Montanari, and P. Fantozzi. 2007. Supercritical carbon dioxide fractionation of fish oil fatty acid ethyl esters. Journal of Supercritical Fluids 40: 349–353.

    CAS  Google Scholar 

  • Davarnejad, R., K.M. Kassim, A. Zainal, and S.A. Sata. 2008. Extraction of fish oil by fractionation through supercritical carbon dioxide. Journal of Chemical & Engineering Data 53: 2128–2132.

    CAS  Google Scholar 

  • Riha, V., and G. Brunner. 1999. Phase equilibrium of fish oil ethyl esters with supercritical carbon dioxide. Journal of Supercritical Fluids 15: 33–50.

    CAS  Google Scholar 

  • Riha, V., and G. Brunner. 2000. Separation of fish oil ethyl esters with supercritical carbon dioxide. Journal of Supercritical Fluids 17: 55–64.

    CAS  Google Scholar 

  • Brunner, G. 2000. Fractionation of fats with supercritical carbon dioxide. European Journal of Lipid Science and Technology 102: 240–244.

    CAS  Google Scholar 

  • Espinosa, S., S. Diaz, and E.A. Brignole. 2002. Thermodynamic modeling and process optimization of supercritical fluid fractionation of fish oil fatty acid ethyl esters. Industrial and Engineering Chemistry Research 41: 1516–1527.

    CAS  Google Scholar 

  • Espinosa, S., M.S. Diaz, and E.A. Brignole. 2008. Food additives obtained by supercritical extraction from natural sources. Journal of Supercritical Fluids 45: 213–219.

    CAS  Google Scholar 

  • Gironi, F., and M. Maschietti. 2006. Separation of fish oils ethyl esters by means of supercritical carbon dioxide: thermodynamic analysis and process modelling. Chemical Engineering Science 61: 5114–5126.

    CAS  Google Scholar 

  • Martín, A., and M.J. Cocero. 2007. Mathematical modeling of the fractionation of liquids with supercritical CO2 in a countercurrent packed column. Journal of Supercritical Fluids 39: 304–314.

    Google Scholar 

  • Catchpole, O.J., J.B. Grey, and K.A. Noermark. 2000. Fractionation of fish oils using supercritical CO2 and CO2_ethanol mixtures. Journal of Supercritical Fluids 19: 25–37.

    Google Scholar 

  • Sarrade, S.J., G.M. Rios, and M. Carlés. 1998. Supercritical CO2 extraction coupled with nanofiltration separation. Applications to natural products. Separation and Purification Technology 14: 19–25.

    CAS  Google Scholar 

  • Antunes Corrêa, A.P., C. Arantes Peixoto, L.A. Guaraldo Gonçalves, and F.A. Cabral. 2008. Fractionation of fish oil with supercritical carbon dioxide. Journal of Food Engineering 88: 381–387.

    Google Scholar 

  • Alkio, M., C. González, M. Jäntti, and O. Aaltonen. 2000. Purification of polyunsaturated fatty acid esters from tuna oil with supercritical fluid chromatography. Journal of the American Oil Chemists’ Society 77: 315–321.

    CAS  Google Scholar 

  • Petinello, G., A. Bertucco, P. Pallado, and A. Stassi. 2000. Production of EPA enriched mixtures by supercritical fluid chromatography: From the laboratory scale to the pilot plant. Journal of Supercritical Fluids 19: 51–60.

    Google Scholar 

  • Nieto, A., F. Borrull, E. Pocurull, and R.M. Marcé. 2010. Pressurized liquid extraction: a useful technique to extract pharmaceuticals and personal-care products from sewage sludge. TrAC Trends in Analytical Chemistry 29: 752–764.

    CAS  Google Scholar 

  • Richter, B.E., B.A. Jones, J.L. Ezzell, N.L. Porter, N. Avdalovic, and C. Pohl. 1996. Accelerated solvent extraction: a technique for sample preparation. Analytical Chemistry 68: 1033–1039.

    CAS  Google Scholar 

  • Breithaupt, D.E. 2004. Simultaneous HPLC determination of carotenoids used as food coloring additives: applicability of accelerated solvent extraction. Food Chemistry 86(3): 449–456.

    CAS  Google Scholar 

  • Herrero, M., L. Jaime, P.J. Martín-Álvarez, A. Cifuentes, and E. Ibáñez. 2006b. Optimization of the extraction of antioxidants from Dunaliella salina microalga by pressurized liquids. Journal of Agricultural and Food Chemistry 54: 5597–5603.

    PubMed  CAS  Google Scholar 

  • Plaza, M., S. Santoyo, L. Jaime, G. Garcia-Blairsy, M. Herrero, F.J. Señorans, et al. 2010a. Screening for bioactive compounds from algae. Journal of Pharmaceutical and Biomedical Analysis 51: 450–455.

    PubMed  CAS  Google Scholar 

  • Santoyo, S., I. Rodriguez-Meizoso, A. Cifuentes, L. Jaime, G. García-Blairsy Reina, F.J. Señoráns, et al. 2009. Green processes based on the extraction with pressurized fluids to obtain potent antimicrobials from Haematococcus pluvialis microalgae. LWT — Food Science and Technology 42: 1213–1218.

    CAS  Google Scholar 

  • Herrero, M., P.J. Martín-Álvarez, F.J. Señoráns, A. Cifuentes, and E. Ibáñez. 2005a. Optimization of accelerated solvent extraction of antioxidants from Spirulina platensis microalga. Food Chemistry 93: 417–423.

    CAS  Google Scholar 

  • Herrero, M., M.J. Vicente, A. Cifuentes, and E. Ibáñez. 2007. Characterization by high-performance liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry of the lipid fraction of Spirulina platensis pressurized ethanol extract. Rapid Communications in Mass Spectrometry 21: 1729–1738.

    PubMed  CAS  Google Scholar 

  • Jaime, L., J.A. Mendiola, M. Herrero, C. Soler, S. Santoyo, F.J. Señoráns, et al. 2005. Separation and characterizationof antioxidants from Spirulina platensis microalga combining pressurized liquid extraction, TLC and HPLC-DAD. Journal of Separation Science 28: 2111–2119.

    PubMed  CAS  Google Scholar 

  • Shang, Y.F., S.M. Kim, W.J. Lee, and B.-H. Um. 2011. Pressurized liquid method for fucoxanthin extraction from Eisenia bicyclis (Kjellman) Setchell. Journal of Bioscience and Bioengineering 111(2): 237–241.

    PubMed  CAS  Google Scholar 

  • Plaza, M. 2010. Búsqueda de nuevos ingredientes funcionales naturales procedentes de algas (PhD Thesis), Universidad Autónoma de Madrid, http://hdl.handle.net/10486/5984.

  • López, A., M. Rico, and A. Rivero. 2011. The effects of solvents on the phenolic contents and antioxidant activity of Stypocaulon scoparium algae extracts. Food Chemistry 125(3): 1104–1109.

    Google Scholar 

  • Onofrejová, L., J. Vašíčková, B. Klejdus, P. Stratil, L. Mišurcová, S. Kráčmar, et al. 2010. Bioactive phenols in algae: the application of pressurized-liquid and solid-phase extraction techniques. Journal of Pharmaceutical and Biomedical Analysis 51(2): 464–470.

    PubMed  Google Scholar 

  • Quan, C., and C. Turner. 2009. Extraction of astaxanthin from shrimp waste using pressurized hot ethanol. Chromatographia 70: 247–251.

    CAS  Google Scholar 

  • Rubio, B.K., R.W.M. van Soest, and P. Crews. 2007. Extending the record of meroditerpenes from cacospongia marine sponges. Journal of Natural Products 70: 628–631.

    PubMed  CAS  Google Scholar 

  • Johnson, T.A., T. Amagata, K.V. Sashidhrar, A.G. Oliver, K. Tenney, T. Matainaho, et al. 2009. The aignopsanes, a new class of sesquiterpenes from selectes chemotypes of the sponge cascospongia mycofijiensis. Organic Letters 11: 1975–1978.

    PubMed  CAS  Google Scholar 

  • Johnson, T.A., M.V.C. Morgan, N.A. Aratow, S.A. Estee, K.V. Sashidhara, S.T. Loveridge, et al. 2010. Assessing pressurized liquid extraction for the high throughput extraction of marine-sponge-derived natural products. Journal of Natural Products 73: 359–364.

    PubMed  CAS  Google Scholar 

  • Dodds, E., M.R. McCoy, A. Geldenhuys, L.D. Rea, and J.M. Kennish. 2004. Microscale recovery of total lipids from fish tissues by accelerated solvent extraction. Journal of the American Oil Chemists’ Society 81: 835–840.

    CAS  Google Scholar 

  • Isaac, G., M. Waldebäck, U. Eriksson, G. Odham, and K.E. Markides. 2005. Total lipid extraction of homogenized and intact lean fish muscles using pressurized fluid extraction and batch extraction techniques. Journal of Agricultural and Food Chemistry 53: 5506–5512.

    PubMed  CAS  Google Scholar 

  • Spiric, A., D. Trbovic, D. Vrabic, J. Djinovic, R. Petronijevic, and V. Matekalo-Sverak. 2010. Statistical evaluation of fatty acid profile and cholesterol content in fish (common carp) lipids obtained by different sample preparation procedures. Analytica Chimica Acta 672: 66–71.

    PubMed  CAS  Google Scholar 

  • Turner, C., and E. Ibañez. 2011. Pressurized hot water extraction. In Enhancing Extraction Processes in the Food Industry, ed. N. Lebovka, E. Vorobiev, and F. Chemat. Boca Ratón FL: Taylor & Francis Group, LLC. expected September 2011.

    Google Scholar 

  • Teo, C.C., S.N. Tan, J.W.H. Yong, C.S. Hew, and E.S. Ong. 2010. Pressurized hot water extraction (PHWE). Journal of Chromatography. A 1217: 2484–2494.

    PubMed  CAS  Google Scholar 

  • Golmohamad, F., M.H. Eikani, and S. Shokrollahzadeh. 2008. Review on extraction of medicinal plants constituents by superheated water. Journal of Medicinal Plants 7: 1–24.

    Google Scholar 

  • Ong, E.S., J.S.H. Cheong, and D. Goh. 2006. Pressurized hot water extraction of bioactive or marker compounds in botanicals and medicinal plant materials. Journal of Chromatography. A 1112: 92–102.

    PubMed  CAS  Google Scholar 

  • Wang, L.J., and C.L. Weller. 2006. Recent advances in extraction of nutraceuticals from plants. Trends in Food Science & Technology 17: 300–312.

    CAS  Google Scholar 

  • King, J.W. 2006. Pressurized water extraction: resources and techniques for optimizing analytical applications. ACS Symposium Series 926: 79–95.

    CAS  Google Scholar 

  • Rodriguez-Meizoso, I., L. Jaime, S. Santoyo, F.J. Señoráns, A. Cifuentes, and E. Ibáñez. 2010. Subcritical water extraction and characterization of bioactive compounds from Haematococcus pluvialis microalga. Journal of Pharmaceutical and Biomedical Analysis 51(2): 456–463.

    PubMed  CAS  Google Scholar 

  • Plaza, M., M. Amigo-Benavent, M.D. del Castillo, E. Ibáñez, and M. Herrero. 2010b. Facts about the formation of new antioxidants in natural samples after subcritical water extraction. Food Research International 43(10): 2341–2348.

    CAS  Google Scholar 

  • Herrero, M., C. Simo, E. Ibáñez, and A. Cifuentes. 2005b. Capillary electrophoresis-mass spectrometry of Spirulina platensis proteins obtained by pressurized liquid extraction. Electrophoresis 26: 4215–4224.

    PubMed  CAS  Google Scholar 

  • Tavakoli, O., and H. Yoshida. 2006a. Conversion of scallop viscera wastes to valuable compounds using sub-critical water. Green Chemistry 8: 100–106.

    CAS  Google Scholar 

  • Yoshida, H., and O. Tavakoli. 2004. Sub-critical water hydrolysis treatment for waste squid entrails and production of amino acids, organic acids, and fatty acids. Journal of Chemical Engineering of Japan 37: 253–260.

    CAS  Google Scholar 

  • Tavakoli, O., and H. Yoshida. 2006b. Squid oil and fat production from squid wasted using subcritical water hydrolysis: free fatty acids and transesterification. Industrial and Engineering Chemistry Research 45: 5675–5680.

    CAS  Google Scholar 

  • Uddin, Md.S., H.-Y. Ahn, H. Kishimura, and B.-S. Chun. 2010. Production of valued materials from squid viscera by supercritical water hydrolysis. Journal of Environmental Biology 31: 675–679.

    PubMed  CAS  Google Scholar 

  • MD Uddin, S., H.-M. Ahn, H. Kishimura, and B.-S. Chun. 2009. Comparative study of digestive enzymes of squid (Todarodes pacifius) viscera after supercritical carbon dioxide and organic solvent extraction. Biotechnology and Bioprocess Engineering 14: 338–344.

    CAS  Google Scholar 

  • Yoshida, H., M. Terashima, and Y. Takahashi. 1999. Production of organic acids and amino acids from fish meat by subcritical water hydrolysis. Biotechnology Progress 15: 1090–1094.

    PubMed  CAS  Google Scholar 

  • Yoshida, H., Y. Takahashi, and M. Terashima. 2003. A simplified reaction model for production of oil, amino acids, and organic acids from fish meat by hidrolysis under sub-critical and supercritical conditions. Journal of Chemical Engineering of Japan 36: 441–448.

    CAS  Google Scholar 

  • Kang, K., A.T. Quitain, H. Daimon, R. Noda, N. Goto, H.-Y. Hu, et al. 2001. Optimization of amino acids production from waste fish entrails by hydrolysis in sub- and supercritical water. The Canadian Journal of Chemical Engineering 79: 65–70.

    CAS  Google Scholar 

  • Ying, Z., X. Han, and J. Li. 2011. Ultrasound-assisted extraction of polysaccharides from mulberry leaves. Food Chemistry 127: 1273–1279.

    CAS  Google Scholar 

  • Ötles, S. 2009. Handbook of Food Analysis Instruments, 1st ed. Boca Raton: CRC Press Taylor & Francis Group.

    Google Scholar 

  • Hu, A.J., S. Zhao, H. Liang, T.Q. Qiu, and G. Chen. 2007. Ultrasound assisted supercritical fluid extraction of oil and coixenolide from adlay seed. Ultrasonics Sonochemistry 14: 219–224.

    PubMed  CAS  Google Scholar 

  • Ganzler, K., A. Salgó, and K. Valkó. 1986. Microwave extraction: a novel sample preparation method for chromatography. Journal of Chromatography. A 371: 299–306.

    CAS  Google Scholar 

  • Worsfold, P., A. Townshend, and C. Poole. 2005. Encyclopedia of Analytical Science, 2nd ed. Boston: Elsevier.

    Google Scholar 

  • Garcia-Ayuso, L.E., M. Sanchez, A.A. de Fernandez, and C.M.D. Luque De. 1998. Focused microwave-assisted soxhlet: an advantageous tool for sample extraction. Analytical Chemistry 70: 2426–2431.

    PubMed  CAS  Google Scholar 

  • Pasquet, V., J.R. Chérouvrier, F. Farhat, V. Thiéry, J.M. Piot, J.B. Bérard, et al. 2011. Study on the microalgal pigments extraction process: performance of microwave assisted extraction. Process Biochemistry 46(1): 59–67.

    CAS  Google Scholar 

  • Macías-Sánchez, M.D., C. Mantell, M. Rodríguez, O.E. de la Martínez, L.M. Lubián, and O. Montero. 2009. Comparison of supercritical fluid and ultrasound-assisted extraction of carotenoids and chlorophyll a from Dunaliella salina. Talanta 77(3): 948–952.

    PubMed  Google Scholar 

  • Araujo, G.S., L.J.B.L. Matos, L.R.B. Gonçalves, F.A.N. Fernandes, and W.R.L. Farias. 2011. Bioprospecting for oil producing microalgal strains: evaluation of oil and biomass production for ten microalgal strains. Bioresource Technology 102(8): 5248–5250.

    PubMed  CAS  Google Scholar 

  • Mendiola, J.A., C.F. Torres, A. Toré, P.J. Martín-Álvarez, S. Santoyo, B.O. Arredondo, et al. 2007b. Use of supercritical CO2 to obtain extracts with antimicrobial activity from Chaetoceros muelleri microalga. A correlation with their lipidic content. European Food Research and Technology 224(4): 505–510.

    CAS  Google Scholar 

  • Cravotto, G., L. Boffa, S. Mantegna, P. Perego, M. Avogadro, and P. Cintas. 2008. Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Ultrasonics Sonochemistry 15(5): 898–902.

    PubMed  CAS  Google Scholar 

  • Batista, A., W. Vetter, and B. Luckas. 2001. Use of focused open vessel microwave-assisted extraction as prelude for the determination of the fatty acid profile of fish – a comparison with results obtained after liquid-liquid extraction according to Bligh and Dyer. European Food Research and Technology 212: 377–384.

    CAS  Google Scholar 

  • Pronyk, C., and G. Mazza. 2009. Design and scale-up of pressurized fluid extractors for food and bioproducts. Review. Journal of Food Engineering 95: 215–226.

    CAS  Google Scholar 

  • del Valle, J.M., and J.C. de la Fuente. 2006. Supercritical CO2 extraction of oilseeds: Review of kinetic and equilibrium models. Critical Reviews in Food Science and Nutrition 46: 131–160.

    PubMed  Google Scholar 

  • Meireles, M.A.A. 2003. Supercritical extraction from solid: Process design data (2001–2003). Current Opinion in Solid State and Materials Science 7: 321–330.

    CAS  Google Scholar 

  • Berna, A., A. Tarrega, M. Blasco, and S. Subirats. 2002. Supercritical CO2 extraction of essential oil from orange peel; effect of the height of the bed. Journal of Supercritical Fluids 18: 227–237.

    Google Scholar 

  • Lagadec, A.J.M., D.J. Miller, A.L. Lilke, and S.B. Hawthorne. 2000. Pilot-scale subcritical water remediation of polycyclic aromatic hydrocarbon – and pesticide contaminated soil. Environmental Science & Technology 34: 1542–1548.

    CAS  Google Scholar 

  • Terigar, B.G., S. Balasubramanian, C.M. Sabliov, M. Lima, and D. Boldor. 2011. Soybean and rice bran oil extraction in a continuous microwave system: from laboratory- to pilot-scale. Journal of Food Engineering 104: 208–217.

    CAS  Google Scholar 

  • Boonkird, S., C. Phisalaphong, and M. Phisalaphong. 2008. Ultrasound-assisted extraction of capsaicinoids from Capsicum frutescens on a lab- and pilot-plant scale. Ultrasonics Sonochemistry 15: 1075–1079.

    PubMed  CAS  Google Scholar 

  • King, J.W., and K. Srinivas. 2009. Multiple unit processing using sub- and supercritical fluids. Journal of Supercritical Fluids 47: 598–610.

    CAS  Google Scholar 

  • Liau, B.H., C.T. Shen, F.P. Liang, S.E. Hong, S.L. Hsu, T.T. Jong, et al. 2010. Supercritical fluids extraction and anti-solvent purification of carotenoids from microalgae and associated bioactivity. Journal of Supercritical Fluids 55: 169–175.

    CAS  Google Scholar 

  • Siriwardhana, N., K.N. Kim, K.W. Lee, S.H. Kim, J.H. Ha, C.B. Song, et al. 2008. Optimisation of hydrophilic antioxidant extraction from Hizikia fusiformis by integrating treatments of enzymes, heat and pH control. International Journal of Food Science and Technology 43: 587–596.

    CAS  Google Scholar 

  • Athukorala, Y., K.N. Kim, and Y.J. Jeon. 2006. Antiproliferative and antioxidant properties of an enzymatic hydrolysate from brown alga, Ecklonia cava. Food and Chemical Toxicology 44: 1065–1074.

    PubMed  CAS  Google Scholar 

  • Moreda-Piñeiro, A., A. Bermejo-Barrera, P. Bermejo-Barrera, J. Moreda-Piñeiro, E. Alonso-Rodriguez, S. Muniategui-Lorenzo, et al. 2007. Feasibility of pressurization to speed up enzymatic hydrolysis of biological materials for multielement determinations. Analytical Chemistry 79: 1797–1805.

    PubMed  Google Scholar 

  • Turner, C., P. Turner, G. Jacobson, K. Almgren, M. Waldebäck, P. Sjöberg, et al. 2006. Subcritical water extraction and b-glucosidase-catalyzed hydrolysis of quercetin glycosides in onion waste. Green Chemistry 8: 949–959.

    CAS  Google Scholar 

  • Lindahl, S., A. Ekman, S. Khan, C. Wennerberg, P. Borjesson, P.J.R. Sjoberg, et al. 2010. Exploring the possibility of using a thermostable mutant of beta-glucosidase for rapid hydrolysis of quercetin glucosides in hot water. Green Chemistry 12: 159–168.

    CAS  Google Scholar 

  • Heo, S.J., E.J. Park, K.W. Lee, and Y.J. Jeon. 2005. Antioxidant activities of enzymatic extracts from brown seaweeds. Bioresource Technology 96: 1613–1623.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Ibañez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ibañez, E., Herrero, M., Mendiola, J.A., Castro-Puyana, M. (2012). Extraction and Characterization of Bioactive Compounds with Health Benefits from Marine Resources: Macro and Micro Algae, Cyanobacteria, and Invertebrates. In: Hayes, M. (eds) Marine Bioactive Compounds. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1247-2_2

Download citation

Publish with us

Policies and ethics