Skip to main content

The Cognitive Neuroscience of True and False Memories

  • Chapter
  • First Online:
True and False Recovered Memories

Part of the book series: Nebraska Symposium on Motivation ((NSM,volume 58))

Abstract

Of central relevance to the recovered/false memory debate is understanding the factors that cause us to believe that a mental experience is a memory of an actual past experience. According to the source monitoring framework (SMF), memories are attributions that we make about our mental experiences based on their subjective qualities, our prior knowledge and beliefs, our motives and goals, and the social context. From this perspective, we discuss cognitive behavioral studies using both objective (e.g., recognition, source memory) and subjective (e.g., ratings of memory characteristics) measures that provide much information about the encoding, revival and monitoring processes that yield both true and false memories. The chapter also considers how neuroimaging findings, especially from functional magnetic resonance imaging studies, are contributing to our understanding of the relation between memory and reality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that there were differences among professional groups in the level of endorsement of memory recovery work. In general, the psychiatrists were most likely to endorse the idea of memory fallibility and social workers the least likely. The reverse was true for endorsing the validity of recovered memories, with social workers being most likely to believe in the validity of such memories and psychiatrist the most skeptical. Respondents were also asked to indicate which, of a list of 13 memory recovery techniques, they either use or suggest clients use to “help them remember childhood events”. Social workers and psychologists endorsed more of these techniques (M’s  =  3) than did psychiatrists (M  =  2), and they also rejected fewer as totally inappropriate (M’s: social workers  =  1, psychologists  =  2) than did psychiatrists (M  =  4).

  2. 2.

    rTMS is a non-invasive method for stimulating specific clusters of neurons; it can serve as a temporary virtual “knockout” to investigate the causal role of particular brain areas, as described here.

References

  • Ackil, J. K., & Zaragoza, M. S. (1998). Memorial consequences of forced confabulation: Age differences in susceptibility to false memories. Developmental Psychology, 34, 1358–1372.

    PubMed  Google Scholar 

  • Addis, D. R., Moscovitch, M., Crawley, A. P., & McAndrews, M. P. (2004). Recollective qualities modulate hippocampal activation during autobiographical memory retrieval. Hippocampus, 14, 752–762.

    PubMed  Google Scholar 

  • Aguirre, G. K., Detre, J. A., Alsop, D. C., & D’Esposito, M. (1996). The parahippocampus subserves topographical learning in man. Cerebral Cortex, 6, 823–829.

    PubMed  Google Scholar 

  • Aminoff, E., Schacter, D. L., & Bar, M. (2008). The cortical underpinnings of context-based memory distortion. Journal of Cognitive Neuroscience, 20, 2226–2237.

    PubMed  Google Scholar 

  • Amodio, D. M., & Frith, C. D. (2006). Meeting of minds: The medial frontal cortex and social cognition. Nature Reviews. Neuroscience, 7, 268–277.

    PubMed  Google Scholar 

  • Anderson, A. K., Christoff, K., Stappen, I., Panitz, D., Ghahremani, D. G., Glover, G., et al. (2003). Dissociated neural representations of intensity and valence in human olfaction. Nature Neuroscience, 6, 196–202.

    PubMed  Google Scholar 

  • Anderson, M. C., & Huddleston, E. (2012). Towards a cognitive and neurobiological model of motivated forgetting. In R. F. Belli (Ed.), True and false recovered memories: Toward a reconciliation of the debate (pp. 53–120). Vol. 58: Nebraska Symposium on Motivation. New York: Springer.

    Google Scholar 

  • Anderson, R. E. (1984). Did I do it or did I only imagine doing it? Journal of Experimental Psychology: General, 113, 594–613.

    Google Scholar 

  • Anisfeld, M., & Knapp, M. (1968). Association, synonymity, and directionality in false recognition. Journal of Experimental Psychology, 77, 171–179.

    PubMed  Google Scholar 

  • Arnold, M. M., & Lindsay, D. S. (2002). Remembering remembering. Journal of Experimental Psychology. Learning, Memory, and Cognition, 28, 521–529.

    PubMed  Google Scholar 

  • Awh, E., Jonides, J., Smith, E. E., Schumacher, E. H., Koeppe, R. A., & Katz, S. (1996). Dissociation of storage and rehearsal in verbal working memory: Evidence from positron emission tomography. Psychological Science, 7, 25–31.

    Google Scholar 

  • Badre, D., Poldrack, R. A., Pare-Blagoev, E. J., Insler, R. Z., & Wagner, A. D. (2005). Dissociable controlled retrieval and generalized selection mechanisms in ventrolateral prefrontal cortex. Neuron, 47, 907–918.

    PubMed  Google Scholar 

  • Banaji, M. R., & Crowder, R. G. (1989). The bankruptcy of everyday memory. The American Psychologist, 44, 1185–1193.

    Google Scholar 

  • Barber, S. J., Gordon, R., & Franklin, N. (2009). Self-relevance and wishful thinking: Facilitation and distortion in source monitoring. Memory & Cognition, 37, 434–446.

    Google Scholar 

  • Barlett, F. C. (1932). Remembering: A study in experimental and social psychology. Cambridge, England: Cambridge University Press.

    Google Scholar 

  • Baym, C. L., & Gonsalves, B. D. (2010). Comparison of neural activity that leads to true memories, false memories, and forgetting: An fMRI study of the misinformation effect. Cognitive, Affective, & Behavioral Neuroscience, 10, 339–348.

    Google Scholar 

  • Belli, R. F., & Loftus, E. F. (1994). Recovered memories of childhood abuse: A source monitoring perspective. In S. J. Lynn & J. W. Rhue (Eds.), Dissociations: Clinical and theoretical perspectives (pp. 415–433). New York: Guilford Press.

    Google Scholar 

  • Belli, R. F., Winkielman, P., Read, J. D., Schwarz, N., & Lynn, S. J. (1998). Recalling more childhood events leads to judgments of poorer memory: Implications for the recovered/false memory debate. Psychonomic Bulletin & Review, 5, 318–323.

    Google Scholar 

  • Berryhill, M. E., Phuong, L., Picasso, L., Cabeza, R., & Olson, I. R. (2007). Parietal lobe and episodic memory: Bilateral damage causes impaired free recall of autobiographical memory. The Journal of Neuroscience, 27, 14415–14423.

    PubMed  Google Scholar 

  • Blumenfeld, R. S., & Ranganath, C. (2007). Prefrontal cortex and long-term memory encoding: An integrative review of findings from neuropsychology and neuroimaging. The Neuroscientist, 13, 280–291.

    PubMed  Google Scholar 

  • Boggio, P. S., Fregni, F., Valasek, C., Ellwood, S., Chi, R., Gallate, J., et al. (2009). Temporal lobe cortical electrical stimulation during the encoding and retrieval phase reduces false memories. PloS One, 4, e4959. doi:10.1371/journal.pone.0004959.

    PubMed  Google Scholar 

  • Bor, D., Duncan, J., Wiseman, R. J., & Owen, A. M. (2003). Encoding strategies dissociate prefrontal activity from working memory demand. Neuron, 37, 361–367.

    PubMed  Google Scholar 

  • Bransford, J. D., & Franks, J. J. (1971). The abstraction of linguistic ideas. Cognitive Psychology, 2, 331–350.

    Google Scholar 

  • Bransford, J. D., & Johnson, M. K. (1972). Contextual prerequisites for understanding: Some investigations of comprehension and recall. Journal of Verbal Learning and Verbal Behavior, 11, 717–726.

    Google Scholar 

  • Bransford, J. D., & Johnson, M. K. (1973). Considerations of some problems of comprehension. In W. Chase (Ed.), Visual information processing (pp. 383–438). New York: Academic.

    Google Scholar 

  • Bremner, J. D., Randall, P., Scott, T. M., Bronen, R. A., Seibyl, J. P., Southwick, S. M., et al. (1995). MRI-based measurement of hippocampal volume in patients with combat-related posttraumatic stress disorder. The American Journal of Psychiatry, 152, 973–981.

    PubMed  Google Scholar 

  • Bremner, J. D., Randall, P., Vermetten, E., Staib, L., Bronen, R. A., Mazure, C., et al. (1997). Magnetic resonance imaging-based measurement of hippocampal volume in posttraumatic stress disorder related to childhood physical and sexual abuse: A preliminary report. Biological Psychiatry, 41, 23–32.

    PubMed  Google Scholar 

  • Brewin, C. R. (2012). A theoretical framework for understanding recovered memory experiences. In R. F. Belli (Ed.), True and false recovered memories: Toward a reconciliation of the debate (pp. 149–173). Vol. 58: Nebraska Symposium on Motivation. New York: Springer.

    Google Scholar 

  • Brewin, C. R., Gregory, J. D., Lipton, M., & Burgess, N. (2010). Intrusive images in psychological disorders: Characteristics, neural mechanisms, and treatment implications. Psychological Review, 117, 210–232.

    PubMed  Google Scholar 

  • Brown, M. W., & Aggleton, J. P. (2001). Recognition memory: What are the roles of the perirhinal cortex and hippocampus? Nature Reviews. Neuroscience, 2, 51–61.

    PubMed  Google Scholar 

  • Cabeza, R. (2008). Role of parietal regions in episodic memory retrieval: The dual attentional processes hypothesis. Neuropsychologia, 46, 1813–1827.

    PubMed  Google Scholar 

  • Cahill, L., Babinsky, R., Markowitsch, H. J., & McGaugh, J. L. (1995). The amygdala and emotional memory. Nature, 377, 295–296.

    PubMed  Google Scholar 

  • Cahill, L., Haier, R. J., Fallon, J., Alkire, M. T., Tang, C., Keator, D., et al. (1996). Amygdala activity at encoding correlated with long-term, free recall of emotional information. Proceedings for the National Academy of Sciences of the United States of America, 93, 8016–8021.

    Google Scholar 

  • Canli, T. (2004). Functional brain mapping of extraversion and neuroticism: Learning from individual differences in emotion processing. Journal of Personality, 72, 1105–1132.

    PubMed  Google Scholar 

  • Canli, T., & Lesch, K. P. (2007). Long story short: The serotonin transporter in emotion regulation and social cognition. Nature Neuroscience, 10, 1103–1109.

    PubMed  Google Scholar 

  • Canli, T., Zhao, Z., Brewer, J., Gabrieli, J. D., & Cahill, L. (2000). Event-related activation in the human amygdala associates with later memory for individual emotional experience. The Journal of Neuroscience, 20, RC99.

    PubMed  Google Scholar 

  • Cansino, S., Maquet, P., Dolan, R. J., & Rugg, M. D. (2002). Brain activity underlying encoding and retrieval of source memory. Cerebral Cortex, 12, 1049–1056.

    Google Scholar 

  • Carmichael, L., Hogan, H. P., & Walter, A. A. (1932). An experimental study of the effect of language on the reproduction of visually perceived form. Journal of Experimental Psychology, 15, 73–86.

    Google Scholar 

  • Carstensen, L. L., & Mikels, J. A. (2005). At the intersection of emotion and cognition: Aging and the positivity effect. Current Directions in Psychological Science, 14, 117–121.

    Google Scholar 

  • Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: A review of its functional anatomy and behavioural correlates. Brain, 129, 564–583.

    PubMed  Google Scholar 

  • Ceci, S. J., Huffman, M., Smith, E., & Loftus, E. F. (1994). Repeatedly thinking about a non-event: Source misattributions among preschoolers. Consciousness and Cognition, 3, 388–407.

    Google Scholar 

  • Chalfonte, B. L., & Johnson, M. K. (1996). Feature memory and binding in young and older adults. Memory & Cognition, 24, 403–416.

    Google Scholar 

  • Chao, L. L., & Martin, A. (1999). Cortical regions associated with perceiving, naming, and knowing about colors. Journal of Cognitive Neuroscience, 11, 25–35.

    PubMed  Google Scholar 

  • Chrobak, Q., & Zaragoza, M. S. (2009). The cognitive consequences of forced fabrication: Evidence from studies of eyewitness suggestibility. In W. Hirstein (Ed.), Confabulation: Views from neuroscience, psychiatry, psychology and philosophy (pp. 67–90). Cambridge, MA: MIT Press.

    Google Scholar 

  • Ciaramelli, E., Grady, C. L., & Moscovitch, M. (2008). Top-down and bottom-up attention to memory: A hypothesis (AtoM) on the role of the posterior parietal cortex in memory retrieval. Neuropsychologia, 46, 1828–1851.

    PubMed  Google Scholar 

  • Clancy, S. A., McNally, R. J., Schacter, D. L., Lenzenweger, M. F., & Pitman, R. K. (2002). Memory distortion in people reporting abduction by aliens. Journal of Abnormal Psychology, 111, 455–461.

    PubMed  Google Scholar 

  • Cohen, L., & Dehaene, S. (2004). Specialization within the ventral stream: The case for the visual word form area. NeuroImage, 22, 466–476.

    PubMed  Google Scholar 

  • Cramer, P. (1970). Semantic generalization: Demonstration of an associative gradient. Journal of Experimental Psychology, 83, 164–172.

    Google Scholar 

  • Cunningham, W. A., Raye, C. L., & Johnson, M. K. (2004). Implicit and explicit evaluation: FMRI correlates of valence, emotional intensity, and control in the processing of attitudes. Journal of Cognitive Neuroscience, 16, 1717–1729.

    PubMed  Google Scholar 

  • D’Esposito, M., & Postle, B. R. (1999). The dependence of span and delayed-response performance on prefrontal cortex. Neuropsychologia, 37, 1303–1315.

    Google Scholar 

  • Damasio, A. R., Graff-Radford, N. R., Eslinger, P. J., Damasio, H., & Kassell, N. (1985). Amnesia following basal forebrain lesions. Archives of Neurology, 42, 263–271.

    PubMed  Google Scholar 

  • Darsaud, A., Dehon, H., Lahl, O., Sterpenich, V., Boly, M., Dang-Vu, T., et al. (2011). Does sleep promote false memories? Journal of Cognitive Neuroscience, 23, 26–40.

    PubMed  Google Scholar 

  • Davachi, L. (2006). Item, context and relational episodic encoding in humans. Current Opinion in Neurobiology, 16, 693–700.

    PubMed  Google Scholar 

  • Davachi, L., & Dobbins, I. G. (2008). Declarative memory. Current Directions in Psychological Science, 17, 112–118.

    PubMed  Google Scholar 

  • Davachi, L., Mitchell, J. P., & Wagner, A. D. (2003). Multiple routes to memory: Distinct medial temporal lobe processes build item and source memories. Proceedings of the National Academy of Sciences of the United States of America, 100, 2157–2162.

    PubMed  Google Scholar 

  • de Quervain, D. J., Kolassa, I. T., Ertl, V., Onyut, P. L., Neuner, F., Elbert, T., et al. (2007). A deletion variant of the alpha2b-adrenoceptor is related to emotional memory in Europeans and Africans. Nature Neuroscience, 10, 1137–1139.

    PubMed  Google Scholar 

  • Deese, J. (1959). On the prediction of occurrence of particular verbal intrusions in immediate recall. Journal of Experimental Psychology, 58, 17–22.

    PubMed  Google Scholar 

  • Dehon, H., & Bredart, S. (2004). False memories: Young and older adults think of semantic associates at the same rate, but young adults are more successful at source monitoring. Psychology and Aging, 19, 191–197.

    PubMed  Google Scholar 

  • DePrince, A. P., Allard, C. B., Oh, H., & Freyd, J. J. (2004). What’s in a name for memory errors? Implications and ethical issues arising from the use of the term “false memory” for errors in memory for details. Ethics & Behavior, 14, 201–233.

    Google Scholar 

  • DePrince, A., Brown, L., Cheit, R., Freyd, J., Gold, S. N., Pezdek, K., & Quina, K. (2012). Motivated forgetting and misremembering: Perspectives from Betrayal Trauma Theory. In R. F. Belli (Ed.), True and false recovered memories: Toward a reconciliation of the debate (pp. 193–242). Vol. 58: Nebraska Symposium on Motivation. New York: Springer.

    Google Scholar 

  • Diamond, A. (2002). Normal development of prefrontal cortex from birth to young adulthood: Cognitive functions, anatomy, and biochemistry. In D. T. Stuss & R. T. Knight (Eds.), Principles of frontal lobe function (pp. 466–503). London: Oxford University Press.

    Google Scholar 

  • Dobbins, I. G., & Han, S. (2006). Cue-versus probe-dependent prefrontal cortex activity during contextual remembering. Journal of Cognitive Neuroscience, 18, 1439–1452.

    PubMed  Google Scholar 

  • Dobbins, I. G., Rice, H. J., Wagner, A. D., & Schacter, D. L. (2003). Memory orientation and success: Separate neurocognitive components underlying episodic recognition. Neuropsychologia, 41, 318–333.

    PubMed  Google Scholar 

  • Dobson, M., & Markham, R. (1993). Imagery ability and source monitoring: Implications for eyewitness memory. British Journal of Psychology, -84, 111–118.

    Google Scholar 

  • Doerksen, S., & Shimamura, A. P. (2001). Source memory enhancement for emotional words. Emotion, 1, 5–11.

    PubMed  Google Scholar 

  • Dolcos, F., LaBar, K. S., & Cabeza, R. (2004). Interaction between the amygdala and the medial temporal lobe memory system predicts better memory for emotional events. Neuron, 42, 855–863.

    PubMed  Google Scholar 

  • Dolcos, F., & McCarthy, G. (2006). Brain systems mediating cognitive interference by emotional distraction. Journal of Neuroscience, 26, 2072–2079.

    PubMed  Google Scholar 

  • Donaldson, D. I., Wheeler, M. E., & Petersen, S. E. (2010). Remember the source: Dissociating frontal and parietal contributions to episodic memory. Journal of Cognitive Neuroscience, 22, 377–391.

    PubMed  Google Scholar 

  • Dougal, S., & Rotello, C. M. (2007). “Remembering” emotional words is based on response bias, not recollection. Psychonomic Bulletin & Review, 14, 423–429.

    Google Scholar 

  • Downing, P. E., Jiang, Y., Shuman, M., & Kanwisher, N. (2001). A cortical area selective for visual processing of the human body. Science, 293, 2470–2473.

    PubMed  Google Scholar 

  • Duarte, A., Hayasaka, S., Du, A., Schuff, N., Jahng, G. H., Kramer, J., et al. (2006). Volumetric correlates of memory and executive function in normal elderly, mild cognitive impairment and Alzheimer’s disease. Neuroscience Letters, 406, 60–65.

    PubMed  Google Scholar 

  • Durso, F. T., & Johnson, M. K. (1980). The effects of orienting tasks on recognition, recall, and modality confusion of pictures and words. Journal of Verbal Learning and Verbal Behavior, 19, 416–429.

    Google Scholar 

  • Eichenbaum, H., & Cohen, N. J. (2001). From conditioning to conscious recollection: Memory systems of the brain. Oxford: Oxford University Press.

    Google Scholar 

  • Eichenbaum, H., Yonelinas, A. P., & Ranganath, C. (2007). The medial temporal lobe and recognition memory. Annual Review of Neuroscience, 30, 123–152.

    PubMed  Google Scholar 

  • Eldridge, L. L., Knowlton, B. J., Furmanski, C. S., Bookheimer, S. Y., & Engel, S. A. (2000). Remembering episodes: A selective role for the hippocampus during retrieval. Nature Neuroscience, 3, 1149–1152.

    PubMed  Google Scholar 

  • Epstein, R. A., & Higgins, J. S. (2007). Differential parahippocampal and retrosplenial involvement in three types of visual scene recognition. Cerebral Cortex, 17, 1680–1693.

    PubMed  Google Scholar 

  • Epstein, R., & Kanwisher, N. (1998). A cortical representation of the local visual environment. Nature, 392, 598–601.

    PubMed  Google Scholar 

  • Etkin, A., Klemenhagen, K. C., Dudman, J. T., Rogan, M. T., Hen, R., Kandel, E. R., et al. (2004). Individual differences in trait anxiety predict the response of the basolateral amygdala to unconsciously processed fearful faces. Neuron, 44, 1043–1055.

    PubMed  Google Scholar 

  • Finke, R. A., Johnson, M. K., & Shyi, G. C.-W. (1988). Memory confusions for real and imagined completions of symmetrical visual patterns. Memory & Cognition, 16, 133–137.

    Google Scholar 

  • Foley, M. A., & Johnson, M. K. (1985). Confusions between memories for performed and imagined actions: A developmental comparison. Child Development, 56, 1145–1155.

    PubMed  Google Scholar 

  • Foley, M. A., Johnson, M. K., & Raye, C. L. (1983). Age-related changes in confusion between memories for thoughts and memories for speech. Child Development, 54, 51–60.

    PubMed  Google Scholar 

  • Fuster, J. M. (2002). Frontal lobe and cognitive development. Journal of Neurocytology, 31, 373–385.

    PubMed  Google Scholar 

  • Gallate, J., Chi, R., Ellwood, S., & Snyder, A. (2009). Reducing false memories by magnetic pulse stimulation. Neuroscience Letters, 449, 151–154.

    PubMed  Google Scholar 

  • Ganis, G., Thompson, W. L., & Kosslyn, S. M. (2004). Brain areas underlying visual mental imagery and visual perception: An fMRI study. Brain Research. Cognitive Brain Research, 20, 226–241.

    PubMed  Google Scholar 

  • Garry, M., Manning, C., Loftus, E. F., & Sherman, S. J. (1996). Imagination inflation: Imagining a childhood event inflates confidence that it occurred. Psychonomic Bulletin and Review, 3, 208–214.

    Google Scholar 

  • Geraerts, E. (2012). Cognitive underpinnings of recovered memories of childhood abuse. In R. F. Belli (Ed.), True and false recovered memories: Toward a reconciliation of the debate (pp. 175–191). Vol. 58: Nebraska Symposium on Motivation. New York: Springer.

    Google Scholar 

  • Geraerts, E., Lindsay, D. S., Merckelbach, H., Jelicic, M., Raymaekers, L., Arnold, M. M., et al. (2009). Cognitive mechanisms underlying recovered-memory experiences of childhood sexual abuse. Psychological Science, 20, 92–98.

    PubMed  Google Scholar 

  • Geraerts, E., Schooler, J. W., Merckelbach, H., Jelicic, M., Hauer, B. J., & Ambadar, Z. (2007). The reality of recovered memories: Corroborating continuous and discontinuous memories of childhood sexual abuse. Psychological Science, 18, 564–568.

    PubMed  Google Scholar 

  • Giovanello, K. S., Schnyer, D. M., & Verfaellie, M. (2004). A critical role for the anterior hippocampus in relational memory: Evidence from an fMRI study comparing associative and item recognition. Hippocampus, 14, 5–8.

    PubMed  Google Scholar 

  • Glisky, E. L., & Kong, L. L. III. (2008). Do young and older adults rely on different processes in source memory tasks? A neuropsychological study. Journal of Experimental Psychology. Learning, Memory, and Cognition, 34, 809–822.

    PubMed  Google Scholar 

  • Goff, L. M., & Roediger, H. L. III (1998). Imagination inflation for action events: Repeated imaginings lead to illusory recollections. Memory & Cognition, 26, 20–33.

    Google Scholar 

  • Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., et al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the United States of America, 101, 8174–8179.

    PubMed  Google Scholar 

  • Gogtay, N., Nugent, T. F., 3rd, Herman, D. H., Ordonez, A., Greenstein, D., Hayashi, K. M., et al. (2006). Dynamic mapping of normal human hippocampal development. Hippocampus, 16, 664–672.

    PubMed  Google Scholar 

  • Goldberg, R. F., Perfetti, C. A., & Schneider, W. (2006). Perceptual knowledge retrieval activates sensory brain regions. Journal of Neuroscience, 26, 4917–4921.

    PubMed  Google Scholar 

  • Goldman-Rakic, P. S., & Selemon, L. D. (1997). Functional and anatomical aspects of prefrontal pathology in schizophrenia. Schizophrenia Bulletin, 23, 437–458.

    PubMed  Google Scholar 

  • Gonsalves, B., Reber, P. J., Gitelman, D. R., Parrish, T. B., Mesulam, M. M., & Paller, K. A. (2004). Neural evidence that vivid imagining can lead to false remembering. Psychological Science, 15, 655–660.

    PubMed  Google Scholar 

  • Gordon, R., Franklin, N., & Beck, J. (2005). Wishful thinking and source monitoring. Memory & Cognition, 33, 418–429.

    Google Scholar 

  • Greenberg, D. L. (2004). President Bush’s false ‘flashbulb’ memory of 9/11/01. Applied Cognitive Psychology, 18, 363–370.

    Google Scholar 

  • Grill-Spector, K., Kourtzi, Z., & Kanwisher, N. (2001). The lateral occipital complex and its role in object recognition. Vision Research, 41, 1409–1422.

    PubMed  Google Scholar 

  • Grossman, R., Yehuda, R., Golier, J., McEwen, B., Harvey, P., & Maria, N. S. (2006). Cognitive effects of intravenous hydrocortisone in subjects with PTSD and healthy control subjects. Annals of the New York Academy of Sciences, 1071, 410–421.

    PubMed  Google Scholar 

  • Hamann, S. B., Ely, T. D., Grafton, S. T., & Kilts, C. D. (1999). Amygdala activity related to enhanced memory for pleasant and aversive stimuli. Nature Neuroscience, 2, 289–293.

    PubMed  Google Scholar 

  • Hariri, A. R., Mattay, V. S., Tessitore, A., Kolachana, B., Fera, F., Goldman, D., et al. (2002). Serotonin transporter genetic variation and the response of the human amygdala. Science, 297, 400–403.

    PubMed  Google Scholar 

  • Hashtroudi, S., Johnson, M. K., & Chrosniak, L. D. (1989). Aging and source monitoring. Psychology and Aging, 4, 106–112.

    PubMed  Google Scholar 

  • Hashtroudi, S., Johnson, M. K., & Chrosniak, L. D. (1990). Aging and qualitative characteristics of memories for perceived and imagined complex events. Psychology and Aging, 5, 119–126.

    PubMed  Google Scholar 

  • Henke, K., Buck, A., Weber, B., & Wieser, H. G. (1997). Human hippocampus establishes associations in memory. Hippocampus, 7, 249–256.

    PubMed  Google Scholar 

  • Henkel, L. A. (2004). Erroneous memories arising from repeated attempts to remember. Journal of Memory and Language, 50, 26–46.

    Google Scholar 

  • Henkel, L. A. (2008). Maximizing the benefits and minimizing the costs of repeated memory tests for older adults. Psychology and Aging, 23, 250–262.

    PubMed  Google Scholar 

  • Henkel, L. A., & Coffman, K. J. (2004). Memory distortions in coerced false confessions: A source monitoring framework analysis. Applied Cognitive Psychology, 18, 567–588.

    Google Scholar 

  • Henkel, L. A., Franklin, N., & Johnson, M. K. (2000). Cross-modal source monitoring confusions between perceived and imagined events. Journal of Experimental Psychology. Learning, Memory, and Cognition, 26, 321–335.

    PubMed  Google Scholar 

  • Henry, M., Fishman, J. R., & Youngner, S. J. (2007). Propranolol and the prevention of posttraumatic stress disorder: Is it wrong to erase the ‘sting’ of bad memories? The American Journal of Bioethics, 7, 12–20.

    PubMed  Google Scholar 

  • Hertel, P. T. (2000). The cognitive-initiative account of depression-related impairments in memory. In D. Medin (Ed.), The psychology of learning and motivation: Advances in research theory (Vol. 39, pp. 47–71). San Diego, CA: Academic.

    Google Scholar 

  • Hirst, W., Phelps, E. A., Buckner, R. L., Budson, A. E., Cuc, A., Gabrieli, J. D. E. et al. (2009). Long-term memory for the terrorist attack of September 11: Flashbulb memories, event memories, and the factors that influence their retention. Journal of Experimental Psychology. General, 138, 161–176.

    PubMed  Google Scholar 

  • Hurlemann, R., Walter, H., Rehme, A. K., Kukolja, J., Santoro, S. C., Schmidt, C., et al. (2010). Human amygdala reactivity is diminished by the beta-noradrenergic antagonist propranolol. Psychological Medicine, 40, 1839–1848.

    Google Scholar 

  • Hyman, I. E., Jr., & Billings, F.J. (1998). Individual differences and the creation of false childhood memories. Memory, 6, 1–20.

    PubMed  Google Scholar 

  • Hyman, I. E., Jr., & Pentland, J. (1996). The role of mental imagery in the creation of false childhood memories. Journal of Memory and Language, 35, 101–117.

    Google Scholar 

  • James, W. (1892). Psychology: Briefer course. New York: Henry Holt.

    Google Scholar 

  • Johnson, M. K. (1977). What is being counted none the less? In I. M. Birnbaum & E. S. Parker (Eds.), Alcohol and human memory (pp. 43–50). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Johnson, M. K. (1983). A multiple-entry, modular memory system. In G. H. Bower (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 17, pp. 81–123). New York: Academic.

    Google Scholar 

  • Johnson, M. K. (1991). Reflection, reality monitoring, and the self. In R. Kunzendorf (Ed.), Mental imagery (pp. 3–16). New York: Plenum.

    Google Scholar 

  • Johnson, M. K. (1996). Fact, fantasy, and public policy. In D. Hermann, C. McEvoy, P. Hertzog, P. Hertel, & M. K. Johnson (Eds.), Basic and applied memory research: Theory in context (Vol. 1, pp. 83–103). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Johnson, M. K. (2006). Memory and reality. The American Psychologist, 61, 760–771.

    PubMed  Google Scholar 

  • Johnson, M. K. (l988). Discriminating the origin of information. In T. F. Oltmanns & B. A. Maher (Eds.), Delusional beliefs (pp. 34–65). New York: Wiley.

    Google Scholar 

  • Johnson, M. K., Bransford, J. D., & Solomon, S. K. (1973). Memory for tacit implications of sentences. Journal of Experimental Psychology, 98, 203–205.

    Google Scholar 

  • Johnson, M. K., Foley, M. A., & Leach, K. (1988). The consequences for memory of imagining in another person’s voice. Memory & Cognition, 16, 337–342.

    Google Scholar 

  • Johnson, M. K., Hashtroudi, S., & Lindsay, D. S. (1993). Source monitoring. Psychological Bulletin, 114, 3–28.

    PubMed  Google Scholar 

  • Johnson, M. K., Hayes, S. M., D’Esposito, M., & Raye, C. L. (2000). Confabulation. In F. Boller, J. Grafman (Series Eds.), & L. S. Cermak (Vol. Ed.), Handbook of neuropsychology: Vol. 2. Memory and its disorders (2nd ed., pp. 383–407). Amsterdam: Elsevier Science.

    Google Scholar 

  • Johnson, M. K., & Hirst, W. (1993). MEM: Memory subsystems as processes. In A. F. Collins, S. E. Gathercole, M. A. Conway, & P. E. Morris (Eds.), Theories of memory (pp. 241–286). East Sussex, England: Erlbaum.

    Google Scholar 

  • Johnson, M. K., Kahan, T. L., & Raye, C. L. (1984). Dreams and reality monitoring. Journal of Experimental Psychology. General, 113, 329–344.

    PubMed  Google Scholar 

  • Johnson, M. K., Kim, J. K., & Risse, G. (1985). Do alcoholic Korsakoff’s syndrome patients acquire affective reactions? Journal of Experimental Psychology: Learning, Memory, and Cognition, 11, 22–36.

    PubMed  Google Scholar 

  • Johnson, M. R., Mitchell, K. J., Raye, C. L., D’Esposito, M., & Johnson, M. K. (2007). A brief thought can modulate activity in extrastriate visual areas: Top-down effects of refreshing just-seen visual stimuli. NeuroImage, 37, 290–299.

    PubMed  Google Scholar 

  • Johnson, M. K., & Multhaup, K. S. (1992). Emotion and MEM. In S.-A. Christianson (Ed.), The handbook of emotion and memory: Current research and theory (pp. 33–66). Hillsdale, NJ: Erlbaum Associates.

    Google Scholar 

  • Johnson, M. K., Nolde, S. F., & De Leonardis, D. M. (1996). Emotional focus and source monitoring. Journal of Memory and Language, 35, 135–156.

    Google Scholar 

  • Johnson, M. K., & Raye, C. L. (1981). Reality monitoring. Psychological Review, 88, 67–85.

    Google Scholar 

  • Johnson, M. K., & Raye, C. L. (2000). Cognitive and brain mechanisms of false memories and beliefs. In D. L. Schacter & E. Scarry (Eds.), Memory, brain, and belief (pp. 35–86). Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Johnson, M. K., Raye, C. L., Mitchell, K. J., Touryan, S. R., Greene, E. J., & Nolen-Hoeksema, S. (2006). Dissociating medial frontal and posterior cingulate activity during self-reflection. Social Cognitive and Affective Neuroscience, 1, 56–64.

    PubMed  Google Scholar 

  • Johnson, M. K., Raye, C. L., Wang, A. Y., & Taylor, T. H. (1979). Fact and fantasy: The roles of accuracy and variability in confusing imaginations with perceptual experiences. Journal of Experimental Psychology. Human Learning and Memory, 5, 229–240.

    PubMed  Google Scholar 

  • Johnson, M. K., & Reeder, J. A. (1997). Consciousness as meta-processing. In J. D. Cohen & J. W. Schooler (Eds.), Scientific approaches to consciousness (pp. 261–293). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Johnson, M. K., & Sherman, S. J. (1990). Constructing and reconstructing the past and the future in the present. In E. T. Higgins & R. M. Sorrentino (Eds.), Handbook of motivation and social cognition: Foundations of social behavior (pp. 482–526). New York: Guilford Press.

    Google Scholar 

  • Jonides, J., & Nee, D. E. (2006). Brain mechanisms of proactive interference in working memory. Neuroscience, 139, 181–193.

    PubMed  Google Scholar 

  • Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for the perception of faces. Journal of Neuroscience, 17, 4302–4311.

    PubMed  Google Scholar 

  • Kellenbach, M. L., Brett, M., & Patterson, K. (2001). Large, colorful, or noisy? Attribute- and modality-specific activations during retrieval of perceptual attribute knowledge. Cognitive, Affective, & Behavioral Neuroscience, 1, 207–221.

    Google Scholar 

  • Kelley, W. M., Macrae, C. N., Wyland, C. L., Caglar, S., Inati, S., & Heatherton, T. F. (2002). Finding the self? an event-related fMRI study. Journal of Cognitive Neuroscience, 14, 785–794.

    PubMed  Google Scholar 

  • Kensinger, E. A. (2007). Negative emotion enhances memory accuracy: Behavioral and neuroimaging evidence. Current Directions in Psychological Science, 16, 213–218.

    Google Scholar 

  • Kensinger, E. A. (2009). Remembering the details: Effects of emotion. Emotion Review, 1, 99–113.

    PubMed  Google Scholar 

  • Kensinger, E. A., Clarke, R. J., & Corkin, S. (2003). What neural correlates underlie successful encoding and retrieval? A functional magnetic resonance imaging study using a divided attention paradigm. Journal of Neuroscience, 23, 2407–2415.

    PubMed  Google Scholar 

  • Kensinger, E. A., & Corkin, S. (2003). Memory enhancement for emotional words: Are emotional words more vividly remembered than neutral words? Memory and Cognition, 31, 1169–1180.

    Google Scholar 

  • Kensinger, E. A., & Schacter, D. L. (2006a). Amygdala activity is associated with the successful encoding of item, but not source, information for positive and negative stimuli. Journal of Neuroscience, 26, 2564–2570.

    PubMed  Google Scholar 

  • Kensinger, E. A., & Schacter, D. L. (2006b). Neural processes underlying memory attribution on a reality-monitoring task. Cerebral Cortex, 16, 1126–1133.

    PubMed  Google Scholar 

  • Kensinger, E. A., & Schacter, D. L. (2008a). Memory and emotion. In M. Lewis, J. M. Haviland-Jones, & L. F. Barrett (Eds.), The handbook of emotions (3rd ed., pp. 601–617). New York: Guilford.

    Google Scholar 

  • Kensinger, E. A., & Schacter, D. L. (2008b). Neural processes supporting young and older adults’ emotional memories. Journal of Cognitive Neuroscience, 20, 1–13.

    Google Scholar 

  • Kihlstrom, J. F. (2004). An unbalanced balancing act: Blocked, recovered, and false memories in the laboratory and clinic. Clinical Psychology: Science & Practice, 11, 34–41.

    Google Scholar 

  • Kilpatrick, L., & Cahill, L. (2003). Amygdala modulation of parahippocampal and frontal regions during emotionally influenced memory storage. NeuroImage, 20, 2091–2099.

    PubMed  Google Scholar 

  • Kindt, M., Soeter, M., & Vervliet, B. (2009). Beyond extinction: erasing human fear responses and preventing the return of fear. Nature Neuroscience, 12, 256–258.

    PubMed  Google Scholar 

  • Kroes, M. C. W., Strange, B. A., & Dolan, R. J. (2010). B-Adrenergic blockade during memory retrieval in humans evokes a sustained reduction of declarative emotional memory enhancement. Journal of Neuroscience, 30, 3959–3963.

    PubMed  Google Scholar 

  • LaBar, K. S., & Phelps, E. A. (1998). Arousal-mediated memory consolidation: Role of the medial temporal lobe in humans. Psychological Science, 9, 490–493.

    Google Scholar 

  • Lampinen, J. M., Neuschatz, J. S., & Payne, D. G. (1999). Source attributions and false memories: A test of the demand characteristics account. Psychonomic Bulletin & Review, 6, 130–135.

    Google Scholar 

  • LeDoux, J. E. (2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23, 155–184.

    PubMed  Google Scholar 

  • Legault, E., & Laurence, J.-R. (2007). Recovered memories of childhood sexual abuse: Social worker, psychologist, and psychiatrist reports of beliefs, practices and cases. Australian Journal of Clinical and Experimental Hypnosis, 35, 111–133.

    Google Scholar 

  • Lepage, M., Ghaffar, O., Nyberg, L., & Tulving, E. (2000). Prefrontal cortex and episodic memory retrieval mode. Proceedings of the National Academy of Sciences of the United States of America, 97, 506–511.

    PubMed  Google Scholar 

  • Lindsay, D. S. (2008). Source Monitoring. In J. Byrne (Series Ed.) & H. L. Roediger, III (Vol. Ed.), Cognitive psychology of memory. Learning and memory: A comprehensive reference (Vol. 2, pp. 325–348). Oxford: Elsevier.

    Google Scholar 

  • Lindsay, D. S., Hagen, L., Read, J. D., Wade, K. A., & Garry, M. (2004). True photographs and false memories. Psychological Science, 15, 149–154.

    PubMed  Google Scholar 

  • Lindsay, D. S., & Johnson, M. K. (1989). The eyewitness suggestibility effect and memory for source. Memory & Cognition, 17, 349–358.

    Google Scholar 

  • Lindsay, D. S., Johnson, M. K., & Kwon, P. (1991). Developmental changes in memory source monitoring. Journal of Experimental Child Psychology, 52, 297–318.

    PubMed  Google Scholar 

  • Lindsay, D. S., & Read, J. D. (1994). Psychotherapy and memories of childhood sexual abuse: A cognitive perspective. Applied Cognitive Psychology, 8, 281–338.

    Google Scholar 

  • Lindsay, D. S., & Read, J. D. (1995). “Memory work” and recovered memories of CSA: scientific evidence and pubic, professional, and personal issues. Psychology, Public Policy and the Law, 1, 846–908.

    Google Scholar 

  • Loftus, E. F. (2004). Dispatch from the (un)civil memory wars. The Lancet, 364, 20–21.

    Google Scholar 

  • Loftus, E. F. (2005). Planting misinformation in the human mind: A 30-year investigation of the malleability of memory. Learning and Memory, 12, 361–366.

    PubMed  Google Scholar 

  • Loftus, E. F., & Davis, D. (2006). Recovered memories. Annual Review of Clinical Psychology, 2, 469–498.

    PubMed  Google Scholar 

  • Loftus, E. F., Miller, D. G., & Burns, H. J. (1978). Semantic integration of verbal information into a visual memory. Journal of Experimental Psychology. Human Learning and Memory, 4, 19–31.

    PubMed  Google Scholar 

  • Loftus, E. F., & Palmer, J. C. (1974). Reconstruction of automobile destruction: An example of the interaction between language and memory. Journal of Verbal Learning and Verbal Behavior, 13, 585–589.

    Google Scholar 

  • Loftus, E. F., & Pickrell, J. E. (1995). The formation of false memories. Psychiatric Annals, 25, 720–725.

    Google Scholar 

  • Lundstrom, B. N., Petersson, K. M., Andersson, J., Johansson, M., Fransson, P., & Ingvar, M. (2003). Isolating the retrieval of imagined pictures during episodic memory: Activation of the left precuneus and left prefrontal cortex. NeuroImage, 20, 1934–1943.

    PubMed  Google Scholar 

  • Lyle, K. B., & Johnson, M. K. (2006). Importing perceived features into false memories. Memory, 14, 197–213.

    PubMed  Google Scholar 

  • Lyle, K. B., & Johnson, M. K. (2007). Source misattributions may increase the accuracy of source judgments. Memory & Cognition, 35, 1024–1033.

    Google Scholar 

  • Macrae, C. N., Moran, J. M., Heatherton, T. F., Banfield, J. F., & Kelley, W. M. (2004). Medial prefrontal activity predicts memory for self. Cerebral Cortex, 14, 647–654.

    PubMed  Google Scholar 

  • Malach, R., Reppas, J. B., Benson, R. R., Kwong, K. K., Jiang, H., Kennedy, W. A., et al. (1995). Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proceedings of the Natural Academy of Science USA, 92, 8135–8139.

    Google Scholar 

  • Mangels, J. A., Gershberg, F. B., Shimamura, A. P., & Knight, R. T. (1996). Impaired retrieval from remote memory in patients with frontal lobe damage. Neuropsychology, 10, 32–41.

    Google Scholar 

  • Manuck, S. B., Brown, S. M., Forbes, E. E., & Hariri, A. R. (2007). Temporal stability of individual differences in amygdala reactivity. The American Journal of Psychiatry, 164, 1613–1614.

    PubMed  Google Scholar 

  • Marsh, R. L., & Hicks, J. L. (1998). Test formats change source-monitoring decision processes. Journal of Experimental Psychology. Learning, Memory, and Cognition, 24, 1137–1151.

    Google Scholar 

  • Martin, A., & Chao, L. L. (2001). Semantic memory and the brain: Structure and processes. Current Opinion in Neurobiology, 11, 194–201.

    PubMed  Google Scholar 

  • Mather, M. (2007). Emotional arousal and memory binding: An object-based framework. Perspectives on Psychological Science, 2, 33–52.

    Google Scholar 

  • Mather, M. (2009). When emotion intensifies memory interference. Psychology of Learning and Motivation, 51, 101–120.

    Google Scholar 

  • Mather, M., & Carstensen, L. L. (2005). Aging and motivated cognition: The positivity effect in attention and memory. Trends in Cognitive Science, 9, 496–502.

    Google Scholar 

  • Mather, M., Henkel, L. A., & Johnson, M. K. (1997). Evaluating characteristics of false memories: Remember/Know judgments and memory characteristics questionnaire compared. Memory & Cognition, 25, 826–837.

    Google Scholar 

  • Mather, M., Mitchell, K. J., Raye, C. L., Novak, D. L., Greene, E. J., & Johnson, M. K. (2006). Emotional arousal can impair feature binding in working memory. Journal of Cognitive Neuroscience, 18, 614–625.

    PubMed  Google Scholar 

  • McDaniel, M. A., Lyle, K. B., Butler, K. M., & Dornburg, C. C. (2008). Age-related deficits in reality monitoring of action memories. Psychology and Aging, 23, 646–656.

    PubMed  Google Scholar 

  • McGaugh, J. L. (2004). The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annual Review of Neuroscience, 27, 1–28.

    Google Scholar 

  • McNally, R. J. (2003). Progress and controversy in the study of posttraumatic stress disorder. Annual Review of Psychology, 54, 229–252.

    PubMed  Google Scholar 

  • McNally, R. J. (2012). Searching for repressed memory. In R. F. Belli (Ed.), True and false recovered memories: Toward a reconciliation of the debate (pp. 121–147). Vol. 58: Nebraska Symposium on Motivation. New York: Springer.

    Google Scholar 

  • Milner, B., Squire, L. R., & Kandel, E. R. (1998). Cognitive neuroscience and the study of memory. Neuron, 20, 445–468.

    PubMed  Google Scholar 

  • Mitchell, K. J., & Johnson, M. K. (2000). Source monitoring: Attributing mental experiences. In E. Tulving & F. I. M. Craik (Eds.), The Oxford handbook of memory (pp. 179–195). New York: Oxford University Press.

    Google Scholar 

  • Mitchell, K. J., & Johnson, M. K. (2009). Source monitoring 15 years later: What have we learned from fMRI about the neural mechanisms of source memory? Psychological Bulletin, 135, 638–677.

    PubMed  Google Scholar 

  • Mitchell, K. J., Johnson, M. K., Raye, C. L., & D’Esposito, M. (2000). fMRI evidence of age-related hippocampal dysfunction in feature binding in working memory. Cognitive Brain Research, 10, 197–206.

    PubMed  Google Scholar 

  • Mitchell, K. J., Johnson, M. K., Raye, C. L., & Greene, E. J. (2004). Prefrontal cortex activity associated with source monitoring in a working memory task. Journal of Cognitive Neuroscience, 16, 921–934.

    PubMed  Google Scholar 

  • Mitchell, K. J., Raye, C. L., Johnson, M. K., & Greene, E. J. (2006). An fMRI investigation of short-term source memory in young and older adults. NeuroImage, 30, 627–633.

    PubMed  Google Scholar 

  • Mitchell, K. J., & Zaragoza, M. S. (2001). Contextual overlap and eyewitness suggestibility. Memory & Cognition, 29, 616–626.

    Google Scholar 

  • Morgan, C. A., III, Hazlett, G., Doran, A., Garrett, S., Hoyt, G., Thomas, P., et al. (2004). Accuracy of eyewitness memory for persons encountered during exposure to highly intense stress. International Journal of Law and Psychiatry, 27, 265–279.

    PubMed  Google Scholar 

  • Moscovitch, M. (1995). Recovered consciousness: A hypothesis concerning modularity and episodic memory. Journal of Clinical and Experimental Neuropsychology, 17, 276–290.

    PubMed  Google Scholar 

  • Murray, L. J., & Ranganath, C. (2007). The dorsolateral prefrontal cortex contributes to successful relational memory encoding. Journal of Neuroscience, 27, 5515–5522.

    PubMed  Google Scholar 

  • Neisser, U., & Harsch, N. (1992). Phantom flashbulbs: False recollections of hearing the news about Challenger. In E. Winograd & U. Neisser (Eds.), Affect and accuracy in recall: Studies of “flashbulb” memories (Vol. 4, pp. 9–31). New York: Cambridge University Press.

    Google Scholar 

  • Nelson, K. (1993). The psychological and social origins of autobiographical memory. Psychological Science, 4, 7–14.

    Google Scholar 

  • Nelson, K., & Fivush, R. (2004). The emergence of autobiographical memory: A social cultural developmental theory. Psychological Review, 111, 486–511.

    PubMed  Google Scholar 

  • Nestor, P. G., Kubicki, M., Kuroki, N., Gurrera, R. J., Niznikiewicz, M., Shenton, M. E., et al. (2007). Episodic memory and neuroimaging of hippocampus and fornix in chronic schizophrenia. Psychiatry Research: Neuroimaging, 155, 21–28.

    PubMed  Google Scholar 

  • Newcombe, N. S., Lloyd, M. E., & Ratliff, K. R. (2007). Development of episodic and autobiographical memory: A cognitive neuroscience perspective. In R. V. Kail (Ed.), Advances in child development and behavior (Vol. 35, pp. 37–85). San Diego, CA: Elsevier.

    Google Scholar 

  • Nolde, S. F., Johnson, M. K., & D’Esposito, M. (1998). Left prefrontal activation during episodic remembering: An event-related fMRI study. NeuroReport, 9, 3509–3514.

    PubMed  Google Scholar 

  • Norman, K. A., & Schacter, D. L. (1997). False recognition in younger and older adults: Exploring the characteristics of illusory memories. Memory & Cognition, 25, 838–848.

    Google Scholar 

  • O’Craven, K. M., & Kanwisher, N. (2000). Mental imagery of faces and places activates corresponding stimulus-specific brain regions. Journal of Cognitive Neuroscience, 12, 1013–1023.

    PubMed  Google Scholar 

  • Ochsner, K. N. (2000). Are affective events richly recollected or simply familiar? The experience and process of recognizing feelings past. Journal of Experimental Psychology. General, 129, 242–261.

    PubMed  Google Scholar 

  • Okado, Y., & Stark, C. (2003). Neural processing associated with true and false memory retrieval. Cognitive, Affective, & Behavioral Neuroscience, 3, 323–334.

    Google Scholar 

  • Okado, Y., & Stark, C. E. L. (2005). Neural activity during encoding predicts false memories created by misinformation. Learning & Memory, 12, 3–11.

    Google Scholar 

  • Park, S., Chun, M. M., & Johnson, M. K. (2010). Refreshing and integrating visual scenes in scene-selective cortex. Journal of Cognitive Neuroscience, 22, 2813–2822.

    PubMed  Google Scholar 

  • Parker, S., Garry, M., Engle, R. W., Harper, D. N., & Clifasefi, S. L. (2008). Psychotropic placebos reduce the misinformation effect by increasing monitoring at test. Memory, 16, 410–419.

    PubMed  Google Scholar 

  • Payne, J. D., Jackson, E. D., Hoscheidt, S., Ryan, L., Jacobs, W. J., & Nadel, L. (2007). Stress administered prior to encoding impairs neutral but enhances emotional long-term episodic memories. Learning & Memory, 14, 861–868.

    Google Scholar 

  • Paz-Alonso, P. M., Ghetti, S., Donohue, S. E., Goodman, G. S., & Bunge, S. A. (2008). Neurodevelopmental correlates of true and false recognition. Cerebral Cortex, 18, 2208–2216.

    PubMed  Google Scholar 

  • Pezdek, K., & Lam, S. (2007). What research paradigms have cognitive psychologists used to study “false memory,” and what are the implications of these choices? Consciousness and Cognition, 16, 2–17.

    PubMed  Google Scholar 

  • Pezdek, K., & Roe, C. (1995). The effect of memory trace strength on suggestibility. Journal of Experimental Child Psychology, 60, 116–128.

    Google Scholar 

  • Phelps, E. A. (2006). Emotion and cognition: Insights from studies of the human amygdala. Annual Review of Psychology, 57, 27–53.

    PubMed  Google Scholar 

  • Phelps, E. A., & Sharot, T. (2008). How (and why) emotion enhances the subjective sense of recollection. Current Directions in Psychological Science, 17, 147–152.

    PubMed  Google Scholar 

  • Polusny, M. A., & Follette, V. M. (1996). Remembering childhood sexual abuse: A national survey of psychologists’ clinical practices, beliefs, and personal experiences. Professional Psychology: Research & Practice, 27, 41–52.

    Google Scholar 

  • Poole, D. A., Lindsay, D. S., Memon, A., & Bull, R. (1995). Psychotherapy and the recovery of memories of childhood sexual abuse: U.S. and British practitioners’ opinions, practices, and experiences. Journal of Consulting and Clinical Psychology, 63, 426–437.

    PubMed  Google Scholar 

  • Porter, S., Birt, A. R., Yuille, J. C., & Lehman, D. R. (2000). Negotiating false memories: Interviewer and remember characteristics relate to memory distortion. Psychological Science, 11, 507–510.

    PubMed  Google Scholar 

  • Porter, S., Yuille, J. C., & Lehman, D. R. (1999). The nature of real, implanted, and fabricated memories for emotional childhood events: Implications for the recovered memory debate. Law and Human Behavior, 23, 517–537.

    PubMed  Google Scholar 

  • Puce, A., Allison, T., Gore, J. G., & McCarthy, G. (1995). Face-sensitive regions in human extrastriate cortex studied by functional MRI. Journal of Neurophysiology, 74, 1192–1199.

    PubMed  Google Scholar 

  • Qin, J., Mitchell, K. J., Johnson, M. K., Krystal, J. H., Southwick, S. M., Rasmusson, A. M., et al. (2003). Reactions to and memories for the September 11, 2001 terrorist attacks in adults with posttraumatic stress disorder. Applied Cognitive Psychology, 17, 1081–1097.

    Google Scholar 

  • Ranganath, C. (2010). Binding items and contexts: The cognitive neuroscience of episodic memory. Current Directions In Psychological Science, 19, 131–137.

    Google Scholar 

  • Ranganath, C., & Blumenfeld, R. S. (2008). Prefrontal cortex and memory. In J. Byrne (Series Ed.), & H. Eichenbaum (Vol. Ed.), Learning and memory: A comprehensive reference: Vol. 3. Memory systems (pp. 261–280). Oxford: Elsevier.

    Google Scholar 

  • Ranganath, C., Cohen, M. X., & Brozinsky, C. J. (2005). Working memory maintenance contributes to long-term memory formation: Neural and behavioral evidence. Journal of Cognitive Neuroscience, 17, 994–1010.

    PubMed  Google Scholar 

  • Ranganath, C., & D’Esposito, M. (2001). Medial temporal lobe activity associated with active maintenance of novel information. Neuron, 31, 865–873.

    PubMed  Google Scholar 

  • Ranganath, C., Johnson, M. K., & D’Esposito, M. (2000). Left anterior prefrontal activation increases with demands to recall specific perceptual information. The Journal of Neuroscience, 20, RC108.

    PubMed  Google Scholar 

  • Ranganath, C., & Knight, R. T. (2003). Prefrontal cortex and episodic memory: Integrating findings from neuropsychology and event-related functional neuroimaging. In A. Parker, E. Wilding, & T. Bussey (Eds.), The cognitive neuroscience of memory encoding and retrieval (pp. 83–99). Philadelphia: Psychology Press.

    Google Scholar 

  • Ranganath, C., Yonelinas, A. P., Cohen, M. X., Dy, C. J., Tom, S. M., & D’Esposito, M. (2004). Dissociable correlates of recollection and familiarity within the medial temporal lobes. Neuropsychologia, 42, 2–13.

    PubMed  Google Scholar 

  • Rasch, B., Spalek, K., Buholzer, S., Luechinger, R., Boesiger, P., Papassotiropoulos, A., et al. (2009). A genetic variation of the noradrenergic system is related to differential amygdala activation during encoding of emotional memories. Proceedings of the National Academy of Sciences of the United States of America, 106, 19191–19196.

    PubMed  Google Scholar 

  • Raye, C. L., Johnson, M. K., Mitchell, K. J., Nolde, S. F., & D’Esposito, M. (2000). fMRI investigations of left and right PFC contributions to episodic remembering. Psychobiology, 28, 197–206.

    Google Scholar 

  • Raz, N., & Rodrigue, K. M. (2006). Differential aging of the brain: Patterns, cognitive correlates and modifiers. Neuroscience and Biobehavioral Reviews, 30, 730–748.

    PubMed  Google Scholar 

  • Roediger, H. L. III, & McDermott, K. B. (1995). Creating false memories: Remembering words that were not presented in lists. Journal of Experimental Psychology. Learning, Memory, and Cognition, 21, 803–814.

    Google Scholar 

  • Rogers, T. T., Hocking, J., Noppeney, U., Mechelli, A., Gorno-Tempini, M. L., Patterson, K., et al. (2006). Anterior temporal cortex and semantic memory: Reconciling findings from neuropsychology and functional imaging. Cognitive, Affective, & Behavioral Neuroscience, 6, 201–213.

    Google Scholar 

  • Schacter, D. L., Reiman, E., Curran, T., Yun, L. S., Bandy, D., McDermott, K. B., et al. (1996). Neuroanatomical correlates of veridical and illusory recognition memory: Evidence from positron emission tomography. Neuron, 17, 267–274.

    PubMed  Google Scholar 

  • Schacter, D. L., & Slotnick, S. D. (2004). The cognitive neuroscience of memory distortion. Neuron, 44, 149–160.

    PubMed  Google Scholar 

  • Schmolck, H., Buffalo, E. A., & Squire, L. R. (2000). Memory distortions develop over time: Recollections of the O.J. Simpson trial verdict after 15 and 32 months. Psychological Science, 11, 39–45.

    PubMed  Google Scholar 

  • Schnider, A. (2008). The confabulating mind: How the brain creates reality. New York: OxfordUniversity Press.

    Google Scholar 

  • Schooler, J. W., Ambadar, Z., & Bendiksen, M. (1997). A cognitive corroborative case study approach for investigating discovered memories of sexual abuse. In D. S. Lindsay (Ed.), Recollections of trauma: Scientific evidence and clinical practice (pp. 379–387). New York: Plenum Press.

    Google Scholar 

  • Schooler, J. W., Bendiksen, M., & Ambadar, Z. (1997). Taking the middle line: Can we accommodate both fabricated and recovered memories of sexual abuse? In M. A. Conway (Ed.), Recovered memories and false memories (pp. 251–292). New York: Oxford University Press.

    Google Scholar 

  • Schooler, J. W., Gerhard, D., & Loftus, E. F. (1986). Qualities of the unreal. Journal of Experimental Psychology. Learning, Memory, and Cognition, 12, 171–181.

    PubMed  Google Scholar 

  • Shallice, T., & Burgess, P. W. (1991). Higher-order cognitive impairments and frontal lobe lesions in man. In H. S. Levin, H. M. Eisenberg, & A. L. Benton (Eds.), Frontal lobe function and dysfunction (pp. 125–138). New York: Oxford University Press.

    Google Scholar 

  • Sharot, T., Delgado, M. R., & Phelps, E. A. (2004). How emotion enhances the feeling of remembering. Nature Neuroscience, 7, 1376–1380.

    PubMed  Google Scholar 

  • Sharot, T., Verfaellie, M., & Yonelinas, A. P. (2007). How emotion strengthens the recollective experience: A time-dependent hippocampal process. PloS One, 2, e1068. doi:10.1371/journal.pone.0001068.

    PubMed  Google Scholar 

  • Sharot, T., & Yonelinas, A. P. (2008). Differential time-dependent effects of emotion on recollective experience and memory for contextual information. Cognition, 106, 538–547.

    PubMed  Google Scholar 

  • Shimamura, A. P. (1995). Memory and the prefrontal cortex. In J. Grafman, K. J. Holyoak, & F. Boller (Eds.), Structure and function of the human prefrontal cortex. Annals of the New York Academy of Sciences, 769, 151–159.

    Google Scholar 

  • Shimamura, A. P. (2000). Toward a cognitive neuroscience of metacognition. Consciousness and Cognition, 9, 313–323.

    PubMed  Google Scholar 

  • Shobe, K. K., & Schooler, J. W. (2001). Discovering fact and fiction: Case-based analyses of authentic and fabricated memories of abuse. In G. M. Davies & T. Dalgleish (Eds.), Recovered memories: Seeking the middle ground (pp. 95–151). Chichester, England: Wiley.

    Google Scholar 

  • Simons, J. S., Henson, R. N. A., Gilbert, S. J., & Fletcher, P. C. (2008). Separable forms of reality monitoring supported by the anterior prefrontal cortex. Journal of Cognitive Neuroscience, 20, 447–457.

    PubMed  Google Scholar 

  • Simons, J. S., Peers, P. V., Mazuz, Y. S., Berryhill, M. E., & Olson, I. R. (2010). Dissociation between memory accuracy and memory confidence following bilateral parietal lesions. Cerebral Cortex, 20, 479–485.

    PubMed  Google Scholar 

  • Skinner, E. I., & Fernandes, M. A. (2007). Neural correlates of recollection and familiarity: A review of neuroimaging and patient data. Neuropsychologia, 45, 2163–2179.

    PubMed  Google Scholar 

  • Slotnick, S. D., & Schacter, D. L. (2004). A sensory signature that distinguishes true from false memories. Nature Neuroscience, 7, 664–672.

    PubMed  Google Scholar 

  • Smith, E. E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283, 1657–1661.

    PubMed  Google Scholar 

  • Spencer, T. J., Montaldi, D., Gong, Q.-Y., Roberts, N., & Mayes, A. R. (2009). Object priming and recognition memory: Dissociable effects in left frontal cortex at encoding. Neuropsychologia, 47, 2942–2947.

    PubMed  Google Scholar 

  • Squire, L. R., & Knowlton, B. J. (2000). The medial temporal lobe, the hippocampus, and the memory systems of the brain. In M. Gazzaniga (Ed.), The new cognitive neurosciences (2nd ed., pp. 765–779). Cambridge, MA: MIT Press.

    Google Scholar 

  • Squire, L. R., Stark, C. E. L., & Clark, R. E. (2004). The medial temporal lobe. Annual Review of Neuroscience, 27, 279–306.

    PubMed  Google Scholar 

  • Staresina, B. P., & Davachi, L. (2006). Differential encoding mechanisms for subsequent associative recognition and free recall. The Journal of Neuroscience, 26, 9162–9172.

    PubMed  Google Scholar 

  • Staresina, B. P., Gray, J. C., & Davachi, L. (2009). Event congruency enhances episodic memory encoding through semantic elaboration and relational binding. Cerebral Cortex, 19, 1198–1207.

    PubMed  Google Scholar 

  • Stuss, D. T., & Levine, B. (2002). Adult clinical neuropsychology: Lessons from studies of the frontal lobes. Annual Review of Psychology, 53, 401–433.

    PubMed  Google Scholar 

  • Suengas, A. G., & Johnson, M. K. (1988). Qualitative effects of rehearsal on memories for perceived and imagined complex events. Journal of Experimental Psychology. General, 117, 377–389.

    Google Scholar 

  • Summerfield, C., Greene, M., Wager, T., Egner, T., Hirsch, J., & Mangels, J. (2006). Neocortical connectivity during episodic memory formation. PLoS Biology, 4, e128. doi:10.1371/journal.pbio.0040128.

    PubMed  Google Scholar 

  • Sutherland, R., & Hayne, H. (2001). The effect of postevent information on adults’ eyewitness reports. Applied Cognitive Psychology, 15, 249–263.

    Google Scholar 

  • Talarico, J. M., & Rubin, D. C. (2003). Confidence, not consistency, characterizes flashbulb memories. Psychological Science, 14, 455–461.

    PubMed  Google Scholar 

  • Thomas, A. K., Hannula, D. E., & Loftus, E. F. (2007). How self-relevant imagination affects memory for behavior. Applied Cognitive Psychology, 21, 69–86.

    Google Scholar 

  • Thompson-Schill, S. L., D’Esposito, M., Aguirre, G. K., & Farah, M. J. (1997). Role of left inferior prefrontal cortex in retrieval of semantic knowledge: A reevaluation. Proceedings of the National Academy of Sciences, USA, 94, 14792–14797.

    Google Scholar 

  • Todd, R. M., & Anderson, A. K. (2009). The neurogenetics of remembering emotions past. Proceedings of the National Academy of Sciences of the United States of America, 106, 18881–18882.

    PubMed  Google Scholar 

  • Tulving, E., & Schacter, D. L. (1990). Priming and human memory systems. Science, 247, 301–306.

    PubMed  Google Scholar 

  • Turner, M. S., Simons, J. S., Gilbert, S. J., Frith, C. D., & Burgess, P. W. (2008). Distinct roles for lateral and medial rostral prefrontal cortex in source monitoring of perceived and imagined events. Neuropsychologia, 46, 1442–1453.

    PubMed  Google Scholar 

  • Uncapher, M. R., Otten, L. J., & Rugg, M. D. (2006). Episodic encoding is more than the sum of its parts: An fMRI investigation of multifeatural contextual encoding. Neuron, 52, 547–556.

    PubMed  Google Scholar 

  • Uncapher, M. R., & Wagner, A. D. (2009). Posterior parietal cortex and episodic encoding: Insights from fMRI subsequent memory effects and dual attention theory. Neurobiology of Learning & Memory, 91, 139–154.

    PubMed  Google Scholar 

  • Underwood, B. J. (1965). False recognition produced by implicit verbal responses. Journal of Experimental Psychology, 70, 122–129.

    PubMed  Google Scholar 

  • Van Overwalle, F. (2009). Social cognition and the brain: A meta-analysis. Human Brain Mapping, 30, 829–858.

    PubMed  Google Scholar 

  • Van Petten, C. (2004). Relationship between hippocampal volume and memory ability in healthy individuals across the lifespan: Review and meta-analysis. Neuropsychologia, 42, 1394–1413.

    PubMed  Google Scholar 

  • van Stegeren, A. H. (2009). Imaging stress effects on memory: A review of neuroimaging studies. Canadian Journal of Psychiatry, 54, 16–27.

    Google Scholar 

  • van Stegeren, A. H., Goekoop, R., Everaerd, W., Scheltens, P., Barkhof, F., Kuijer, J. P. A., et al. (2005). Noradrenaline mediates amygdala activation in men and women during encoding of emotional material. NeuroImage, 24, 898–909.

    PubMed  Google Scholar 

  • van Stegeren, A. H., Wolf, O. T., Everaerd, W., & Rombouts, S. A. R. B. (2008). Interaction of endogenous cortisol and noradrenaline in the human amygdala. In E. R. de Kloet, M. S. Oitzl, & E. Vermetten (Eds.), Progress in Brain Research. Stress, hormones, and posttraumatic stress disorder: Basic studies and clinical perspectives. Vol. 167 (pp. 263–268). Oxford: Elsevier.

    Google Scholar 

  • Verwoerd, J. R. L., Wessel, I., de Jong, P. J., & Nieuwenhuis, M. M. W. (2009). Preferential processing of visual trauma-film reminders predicts subsequent intrusive memories. Cognition and Emotion, 23, 1537–1551.

    Google Scholar 

  • Vilberg, K. L., & Rugg, M. D. (2007). Dissociation of the neural correlates of recognition memory according to familiarity, recollection, and amount of recollected information. Neuropsychologia, 45, 2216–2225.

    PubMed  Google Scholar 

  • Vilberg, K. L., & Rugg, M. D. (2008). Memory retrieval and the parietal cortex: A review of evidence from a dual-process perspective. Neuropsychologia, 46, 1787–1799.

    PubMed  Google Scholar 

  • Vinogradov, S., Luks, T. L., Schulman, B. J., & Simpson, G. V. (2008). Deficit in a neural correlate of reality monitoring in schizophrenia patients. Cerebral Cortex, 18, 2532–2539.

    PubMed  Google Scholar 

  • Vinogradov, S., Luks, T. L., Simpson, G. V., Schulman, B. J., Glenn, S., & Wong, A. E. (2006). Brain activation patterns during memory of cognitive agency. NeuroImage, 31, 896–905.

    PubMed  Google Scholar 

  • Wade, K. A., Sharman, S. J., Garry, M., Memon, A., Mazzoni, G., Merckelbach, H., et al. (2007). False claims about false memory research. Consciousness and Cognition, 16, 18–28.

    PubMed  Google Scholar 

  • Wagner, A. D., Schacter, D. L., Rotte, M., Koutstaal, W., Maril, A., Dale, A. M., et al. (1998). Building memories: Remembering and forgetting of verbal experiences as predicted by brain activity. Science, 281, 1188–1191.

    PubMed  Google Scholar 

  • Wagner, A. D., Shannon, B. J., Kahn, I., & Buckner, R. L. (2005). Parietal lobe contributions to episodic memory retrieval. Trends in Cognitive Sciences, 9, 445–453.

    PubMed  Google Scholar 

  • Weinberger, D. R. (1988). Schizophrenia and the frontal lobe. Trends in Neurosciences, 11, 367–370.

    PubMed  Google Scholar 

  • Weis, S., Specht, K., Klaver, P., Tendolkar, I., Willmes, K., Ruhlmann, J., et al. (2004). Process dissociation between contextual retrieval and item recognition. NeuroReport, 15, 2729–2733.

    PubMed  Google Scholar 

  • Wheeler, M. E., & Buckner, R. L. (2004). Functional-anatomic correlates of remembering and knowing. NeuroImage, 21, 1337–1349.

    PubMed  Google Scholar 

  • Wheeler, M. E., Petersen, S. E., & Buckner, R. L. (2000). Memory’s echo: Vivid remembering reactivates sensory-specific cortex. Proceedings of the National Academy of Sciences of the United States of America, 97, 11125–11129.

    PubMed  Google Scholar 

  • Williams, J. M. G., Barnhofer, T., Crane, C., Hermans, D., Raes, F., Watkins, E., et al. (2007). Autobiographical memory specificity and emotional disorder. Psychological Bulletin, 133, 122–148.

    PubMed  Google Scholar 

  • Zaragoza, M. S., Belli, R. S., & Payment, K. E. (2006). Misinformation effects and the suggestibility of eyewitness memory. In M. Garry & H. Hayne (Eds.), Do justice and let the sky fall: Elizabeth F. Loftus and her contributions to science, law, and academic freedom (pp. 35–63). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Zaragoza, M. S., & Koshmider, J. W., III. (1989). Misled subjects may know more that their performance implies. Journal of Experimental Psychology. Learning, Memory, and Cognition, 15, 246–255.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcia K. Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Johnson, M.K., Raye, C.L., Mitchell, K.J., Ankudowich, E. (2012). The Cognitive Neuroscience of True and False Memories. In: Belli, R. (eds) True and False Recovered Memories. Nebraska Symposium on Motivation, vol 58. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1195-6_2

Download citation

Publish with us

Policies and ethics