Skip to main content

Route-Specific Challenges in the Delivery of Poorly Water-Soluble Drugs

  • Chapter
  • First Online:
Formulating Poorly Water Soluble Drugs

Abstract

Poor aqueous solubility of new chemical entities presents various challenges in the development of effective drug-delivery systems for various delivery routes. Poorly soluble drugs that are delivered orally commonly result in low bioavailability and are subject to considerable food effects. In addition, poorly soluble drugs intended for parenteral delivery generally have to be solubilized with large amounts of cosolvents and surfactants, oftentimes resulting in adverse physiological reactions. Finally, successful formulation design of poorly soluble drugs intended for pulmonary administration is mainly hindered by the limited number of excipients generally recognized as safe for this route of delivery. In summary, this chapter reviews the specific challenges faced in the delivery of poorly water-soluble drugs via oral, parenteral, and pulmonary administration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akers MJ, Troy BD (2005) Parenteral preparations, Remington: the science and practice of pharmacy. Lippincott Williams & Wilkins, Baltimore, MD

    Google Scholar 

  • Amidon GL, Lennernäs H, Shah VP, Crison JR (1995) A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 12(3):413–420

    Article  PubMed  CAS  Google Scholar 

  • Amin K, Dannenfelser RM (2006) In vitro hemolysis: guidance for the pharmaceutical scientist. J Pharm Sci 95(6):1173–1176

    Article  PubMed  CAS  Google Scholar 

  • Benet L et al (2006) Predicting drug absorption and the effects of food on oral bioavailability. Bulletin Technique Gattefosse 99:9–16

    Google Scholar 

  • Bhalla S (2007) Parenteral drug delivery. In: Desai A, Lee M (eds) Gibaldi’s drug delivery systems in pharmaceutical care. ASHP, Bethesda, MD

    Google Scholar 

  • Bittner B, Mountfield RJ (2002) Intravenous administration of poorly soluble new drug entities in early drug discovery: the potential impact of formulation on pharmacokinetic parameters. Curr Opin Drug Discov Devel 5(1):59–71

    PubMed  CAS  Google Scholar 

  • Blot F, Tavakoli R, Sellam S, Epardeau B, Faurisson F, Bernard N et al (1995) Nebulized cyclosporine for prevention of acute pulmonary allograft rejection in the rat: pharmacokinetic and histologic study. J Heart Lung Transplant 14(6 Pt 1):1162–1172

    PubMed  CAS  Google Scholar 

  • Bracq E, Lahiani-Skiba M, Guerbet M (2008) Ethical observations on the choice of parenteral solvents. Drug Dev Ind Pharm 34(12):1306–1310

    Article  PubMed  CAS  Google Scholar 

  • Brewster ME, Loftsson T (2007) Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev 59(7):645–666

    Article  PubMed  CAS  Google Scholar 

  • Charman WN, Porter CJ, Mithani S, Dressman JB (1997) Physiochemical and physiological mechanisms for the effects of food on drug absorption: the role of lipids and pH. J Pharm Sci 86(3):269–282

    Article  PubMed  CAS  Google Scholar 

  • Corcoran TE (2006) Inhaled delivery of aerosolized cyclosporine. Adv Drug Deliv Rev 58(9–10):1119–1127

    Article  PubMed  CAS  Google Scholar 

  • Crowder TM, Rosati JA, Schroeter JD, Hickey AJ, Martonen TB (2002) Fundamental effects of particle morphology on lung delivery: predictions of Stokesʼ law and the particular relevance to dry powder inhaler formulation and development. Pharm Res 19(3):239–245

    Article  PubMed  CAS  Google Scholar 

  • Custodio JM, Wu C-Y, Benet LZ (2008) Predicting drug disposition, absorption/elimination/transporter interplay and the role of food on drug absorption. Adv Drug Deliv Rev 60(6):717–733

    Article  PubMed  CAS  Google Scholar 

  • Donaldson K (2001) Ultrafine particles. Occup Environ Med 58(3):211–216

    Article  PubMed  CAS  Google Scholar 

  • Dowling RD, Zenati M, Burckart GJ, Yousem SA, Schaper M, Simmons RL et al (1990) Aerosolized cyclosporine as single-agent immunotherapy in canine lung allografts. Surgery 108(2):198–204

    PubMed  CAS  Google Scholar 

  • Dressman JB, Vertzoni M, Goumas K, Reppas C (2007) Estimating drug solubility in the gastrointestinal tract. Adv Drug Deliv Rev 59(7):591–602

    Article  PubMed  CAS  Google Scholar 

  • Driscoll K (1997) Effects of particle exposure and particle-elicited inflammatory cells on mutation in rat alveolar epithelial cells. Carcinogenesis 18(2):423–430

    Article  PubMed  CAS  Google Scholar 

  • Egger-Heigold B (2005) The effect of excipients on pharmacokinetic parameters of parenteral drugs. PhD Thesis, University of Basel, Faculty of Science

    Google Scholar 

  • Ellis AG, Crinis NA, Webster LK (1996) Inhibition of etoposide elimination in the isolated perfused rat liver by Cremophor EL and Tween 80. Cancer Chemother Pharmacol 38(1):81–87

    Article  PubMed  CAS  Google Scholar 

  • Engels FK, Mathot RA, Verweij J (2007) Alternative drug formulations of docetaxel: a review. Anticancer Drugs 18(2):95–103

    Article  PubMed  CAS  Google Scholar 

  • Evrard B, Bertholet P, Gueders M, Flament M-P, Piel G, Delattre L et al (2004) Cyclodextrins as a potential carrier in drug nebulization. J Control Release 96(3):403–410

    Article  PubMed  CAS  Google Scholar 

  • Fleisher D, Li C, Zhou Y, Pao LH, Karim A (1999) Drug, meal and formulation interactions influencing drug absorption after oral administration clinical implications. Clin Pharmacokinet 36(3):233–254

    Article  PubMed  CAS  Google Scholar 

  • Gabor F, Fillafer C, Neutsch L, Ratzinger G, Wirth M (2010) Improving oral delivery. In: Schaefer-Korting M (ed) Drug delivery. Springer, Berlin

    Google Scholar 

  • Groneberg DA, Witt C, Wagner U, Chung KF, Fischer A (2003) Fundamentals of pulmonary drug delivery. Respir Med 97(4):382–387

    Article  PubMed  CAS  Google Scholar 

  • Gu C-H, Li H, Levons J, Lentz K, Gandhi RB, Raghavan K et al (2007) Predicting effect of food on extent of drug absorption based on physicochemical properties. Pharm Res 24(6):1118–1130

    Article  PubMed  CAS  Google Scholar 

  • Gupta A, Stein SW, Myrdal PB (2003) Balancing ethanol cosolvent concentration with product performance in 134a-based pressurized metered dose inhalers. J Aerosol Med 16(2):167–174

    Article  PubMed  CAS  Google Scholar 

  • Heyder J, Gebhart J, Rudolf G, Schiller C, Stahlhofen W (1986) Deposition of particles in the human respiratory tract in the size range 0.005–15 μm. J Aerosol Sci 17(5):811–825

    Article  Google Scholar 

  • Hochman JH, Chiba M, Nishime J, Yamazaki M, Lin JH (2000) Influence of P-glycoprotein on the transport and metabolism of indinavir in Caco-2 cells expressing cytochrome P-450 3A4. J Pharmacol Exp Ther 292(1):310–318

    PubMed  CAS  Google Scholar 

  • Hofmann AF, Mysels KJ (1987) Bile salts as biological surfactants. Colloid Surface 30(1):145–173

    Article  Google Scholar 

  • Jacobs C, Müller RH (2002) Production and characterization of a budesonide nanosuspension for pulmonary administration. Pharm Res 19(2):189–194

    Article  PubMed  CAS  Google Scholar 

  • Jain KK (2008) Drug delivery systems – an overview. In: Jain KK (ed) Drug delivery systems. Humana Press, Totowa, NJ

    Chapter  Google Scholar 

  • Jinno J-ichi, Kamada N, Miyake M, Yamada K, Mukai T, Odomi M et al (2006) Effect of particle size reduction on dissolution and oral absorption of a poorly water-soluble drug, cilostazol, in beagle dogs. J Control Release 111(1–2):56–64

    Article  PubMed  CAS  Google Scholar 

  • Johnson JLH, He Y, Yalkowsky SH (2003) Prediction of precipitation-induced phlebitis: a statistical validation of an in vitro model. J Pharm Sci 92(8):1574–1581

    Article  PubMed  CAS  Google Scholar 

  • Klein CE, Chiu Y-L, Awni W, Zhu T, Heuser RS, Doan T et al (2007) The tablet formulation of lopinavir/ritonavir provides similar bioavailability to the soft-gelatin capsule formulation with less pharmacokinetic variability and diminished food effect. J Acquir Immune Defic Syndr 44(4):401–410

    Article  PubMed  CAS  Google Scholar 

  • Knight B, Troutman M, Thakker DR (2006) Deconvoluting the effects of P-glycoprotein on intestinal CYP3A: a major challenge. Curr Opin Pharmacol 6(5):528–532

    Article  PubMed  CAS  Google Scholar 

  • Krzyzaniak JF, Alvarez Núñez Fa, Raymond DM, Yalkowsky SH (1997) Lysis of human red blood cells. 4. Comparison of in vitro and in vivo hemolysis data. J Pharm Sci 86(11):1215–1217

    Article  PubMed  CAS  Google Scholar 

  • Labiris NR, Dolovich MB (2003) Pulmonary drug deliveryPart II: the role of inhalant delivery devices and drug formulations in therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol 56(6):600–612

    Article  PubMed  CAS  Google Scholar 

  • Lee VHL, Yang JJ (2001) Oral drug delivery. In: Hillery AM, Lloyd AW, Swarbrick J (eds) Drug delivery and targeting for pharmacists and pharmaceutical scientists. Taylor & Francis, London

    Google Scholar 

  • Lee Y-C, Zocharski PD, Samas B (2003) An intravenous formulation decision tree for discovery compound formulation development. Int J Pharm 253(1–2):111–119

    Article  PubMed  CAS  Google Scholar 

  • Levine RR (1970) Factors affecting gastrointestinal absorption of drugs. Am J Dig Dis 15(2):171–188

    Article  PubMed  CAS  Google Scholar 

  • Li P, Zhao L (2007) Developing early formulations: practice and perspective. Int J Pharm 341(1–2):1–19

    Article  PubMed  CAS  Google Scholar 

  • Lipinski CA (2000) Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 44(1):235–249

    Article  PubMed  CAS  Google Scholar 

  • Martinez MN, Amidon GL (2002) A mechanistic approach to understanding the factors affecting drug absorption: a review of fundamentals. J Clin Pharmacol 42(6):620–643

    Article  PubMed  CAS  Google Scholar 

  • Matilainen L, Toropainen T, Vihola H, Hirvonen J, Järvinen T, Jarho P et al (2008) In vitro toxicity and permeation of cyclodextrins in Calu-3 cells. J Control Release 126(1):10–16

    Article  PubMed  CAS  Google Scholar 

  • McCallion ON, Taylor KM, Thomas M, Taylor AJ (1995) Nebulization of fluids of different physicochemical properties with air-jet and ultrasonic nebulizers. Pharm Res 12(11):1682–1688

    Article  PubMed  CAS  Google Scholar 

  • Mitruka SN, Pham SM, Zeevi A, Li S, Cai J, Burckart GJ et al (1998) Aerosol cyclosporine prevents acute allograft rejection in experimental lung transplantation. J Thorac Cardiovasc Surg 115(1):28–37

    Article  PubMed  CAS  Google Scholar 

  • Mogalian E, Myrdal PB (2007) Pharmaceutical solvents for pulmonary drug delivery. In: Augustijns P, Brewster M (eds) Solvent systems and their selection in pharmaceutics and Biopharmaceutics. Springer, New York

    Google Scholar 

  • Montharu J, Le Guellec S, Kittel B, Rabemampianina Y, Guillemain J, Gauthier F et al (2010) Evaluation of lung tolerance of ethanol, propylene glycol, and sorbitan monooleate as solvents in medical aerosols. J Aerosol Med Pulm Drug Deliv 23(1):41–46

    Article  PubMed  CAS  Google Scholar 

  • Mottu F, Stelling M-J, Rüfenacht DA, Doelker E (2001) Comparative hemolytic activity of undiluted organic water-miscible solvents for intravenous and intra-arterial injection. PDA J Pharm Sci Technol 55(1):16

    PubMed  CAS  Google Scholar 

  • Narazaki R, Sanghvi R, Yalkowsky SH (2007) Estimation of drug precipitation upon dilution of pH-controlled formulations. Mol Pharm 4(4):550–555

    Article  PubMed  CAS  Google Scholar 

  • Nernst W (1904) Theorie der Reaktionsgeschwindigkeit in heterogenen Systemen. Zeitschrift f Physikalische Chemie 47:52–55

    CAS  Google Scholar 

  • Noakes T (2002) Medical aerosol propellants. J Fluor Chem 118(1–2):35–45

    Article  CAS  Google Scholar 

  • Noyes A, Whitney W (1897) The rate of solution of solid substances in their own solutions. J Am Chem Soc 19:930–934

    Article  Google Scholar 

  • Oberdörster G (1997) Pulmonary carcinogenicity of inhaled particles and the maximum tolerated dose. Environ Health Perspect 105(Suppl):1347–1355

    Article  PubMed  Google Scholar 

  • Ohnishi M, Sagitani H (1993) The effect of nonionic surfactant structure on hemolysis. J Am Oil Chem Soc 70(7):679–684

    Article  CAS  Google Scholar 

  • Paine MF, Hart HL, Ludington SS, Haining RL, Rettie AE, Zeldin DC et al (2006) The human intestinal cytochrome P450 “PIE” abstract. Methods 34(5):880–886

    CAS  Google Scholar 

  • Patton JS, Fishburn CS, Weers JG (2004) The lungs as a portal of entry for systemic drug delivery. Proc Am Thorac Soc 1(4):338–344

    Article  PubMed  CAS  Google Scholar 

  • Perlman ME, Murdande SB, Gumkowski MJ, Shah TS, Rodricks CM, Thornton-Manning J et al (2008) Development of a self-emulsifying formulation that reduces the food effect for torcetrapib. Int J Pharm 351(1–2):15–22

    Article  PubMed  CAS  Google Scholar 

  • Pilcer G, Amighi K (2010) Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm 392(1–2):1–19

    Article  PubMed  CAS  Google Scholar 

  • Radi AE, Eissa S (2010) Electrochemistry of cyclodextrin inclusion complexes of pharmaceutical compounds. Open Chem Biomed Meth J 3:74–85

    Article  CAS  Google Scholar 

  • Reed KW, Yalkowsky SH (1987) Lysis of human red blood cells in the presence of various cosolvents III. The relationship between hemolytic potential and structure. J Parenter Science Technol 41(1):37–39

    CAS  Google Scholar 

  • Renwick LC, Donaldson K, Clouter A (2001) Impairment of alveolar macrophage phagocytosis by ultrafine particles. Toxicol Appl Pharmacol 172(2):119–127

    Article  PubMed  CAS  Google Scholar 

  • Renwick LC, Brown D, Clouter A, Donaldson K (2004) Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occup Environ Med 61(5):442–447

    Article  PubMed  CAS  Google Scholar 

  • Saini D, Biris AS, Srirama PK, Mazumder MK (2007) Particle size and charge distribution analysis of pharmaceutical aerosols generated by inhalers. Pharm Dev Technol 12(1):35–41

    Article  PubMed  CAS  Google Scholar 

  • Salem LB, Bosquillon C, Dailey LA, Delattre L, Martin GP, Evrard B et al (2009) Sparing methylation of beta-cyclodextrin mitigates cytotoxicity and permeability induction in respiratory epithelial cell layers in vitro. J Control Release 136(2):110–116

    Article  PubMed  CAS  Google Scholar 

  • Sastry S, Nyshadham J, Fix J (2000) Recent technological advances in oral drug delivery - a review. Pharmaceut Sci Tech Today 3(4):138–145

    Article  CAS  Google Scholar 

  • Sauron R, Wilkins M, Jessent V, Dubois A, Maillot C, Weil A (2006) Absence of a food effect with a 145 mg nanoparticle fenofibrate tablet formulation. Int J Clin Pharmacol Ther 44(2):64–70

    PubMed  CAS  Google Scholar 

  • Shalel S, Streichman S, Marmur A (2002) The mechanism of hemolysis by surfactants: effect of solution composition. J Colloid Interface Sci 252(1):66–76

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Porter W, Merdan T, Li LC (2009) Recent advances in intravenous delivery of poorly water-soluble compounds. Expert Opin Drug Deliv 6(12):1261–1282

    Article  PubMed  CAS  Google Scholar 

  • Singla AK, Garg A, Aggarwal D (2002) Paclitaxel and its formulations. Int J Pharm 235(1–2):179–192

    Article  PubMed  CAS  Google Scholar 

  • Smith Da, Jones BC, Walker DK (1996) Design of drugs involving the concepts and theories of drug metabolism and pharmacokinetics. Med Res Rev 16(3):243–266

    Article  PubMed  CAS  Google Scholar 

  • Smyth HDC (2003) The influence of formulation variables on the performance of alternative propellant-driven metered dose inhalers. Adv Drug Deliv Rev 55(7):807–828

    Article  PubMed  CAS  Google Scholar 

  • Sparreboom A, van Tellingen O, Nooijen WJ, Beijnen JH (1996) Nonlinear Pharmacokinetics of Paclitaxel in Mice Results from the Pharmaceutical Vehicle Cremophor EL. Cancer Res 56(9):2112–2115

    PubMed  CAS  Google Scholar 

  • Sparreboom A, van Zuylen L, Brouwer E, Loos WJ, de Bruijn P, Gelderblom H et al (1999) Cremophor EL-mediated alteration of paclitaxel distribution in human blood: clinical pharmacokinetic implications. Cancer Res 59(7):1454–1457

    PubMed  CAS  Google Scholar 

  • Stella VJ, He Q (2008) Cyclodextrins. Toxicol Pathol 36(1):30–42

    Article  PubMed  CAS  Google Scholar 

  • Stella V, Rao V, Zannou E, Zia V (1999) Mechanisms of drug release from cyclodextrin complexes. Adv Drug Deliv Rev 36(1):3–16

    Article  PubMed  CAS  Google Scholar 

  • Strickley RG (2004) Solubilizing excipients in oral and injectable formulations. Pharm Res 21(2):201–230

    Article  PubMed  CAS  Google Scholar 

  • Sugano K, Okazaki A, Sugimoto S, Tavornvipas S, Omura A, Mano T (2007) Solubility and dissolution profile assessment in drug discovery. Drug Metab Pharmacokinet 22(4):225–254

    Article  PubMed  CAS  Google Scholar 

  • Sunesen VH, Vedelsdal R, Kristensen HG, Christrup L, Müllertz A (2005) Effect of liquid volume and food intake on the absolute bioavailability of danazol, a poorly soluble drug. Eur J Pharm Sci 24(4):297–303

    Article  PubMed  CAS  Google Scholar 

  • Szebeni J, Muggia FM, Alving CR (1998) Complement activation by Cremophor EL as a possible contributor to hypersensitivity to paclitaxel: an in vitro study. J Natl Cancer Inst 90(4):300–306

    Article  PubMed  CAS  Google Scholar 

  • Tam JM, McConville JT, Williams RO, Johnston KP (2008) Amorphous cyclosporin nanodispersions for enhanced pulmonary deposition and dissolution. J Pharm Sci 97(11):4915–4933

    Article  PubMed  CAS  Google Scholar 

  • Ten Tije AJ, Verweij J, Loos WJ, Sparreboom A (2003) Pharmacological effects of formulation vehiclese: implications for cancer chemotherapy. Clin Pharmacokinet 42(7):665–685

    Article  PubMed  Google Scholar 

  • Tewes F, Brillault J, Couet W, Olivier J-C (2008) Formulation of rifampicin-cyclodextrin complexes for lung nebulization. J Control Release 129(2):93–99

    Article  PubMed  CAS  Google Scholar 

  • Thi THH, Azaroual N, Flament M-P (2009) Characterization and in vitro evaluation of the formoterol/cyclodextrin complex for pulmonary administration by nebulization. Eur J Pharm Biopharm 72(1):214–218

    Article  PubMed  CAS  Google Scholar 

  • Tolman JA, Williams RO (2009) Advances in the pulmonary delivery of poorly water-soluble drugs: influence of solubilization on pharmacokinetic properties. Drug Dev Ind Pharm 36(1):1–30

    Article  Google Scholar 

  • Tsapis N, Bennett D, Jackson B, Weitz DA, Edwards DA (2002) Trojan particles: large porous carriers of nanoparticles for drug delivery. Proc Natl Acad Sci USA 99(19):12001–12005

    Article  PubMed  CAS  Google Scholar 

  • van Zuylen L, Karlsson MO, Verweij J, Brouwer E, de Bruijn P, Nooter K et al (2001) Pharmacokinetic modeling of paclitaxel encapsulation in Cremophor EL micelles. Cancer Chemother Pharmacol 47(4):309–318

    Article  PubMed  Google Scholar 

  • Wang T, Noonberg S, Steigerwalt R, Lynch M, Kovelesky RA, Rodríguez CA et al (2007) Preclinical safety evaluation of inhaled cyclosporine in propylene glycol. J Aerosol Med 20(4):417–428

    Article  PubMed  Google Scholar 

  • Webster LK, Cosson EJ, Stokes KH, Millward MJ (1996) Effect of the paclitaxel vehicle, Cremophor EL, on the pharmacokinetics of doxorubicin and doxorubicinol in mice. Br J Cancer 73(4):522–524

    Article  PubMed  CAS  Google Scholar 

  • Welling PG (1996) Effects of food on drug absorption. Annu Rev Nutr 16:383–415

    Article  PubMed  CAS  Google Scholar 

  • Wong J, Brugger A, Khare A, Chaubal M, Papadopoulos P, Rabinow B et al (2008) Suspensions for intravenous (IV) injection: a review of development, preclinical and clinical aspects. Adv Drug Deliv Rev 60(8):939–954

    Article  PubMed  CAS  Google Scholar 

  • Woo JS, Song Y-K, Hong J-Y, Lim S-J, Kim C-K (2008) Reduced food-effect and enhanced bioavailability of a self-microemulsifying formulation of itraconazole in healthy volunteers. Eur J Pharm Sci 33(2):159–165

    Article  PubMed  CAS  Google Scholar 

  • Wu C-Y, Benet LZ (2005) Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res 22(1):11–23

    Article  PubMed  CAS  Google Scholar 

  • Yalkowsky SH, Krzyzaniak JF, Ward GH (1998) Formulation-related problems associated with intravenous drug delivery. J Pharm Sci 87(7):787–796

    Article  PubMed  CAS  Google Scholar 

  • Yang W, Tam J, Miller DA, Zhou J, McConville JT, Johnston KP et al (2008) High bioavailability from nebulized itraconazole nanoparticle dispersions with biocompatible stabilizers. Int J Pharm 361(1–2):177–188

    Article  PubMed  CAS  Google Scholar 

  • Yang W, Chow KT, Lang B, Wiederhold NP, Johnston KP, Williams RO (2010) In vitro characterization and pharmacokinetics in mice following pulmonary delivery of itraconazole as cyclodextrin solubilized solution. Eur J Pharm Sci 39(5):336–347

    Article  PubMed  CAS  Google Scholar 

  • Zaslavsky BY, Ossipov NN, Rogozhin SV (1978) Action of surface-active substances of biological membranes III. Comparison of hemolytic activity of ionic and nonionic surfactants. Biochim Biophys Acta 510(1):151–159

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert O. Williams III .

Editor information

Editors and Affiliations

Appendices

Method Capsule 1Development of a Self-Emulsifying Formulation that Reduces the Food Effect for Torcetrapib

Based on the method reported by Perlman et al. (2008)

Objective

  • To achieve a lower food effect and higher dose of torcetrapib per unit through the use of self-emulsifying formulation.

Equipment and Reagents

  • Torcetrapib (Clog P 7.45; non-ionizable)

  • Miglyol 812 BP (medium chain triglycerides)

  • Triacetin (triacetyl glycerin)

  • Polysorbate 80

  • Capmul MCM (medium chain mono and diglycerides)

  • Glass vessel

  • Gelatin softgel shells

  • Rotary-die encapsulation machine

Method

  • Excipients are added to glass vessel (semisolid excipient Capmul MCM melted prior to addition).

  • Mixture is stirred until it is homogeneous.

  • Then the desired amount of the drug is added.

  • The resulting mixture is stirred at ambient temperature with occasional scraping of the vessel walls until solution is obtained.

  • Softgels are manufactured on a rotary-die machine by encapsulation using a shell prepared from gelatin, glycerin, and water.

Results

  • The mean droplet size of the emulsion formed by mixing the formulation and water at a ratio of 1:100 by five times gentle inversion was determined to be 257 nm.

  • Softgel capsules stored for 6 weeks at 5°C/75% RH, 30°C/60% RH, and 40°C/75% RH showed no change in potency as analyzed by HPLC. Also no sign of crystallization in the fill under any condition based on microscopic examination was found.

  • The use of the lipophilic, GRAS cosolvent triacetin in the formulation allowed a twofold increase in the dose per capsule as compared to the formulation used in early clinical trials where the drug was dissolved in Mygliol 812 BP only.

  • Pharmacokinetic studies in dogs demonstrated that the food effect seen with Mygliol softgels was reduced from five to threefold with the Mygliol/Triacetin/Polysorbate 80/Capmul MCM formulation.

Method Capsule 2High Bioavailability from Nebulized Itraconazole Nanoparticle Dispersions with Biocompatible Stabilizers

Based on the method reported by Yang et al. (2008)

Objective

  • To develop an itraconazole nanoparticle dispersion for pulmonary delivery by nebulization that does not require the use of synthetic polymers and surfactants to achieve high supersaturation values in vitro and high bioavailability in in vivo.

Equipment and Reagents

  • Itraconazole (ITZ)

  • Mannitol

  • Lecithin

  • 1,4-Dioxane

  • Ultra-rapid freezing (URF) apparatus

  • Lyophilizer

Method

  • Lecithin (118 mg) is dissolved in a mixture of 1,4-dioxane and purified water (65/35, v/v) cosolvent system (200 mL) using a magnetic stirrer.

  • ITZ (588 mg) and mannitol (294 mg) are subsequently dissolved in the mixture; this provides a dissolved solids ratio of ITZ:mannitol:lecithin of 1:0.5:0.2 by weight.

  • The solution is rapidly frozen using the URF apparatus in which the solution is applied to a cryogenic solid substrate cooled to−70°C.

  • The resultant frozen solids are collected and lyophilized.

Results

  • Particle-size distributions of lyophilized ITZ powder redispersed in water showed a narrow size range with a D50 and D90 (diameter at which the cumulative sample volume is under 50 and 90%, respectively) of 230 and 540 nm, respectively.

  • ITZ nanoparticles were found to be amorphous as indicated by the absence of the characteristic crystalline peaks of ITZ and mannitol.

  • ITZ nanoparticles produced supersaturation levels 27 times the crystalline solubility upon dissolution in simulated lung fluid.

  • The colloidal dispersion obtained after redispersion of the powder in water demonstrated optimal aerodynamic properties with a fine particle fraction of 66.96% and a mass median aerodynamic diameter of nebulized droplets of 2.38 μm.

  • An in vivo single-dose 24 h pharmacokinetics study of the nebulized colloidal dispersion demonstrated substantial lung deposition and systemic absorption with blood levels reaching a peak of 1.6 μg/mL serum in 2 h.

Method Capsule 3Amorphous Cyclosporin Nanodispersions for Enhanced Pulmonary Deposition and Dissolution

Based on the method reported by Tam et al. (2008)

Objective

  • To nebulize stable amorphous nanoparticle dispersions of Cyclosporine A to achieve high fine particle fractions and high levels of absorption into the lung epithelium.

Equipment and Reagents

  • Cyclosporin A

  • Polysorbate 80

  • Liquid nitrogen

  • Methanol

  • Glass vessel

  • Temperature-controlled water bath

  • Rotary evaporator

Method

  • 15 g of methanol containing 3.2% w/w cyclosporine A is injected into 50 g deionized water containing an appropriate amount of polysorbate 80 and maintained at 3°C by means of a temperature-controlled water bath.

  • Methanol is then separated from the aqueous dispersion via vacuum distillation.

  • If the dry powder is desired, the aqueous dispersion can be frozen drop-wise into liquid nitrogen and then be lyophilized.

Results

  • Static light scattering results demonstrated a cyclosporine to polysorbate 80 ratio of 1:0.1 produced particles with an average diameter of 300 nm.

  • The absence of characteristic crystalline cyclosporine A peaks in XRD patterns indicated a primarily amorphous character.

  • Dissolution of the aqueous cyclosporine A dispersion produced supersaturation values 18 times the aqueous equilibrium solubility of the drug.

  • The sizes of the aerosolized aqueous droplets (1–4 μm) obtained by nebulization were found to be optimal for deep lung deposition.

  • Nebulization of the dispersion to mice produced therapeutic lung levels and systemic concentrations below toxic limits.

Method Capsule 4Production and Characterization of a Budesonide Nanosuspension for Pulmonary Administration

Based on the method reported by Jacobs and Müller (2002)

Objective

  • To develop a budesonide nanosuspension by high-pressure homogenization and to investigate the aerosolization properties of this nanosuspension

Equipment and Reagents

  • Budesonide

  • Soy lecithin

  • Span 85

  • Tyloxapol

  • Cetylalcohol

  • Ultra-Turrax

  • High-pressure homogenizer

Method

  • The surfactants are dissolved or dispersed in warm (∼40°C) bidistilled water by using an Ultra-Turrax.

  • Budesonide is then dispersed in the aqueous surfactant solution/dispersion by using the Ultra-Turrax for 1 min at 9,500 rpm.

  • The obtained premix is homogenized by using a Micron LAB 40 homogenizer at two cycles at 150 bar and two cycles at 500 bar as a kind of premilling and then 20 homogenization cycles at 1,500 bar to obtain the final product.

Results

  • A combination of lecithin (0.5%, w/w) and tyloxapol (0.2%, w/w) proved to be most suitable to stabilize budesonide (1%, w/w) nanosuspension.

  • The mean particle size of this nanosuspension was 500 nm as analyzed by photon correlation spectroscopy.

  • The scale-up of the formulation from 40 to 300 mL was successful with ­similar size distributions obtained for both batch sizes.

  • The mean particle size as determined by photon correlation spectroscopy did not change after nebulization of the nanosuspension indicating suitability for pulmonary delivery.

  • Nanosuspension stored at room temperature was stable in terms of size distribution over 1 year period.

Method Capsule 5Trojan Particles: Large Porous Carriers of Nanoparticles for Drug Delivery

Based on the method reported by Tsapis et al. (2002)

Objective

  • To combine the drug release and delivery potential of nanoparticle (NP) systems with the ease of flow, processing, and aerosolization potential of large porous particle (LPP) systems by spray-drying solutions of NPs into large porous NP (LPNP) aggregates.

Equipment and Reagents

  • 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)

  • 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE)

  • Lactose monohydrate

  • Hydroxypropylcellulose

  • Bovine serum albumin (BSA)

  • Ethanol

  • Aqueous suspensions of surfactant-free carboxylate-modified polystyrene NP (PS-NP) or aqueous suspensions (pH 9) of Nyacol 9,950 colloidal silica NP

  • Spray-dryer

Method

  • Solutions of NPs were prepared by mixing ethanol and water (70:30, v/v) to the desired w/v fraction.

  • If desired, additional excipients may be included, e.g., sugars, lipids such as DPPC and DMPE, polymers, or proteins.

  • The resulting mixture is spray-dried under the following conditions: the inlet temperature is fixed at 110°C, the outlet temperature is about 46°C, a V24 rotary atomizer spinning at 20,000 rpm is used, and the feed rate of the solution is 70 mL/min, the drying air flow rate is 98 kg/h.

  • Spray-dried particles are collected with a 6 in. cyclone.

Results

  • The chemical nature of the NPs seemed to be of little importance, since LPNPs were also successfully produced with colloidal silica NPs instead of PS-NPs.

  • The formation of LPNPs appears to be generally independent of the size of the NPs (25 nm and 170 nm NP were tested), provided they are much smaller than the ultimate physical dimension of the spray-dried LPNP.

  • In all cases, the LPNPs had a solid deformable shell, consisting of several layers of NPs, and a wrinkled structure indicative of a low relative density, making their aerodynamic properties highly favorable.

  • Additional control over LPNPs physical characteristics is achieved by adding other components to the spray-dried solutions, including sugars, lipids (DPPC, DMPE), polymers (hydroxypropylcellulose), and proteins (BSA).

Rights and permissions

Reprints and permissions

Copyright information

© 2012 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Bosselmann, S., Williams, R.O. (2012). Route-Specific Challenges in the Delivery of Poorly Water-Soluble Drugs. In: Williams III, R., Watts, A., Miller, D. (eds) Formulating Poorly Water Soluble Drugs. AAPS Advances in the Pharmaceutical Sciences Series, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1144-4_1

Download citation

Publish with us

Policies and ethics