Skip to main content

Drug–Polymer Matrices for Extended Release

  • Chapter
  • First Online:
Controlled Release in Oral Drug Delivery

Abstract

Extending drug release from a dosage form can prolong its action, ­attenuate peak plasma levels, thereby obviating concentration-related side effects or optimize efficacy by matching systemic presence with other time-related effects. Such modifications can be affected by embedding the drug in a matrix that prevents immediate release but delivers at a rate consistent with absorption or disposition requirements. Various polymeric and other materials can be used to design the most appropriate release profile and provide a viable and consistent mode of manufacture. Such materials, their properties, and modes of release modification are ­presented, reviewed, and discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lordi NG (1987) Sustained release dosage forms. In: Lachman L, Lieberman HA, Kanig JL (eds) The theory and practice of industrial pharmacy. Varghese, Bombay, pp 430–456

    Google Scholar 

  2. Chiao CSL, Robinson JR (1995) Sustained-release drug delivery systems. In: Gennaro AR (ed) Remington: the science and practice of pharmacy. Mack, Easton, Pennsylvania, pp 1660–1675

    Google Scholar 

  3. Kydonieus AF (1980) Fundamental concepts of controlled release. In: Kydonieus AF (ed) Controlled release technologies: methods, theory, and applications. CRC, Boca Raton, FL, pp 1–19

    Google Scholar 

  4. U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Drug Approval Reports

    Google Scholar 

  5. GlaxoSmithKline. Our Histroy. See 1952. [Online]. http://www.gsk.com/about/histroy-noflash.htm#. Accessed 11 Aug 2006

  6. Buri P, Doelker E (1980) Formulation of sustained-release tablets. II. Hydrophilic matrices. Pharm Acta Helv 55(7–8):189–197

    PubMed  CAS  Google Scholar 

  7. Conte U et al (1979) Sustained release nitrofurantoin tablets by direct compression. Farmaco [Prat] 34(7):306–316

    CAS  Google Scholar 

  8. Conte U et al (1988) Swelling-activated drug delivery systems. Biomaterials 9(6):489–493

    Article  PubMed  CAS  Google Scholar 

  9. Lee B-J, Ryu S-G, Cui J-H (1999) Formulation and release characteristics of hydroxypropyl methylcellulose matrix tablet containing meatonin. Drug Dev Ind Pharm 25(4):493–501

    Article  PubMed  CAS  Google Scholar 

  10. Salomen JL, Doelker E (1980) Formulation of sustained release tablets. I. Inert matrices. Pharm Acta Helv 55(7):174–182

    PubMed  CAS  Google Scholar 

  11. Wilding IR et al (1989) Gastrointestinal transit of Sinemet CR in healthy volunteers. Neurology 39(11 Suppl 2):53–58

    PubMed  CAS  Google Scholar 

  12. Wilding IR et al (1991) Characterisation of the in vivo behaviour of a controlled-release formulation of levodopa (Sinemet CR). Clin Neuropharmacol 14(4):305–321

    Article  PubMed  CAS  Google Scholar 

  13. Zhu Y et al (2006) Controlled release of a poorly water-soluble drug from hot-melt extrudates containing acrylic polymers. Drug Dev Ind Pharm 32(5):569–583

    Article  PubMed  CAS  Google Scholar 

  14. Patel N, Madan P, Lin S (2011) Development and evaluation of controlled release ibuprofen matrix tablets by direct compression technique. Pharm Dev Technol 16(1):1–11

    Article  PubMed  CAS  Google Scholar 

  15. Badshah A, Subhan F, Rauf K (2010) Controlled release matrix tablets of olanzapine: influence of polymers on the in vitro release and bioavailability. AAPS PharmSciTech 11(3): 1397–1404

    Article  PubMed  CAS  Google Scholar 

  16. Chansanroj K, Betz G (2010) Sucrose esters with various hydrophilic-lipophilic properties: novel controlled release agents for oral drug delivery matrix tablets prepared by direct compaction. Acta Biomater 6(8):3101–3109

    Article  PubMed  CAS  Google Scholar 

  17. Pavli M, Vrecer F, Baumgartner S (2010) Matrix tablets based on carrageenans with dual controlled release of doxazosin mesylate. Int J Pharm 400(1–2):15–23

    Article  PubMed  CAS  Google Scholar 

  18. Tadros MI (2010) Controlled-release effervescent floating matrix tablets of ciprofloxacin hydrochloride: development, optimization and in vitro-in vivo evaluation in healthy human volunteers. Eur J Pharm Biopharm 74(2):332–339

    Article  PubMed  CAS  Google Scholar 

  19. Al-Zoubi NM, Alkhatib HS, Obeidat WM (2011) Evaluation of hydrophilic matrix tablets based on Carbopol(R) 971P and low-viscosity sodium alginate for pH-independent controlled drug release. Drug Dev Ind Pharm 37(7):798–808

    Article  PubMed  CAS  Google Scholar 

  20. Thombre AG (2005) Assessment of the feasibility of oral controlled release in an exploratory development setting. Drug Discov Today 10(17):1159–1166

    Article  PubMed  CAS  Google Scholar 

  21. Frutos P et al (2001) In vitro release of metoclopramide from hydrophobic matrix tablets. Influence of hydrodynamic conditions on kinetic release parameters.. Chem Pharm Bull 49(10):1267–1271

    Article  PubMed  CAS  Google Scholar 

  22. Siepmann J et al (1999) HPMC-matrices for controlled drug delivery: a new model combining diffusion, swelling, and dissolution mechanisms and predicting the release kinetics. Pharm Res 16(11):1748–1756

    Article  PubMed  CAS  Google Scholar 

  23. Siepmann J et al (2000) Calculation of the required size and shape of hydroxypropyl methylcellulose matrices to achieve desired drug release profiles. Int J Pharm 201(2):151–164

    Article  PubMed  CAS  Google Scholar 

  24. Siepmann J, Lecomte F, Bodmeier R (1999) Diffusion-controlled drug delivery systems: calculation of the required composition to achieve desired release profiles. J Control Release 60(2–3):379–389

    Article  PubMed  CAS  Google Scholar 

  25. Siepmann J, Peppas NA (2000) Hydrophilic matrices for controlled drug delivery: an improved mathematical model to predict the resulting drug release kinetics (the “sequential layer” model). Pharm Res 17(10):1290–1298

    Article  PubMed  CAS  Google Scholar 

  26. Siepmann J, Peppas NA (2001) Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev 48(2–3):139–157

    Article  PubMed  CAS  Google Scholar 

  27. Siepmann J, Peppas NA (2001) Mathematical modeling of controlled drug delivery. Adv Drug Deliv Rev 48(2–3):137–138

    PubMed  CAS  Google Scholar 

  28. Siepmann J et al (1999) A new model describing the swelling and drug release kinetics from hydroxypropyl methylcellulose tablets. J Pharm Sci 88(1):65–72

    Article  PubMed  CAS  Google Scholar 

  29. Siepmann J, Streubel A, Peppas NA (2002) Understanding and predicting drug delivery from hydrophilic matrix tablets using the “sequential layer” model. Pharm Res 19(3):306–314

    Article  PubMed  CAS  Google Scholar 

  30. Caraballo I (2010) Factors affecting drug release from hydroxypropyl methylcellulose matrix systems in the light of classical and percolation theories. Expert Opin Drug Deliv 7(11):1291–1301

    Article  PubMed  CAS  Google Scholar 

  31. Ford JL et al (1991) Mathematical modelling of drug release from hydroxypropylmethylcellulose matrices: effect of temperature. Int J Pharm 71(1–2):95–104

    Article  CAS  Google Scholar 

  32. Korsmeyer RW et al (1983) Mechanisms of potassium chloride release from compressed, hydrophilic, polymeric matrices: effect of entrapped air. J Pharm Sci 72(10):1189–1191

    Article  PubMed  CAS  Google Scholar 

  33. Higuchi T (1963) Pharm Sci 52:1145. Direct Link: Abstract PDF (413 K) References

    Google Scholar 

  34. Inactive ingredient search for approved drug products. htttp://www.accessdata.fda.gov/scripts/cder/iig/index.cfm. Accessed 29 Sept 2010

  35. Metolose®. http://www.metolose.jp/e/pharmaceutical/metolose.shtml. Accessed 30 Mar 2011

  36. Ashland functional ingredients. http://www.ashland.com/solutions/products-services/functional-ingredients. Accessed 30 Mar 2011

  37. Repka MA et al (2005) Characterization of cellulosic hot-melt extruded films containing lidocaine. Eur J Pharm Biopharm 59(1):189–196

    Article  PubMed  CAS  Google Scholar 

  38. Ghimire M et al (2010) In-vitro and in-vivo erosion profiles of hydroxypropylmethylcellulose (HPMC) matrix tablets. J Control Release 147(1):70–75

    Article  PubMed  CAS  Google Scholar 

  39. Levina M, Gothoskar A, Rajabi-Siahboomi A (2006) Application of a modelling system in the formulation of extended release hydrophilic matrices. Pharm Technol Eur 18(7):20–26

    CAS  Google Scholar 

  40. Tiwari SB, Rajabi-Siahboomi AR (2008) Extended-release oral drug delivery technologies: monolithic matrix systems. Methods Mol Biol 437:217–243

    Article  PubMed  CAS  Google Scholar 

  41. Tajarobi F et al (2009) The impact of dose and solubility of additives on the release from HPMC matrix tablets – identifying critical conditions. Pharm Res 26(6):1496–1503

    Article  PubMed  CAS  Google Scholar 

  42. Gao P et al (1996) Swelling of hydroxypropyl methylcellulose matrix tablets. 2. Mechanistic study of the influence of formulation variables on matrix performance and drug release. J Pharm Sci 85(7):732–740

    Article  PubMed  CAS  Google Scholar 

  43. Hardy IJ, Cook WG, Melia CD (2006) Compression and compaction properties of plasticised high molecular weight hydroxypropylmethylcellulose (HPMC) as a hydrophilic matrix carrier. Int J Pharm 311(1–2):26–32

    Article  PubMed  CAS  Google Scholar 

  44. Hogan JE (1989) Hydroxypropylmethylcellulose sustained release technology. Drug Dev Ind Pharm 15(6 & 7):975–999

    Article  CAS  Google Scholar 

  45. Huang Y et al (2003) Effects of manufacturing process variables on in vitro dissolution characteristics of extended-release tablets formulated with hydroxypropyl methylcellulose. Drug Dev Ind Pharm 29(1):79–88

    Article  PubMed  CAS  Google Scholar 

  46. Levina M, Rajabi-Siahboomi A (2004) The influence of excipients on drug release from hydroxypropyl methylcellulose matrices. J Pharm Sci 93(11):2746–2754

    Article  PubMed  CAS  Google Scholar 

  47. Mitchell K et al (1993) The influence of drugs on the properties of gels and swelling characteristics of matrices containing methylcellulose or hydroxypropylmethylcellulose. Int J Pharm 100:165–173

    Article  CAS  Google Scholar 

  48. Mitchell K et al (1990) The influence of additives on the cloud point, disintegration and dissolution of hydroxypropyl methylcelluose gels and matrix tablets. Int J Pharm 66:233–242

    Article  CAS  Google Scholar 

  49. Mitchell SA, Balwinski KM (2008) A framework to investigate drug release variability arising from hypromellose viscosity specifications in controlled release matrix tablets. J Pharm Sci 97(6):2277–2285

    Article  PubMed  CAS  Google Scholar 

  50. Nokhodchi A et al (1996) The effects of compression rate and force on the compaction properties of different viscosity grades of hydroxypropylmethylcellulose 2208. Int J Pharm 129:21–31

    Article  CAS  Google Scholar 

  51. Nokhodchi A et al (1996) The effect of moisture on the heckel and energy analysis of hydroxypropylmethylcellulose 2208 (HPMC K4M). J Pharm Pharmacol 48(11):1122–1127

    Article  PubMed  CAS  Google Scholar 

  52. Nokhodchi A et al (1996) The influence of moisture content on the consolidation properties of hydroxypropylmethylcellulose K4M (HPMC 2208). J Pharm Pharmacol 48(11): 1116–1121

    Article  PubMed  CAS  Google Scholar 

  53. Nokhodchi A et al (2002) The effect of various surfactants on the release rate of propranolol hydrochloride from hydroxypropylmethylcellulose (HPMC)-Eudragit matrices. Eur J Pharm Biopharm 54(3):349–356

    Article  PubMed  CAS  Google Scholar 

  54. Nokhodchi A, Rubinstein MH (2001) An overview of the effects of material and process variables on the compaction and compression properties of hydroxypropylmethyl cellulose and ethyl cellulose. STP Pharm Sci 11:195–202

    CAS  Google Scholar 

  55. Tiwari SB et al (2003) Controlled release formulation of tramadol hydrochloride using hydrophilic and hydrophobic matrix system. AAPS PharmSciTech 4(3):18–23

    Article  Google Scholar 

  56. Rajabi-Siahboomi AR, Nokhodchi A, Rubinstein MH (1998) Compaction behaviour of hydrophilic cellulose ether polymers. Pharmaceutical technology tableting and granulation yearbook. Advanstar Communications, Santa Monica, CA, pp 32–40

    Google Scholar 

  57. Hardy IJ et al (2007) Modulation of drug release kinetics from hydroxypropyl methyl cellulose matrix tablets using polyvinyl pyrrolidone. Int J Pharm 337(1–2):246–253

    Article  PubMed  CAS  Google Scholar 

  58. Kabir MA, Reo JP (2009) Hydroxypropyl cellulose. In: Rowe RC, Sheskey PJ, Quinn ME (eds) Handbook of pharmaceutical excipients. Pharmaceutical Press and American Phar­macists Association, London, Chicago, pp 317–322

    Google Scholar 

  59. Nisso HPC (hydroxypropyl cellulose). http://www.nissoamerica.com/hpc/. Accessed 30 March 2011

  60. Application note: controlled drug release using HPC in a matrix tablet. http://www.nissoamerica.com/hpc/CR02.pdf. Accessed 30 Mar 2011

  61. Roshdy MN, Schnaare RL, Schwartz JB (2001) The effect of formulation composition and dissolution parameters on the gel strength of controlled release hydrogel tablets. Pharm Dev Technol 6(4):583–593

    Article  PubMed  CAS  Google Scholar 

  62. Lee C-Y et al (2006) Physical characterization and drug release profiling for hard capsules prepared with hydroxypropylcellulose or polyethylene oxide. Chin Pharm J 58:75–84

    CAS  Google Scholar 

  63. Vueba ML et al (2004) Influence of cellulose ether polymers on ketoprofen release from hydrophilic matrix tablets. Eur J Pharm Biopharm 58(1):51–59

    Article  PubMed  CAS  Google Scholar 

  64. Vueba ML et al (2006) Influence of cellulose ether mixtures on ibuprofen release: MC25, HPC and HPMC K100M. Pharm Dev Technol 11(2):213–228

    Article  PubMed  CAS  Google Scholar 

  65. Roshdy MN et al (2002) The effect of controlled release tablet performance and hydrogel strength on in vitro/in vivo correlation. Pharm Dev Technol 7(2):155–168

    Article  PubMed  CAS  Google Scholar 

  66. Sinha Roy D, Rohera BD (2002) Comparative evaluation of rate of hydration and matrix erosion of HEC and HPC and study of drug release from their matrices. Eur J Pharm Sci 16(3): 193–199

    Article  PubMed  CAS  Google Scholar 

  67. Hapgood KP (2009) Hydroxyethyl cellulose. In: Rowe RC, Sheshey PJ, Quinn ME (eds) Handbook of pharmaceutical excipients. Pharmaceutical Press and American Pharmacists Association, London, Chicago, pp 311–314

    Google Scholar 

  68. Conti S et al (2007) Matrices containing NaCMC and HPMC 2. Swelling and release mechanism study. Int J Pharm 333(1–2):143–151

    Article  PubMed  CAS  Google Scholar 

  69. Baveja SK, Ranga Rao KV, Padmalata Devi K (1987) Zero order release hyrophilic matrix tablets of b-adrenergic blockers. Int J Pharm 39:39–45

    Article  CAS  Google Scholar 

  70. Conti S et al (2007) Matrices containing NaCMC and HPMC 1. Dissolution performance characterization. Int J Pharm 333(1–2):136–142

    Article  PubMed  CAS  Google Scholar 

  71. Dabbagh MA et al (1999) Release of propranolol hydrochloride from matrix tablets containing sodium carboxymethylcellulose and hydroxypropylmethylcellulose. Pharm Dev Technol 4(3):313–324

    Article  PubMed  CAS  Google Scholar 

  72. Obaidat AA, Rashdan LA, Najib NM (2002) Release of dextromethorphan hydrobromide from matrix tablets containing sodium carboxymethylcellulose and hydroxypropylmethylcellulose. Acta Pharm Turcica 44(2):97–104

    CAS  Google Scholar 

  73. Glucophage (metformin hydroxhloride) Tablets. http://packageinserts.bms.com/pi/pi_glucophage.pdf. Accessed 30 Sept 2010

  74. Giunchedi P et al (2000) Evaluation of alginate compressed matrices as prolonged drug delivery systems. AAPS PharmSciTech 1(3):E19

    Article  PubMed  CAS  Google Scholar 

  75. FMC Biopolymer, sustained release, matrix tablets. http://www.fmcbiopolymer.com/Pharmaceutical/Applications/SustainedRelease/MatrixTablets.aspx. Accessed 30 Mar 2011

  76. Hodsdon AC et al (1995) Structure and behaviour in hydrophilic matrix sustained release dosage forms: 3. The influence of pH on the sustained-release performance and internal gel structure of sodium alginate matrices. J Control Release 33(1):143–152

    Article  CAS  Google Scholar 

  77. Park HY et al (1998) Effect of pH on drug release from polysaccharide tablets. Drug Deliv 5(1):13–18

    Article  PubMed  CAS  Google Scholar 

  78. Ching AL et al (2008) Modifying matrix micro-environmental pH to achieve sustained drug release from highly laminating alginate matrices. Eur J Pharm Sci 33(4–5):361–370

    Article  PubMed  CAS  Google Scholar 

  79. Qui Y, Zhang G (2005) Research and development aspects of oral controlled release dosage forms. In: Wise DL (ed) Handbook of pharmaceutical controlled release technology. Marcel Dekker, New York, pp 465–503

    Google Scholar 

  80. Howard JR, Timinis P (1988) Controlled release formulation. US Patent 4,792,452

    Google Scholar 

  81. Timmins P, Delargy AM, Howard JR (1997) Optimization and characterization of a pH independant extended release hydrophilic matrix tablet. Pharm Dev Technol 2(1):25–31

    Article  PubMed  CAS  Google Scholar 

  82. CALAN® SR (verapamil hydrochloride) sustained-release oral caplets. http://media.pfizer.com/files/products/uspi_calan_sr.pdf. Accessed 30 Mar 2011

  83. Melia CD (1991) Hydrophilic matrix sustained release systems based on polysaccharide carriers. Crit Rev Ther Drug Carrier Syst 8(4):395–421

    PubMed  CAS  Google Scholar 

  84. Fitzpatrick JP (1995) Xanthan gum in hydrophilic matrix drug delivery systems. In: Karsa DR, Stephenson RA (eds) Excipients and delivery systems for pharmaceutical formulations (Spl Publ S. No. 161). Royal Society of Chemistry, London

    Google Scholar 

  85. CP Kelco, Pharmaceutical. http://www.cpkelco.com/market_personalcare/app-pharm.html. Accessed 30 Mar 2011

  86. Gohel MC et al (2009) Fabrication of modified release tablet formulation of metoprolol succinate using hydroxypropyl methylcellulose and xanthan gum. AAPS PharmSciTech 10(1):62–68

    Article  PubMed  CAS  Google Scholar 

  87. Talwar N, Sen H, Staniforth JH (2003) Orally administered controlled drug delivery system providing temporal and spatial control. EP Patent 1,107,741

    Google Scholar 

  88. Carbopol® polymers, product overview and recommendations. http://www.lubrizol.com/Pharmaceutical/Products/CarbopolPolymers.html. Accessed 30 Mar 2011

  89. Draganoiu E, Rajabi-Siahboomi A, Tiwari S (2009) Carbomer. In: Rowe RC, Sheskey PJ, Quinn ME (eds) Handbook of pharmaceutical excipients. Pharmaceutical Press and American Pharmaceutical Association London, Chicago, pp 110–114

    Google Scholar 

  90. Oral solid dosage introduction. http://www.lubrizol.com. Accessed 30 Mar 2011

  91. Samani SM, Montaseri H, Kazemi A (2003) The effect of polymer blends on release profiles of diclofenac sodium from matrices. Eur J Pharm Biopharm 55:351–355

    Article  PubMed  CAS  Google Scholar 

  92. Tiwari SB, Rajabi-Siahboomi AR (2009) Applications of complementary polymers in HPMC hydrophilic extended release matrices. Drug Deliv Tech 9(7):20–27

    CAS  Google Scholar 

  93. Khamanga SM, Walker RB (2005) Comparison of method of manufacture on in vitro performance of verapamil matrix tablets. Controlled Release Society 32nd Annual Meeting and Exposition, Abstract #718, Miami, FL, 18–22 July 2005

    Google Scholar 

  94. Tiwari SB, Rajabi-Siahboomi AR (2008) Modulation of drug release from hydrophilic matrices. PharmTech.com 1 Sept 2008

    Google Scholar 

  95. Tiwari S, Martin L, Rajabi-Siahbhoomi A (2008) The influence of hydrodynamic conditions on Verapamil hydrochloride release from a hydrophilic matrices using ionic and non-ionic polymers. In: AAPS Annual Meeting, Atlanta, 15–20 Dec 2008

    Google Scholar 

  96. POLYOX™ Water-soluble polymers for pharmaceutical applications. https://www.colorcon.com/products/core-excipients/extended-controlled-release/polyox. Accessed 30 Mar 2011

  97. Braun DB (1980) Poly(ethylene oxide). In: Davidson RL (ed) Handbook of water-soluble gums and resins. McGraw-Hill, New York

    Google Scholar 

  98. Maggi L, Bruni R, Conte U (2000) High molecular weight polyethylene oxides (PEOs) as an alternative to HPMC in controlled release dosage forms. Int J Pharm 195(1–2):229–238

    Article  PubMed  CAS  Google Scholar 

  99. Berner B et al (2007) Gastric retentive gabapentin dosage forms and methods for using same. WO Patent WO/2007/079,195

    Google Scholar 

  100. L’Hote-Gaston J, Wallick D (2011) Effect of filler type on the stability of polyethylene oxide in a hydrophilic matrix tablet. www.colorcon.com/literature/…/polyethylene_oxide_matrix_tab.pdf. Accessed 30 Mar 2011

  101. Crowley MM et al (2002) Stability of polyethylene oxide in matrix tablets prepared by hot-melt extrusion. Biomaterials 23(21):4241–4248

    Article  PubMed  CAS  Google Scholar 

  102. Li L, AbuBaker O, Shao ZJ (2006) Characterization of poly (ethylene oxide) as a drug carrier in hot-melt extrusion. Drug Dev Ind Pharm 32(8):991–1002

    Article  PubMed  CAS  Google Scholar 

  103. Quinten T et al (2009) Evaluation of injection moulding as a pharmaceutical technology to produce matrix tablets. Eur J Pharm Biopharm 71(1):145–154

    Article  PubMed  CAS  Google Scholar 

  104. Sanghavi N, Kamath P, Amin D (1990) Sustained release tablets of theophylline. Drug Dev Ind Pharm 16(11):1843–1848

    Article  CAS  Google Scholar 

  105. Khullar P, Khar RK, Agarwal SP (1998) Evaluation of guar gum in the preparation of sustained-release matrix tablets. Drug Dev Ind Pharm 24(11):1095–1099

    Article  PubMed  CAS  Google Scholar 

  106. Ilium L (1998) Chitosan and its use as a pharmaceutical excipient. Pharm Res 15(9): 1326–1331

    Article  Google Scholar 

  107. Lenaerts V et al (1998) Cross-linked high amylose starch for controlled release of drugs: recent advances. J Control Release 53(1–3):225–234

    Article  PubMed  CAS  Google Scholar 

  108. Crowley MM et al (2004) Physicochemical properties and mechanism of drug release from ethyl cellulose matrix tablets prepared by direct compression and hot-melt extrusion. Int J Pharm 269(2):509–522

    Article  PubMed  CAS  Google Scholar 

  109. Katikaneni PR et al (1995) Ethylcellulose matrix controlled release tablets of a water-soluble drug. Int J Pharm 123(1):119–125

    Article  CAS  Google Scholar 

  110. Upadrashta SM et al (1993) Direct compression controlled release tablets using ethylcellulose matrices. Drug Dev Ind Pharm 19(4):449–460

    Article  CAS  Google Scholar 

  111. Application of ethylcellulose in preparation of extended release theophylline inert matrix tablets by wet granulation. https://www.colorcon.com/literature/marketing/mr/Extended%20Release/Surelease/English/ads_surelease_appl_theo_er_v1_07.21.2009kaf%20DFB-HD%2008.20.pdf. Accessed 28 Mar 2011

  112. Chang RK et al (2009) Polymethacrylates. In: Rowe RC, Sheskey PJ, Quinn ME (eds) Handbook of pharmaceutical excipients. Pharmaceutical Press and American Pharmacists Association, London, Chicago, pp 525–533

    Google Scholar 

  113. Gallardo D, Skalsky B, Kleinebudde P (2008) Controlled release solid dosage forms using combinations of (meth) acrylate copolymers. Pharm Dev Technol 13(5):413–423

    Article  PubMed  CAS  Google Scholar 

  114. Controlled release. http://www.pharma-ingredients.basf.com/Kollidon/TheKollidonProductFamily/ControlledRelease.aspx. Accessed 31 Mar 2011

  115. Kollidon® SR. http://www.pharma-ingredients.basf.com/Products.aspx?PRD=30071321. Accessed 31 Mar 2011

  116. RYZOLT™ (tramadol hydrochloride) extended-release tablets. http://www.rxlist.com/ryzolt-drug.htm. Accessed 28 Mar 2011

  117. Daugherity PD, Nause RG (2009) Cellulose acetate. In: Rowe RC, Sheskey PJ, Quinn ME (eds) Handbook of pharmaceutical excipients. Pharmaceutical Press and Amerian Pharmacists Association, Chicago, London, pp 141–143

    Google Scholar 

  118. Yum J, Stephen W (2000) A feasibility study using cellulose acetate and cellulose acetate butyrate. Pharm Technol 24(10):92–106

    Google Scholar 

  119. Ozyazici M, Gokce EH, Ertan G (2006) Release and diffusional modeling of metronidazole lipid matrices. Eur J Pharm Biopharm 63(3):331–339

    Article  PubMed  CAS  Google Scholar 

  120. Gokce EH, Ozyazici M, Ertan G (2009) The effect of geometric shape on the release properties of metronidazole from lipid matrix tablets. J Biomed Nanotechnol 5(4):421–427

    Article  PubMed  CAS  Google Scholar 

  121. Boles M, Deasy P, Donnellan M (1993) Design and evaluation of a sustained-release aminophylline tablet. Drug Dev Ind Pharm 19(3):349–370

    Article  CAS  Google Scholar 

  122. Bodmeier R et al (1990) Formation of sustained release wax matrices within hard gelatin capsules in a fluidized bed. Drug Dev Ind Pharm 16(9):1505–1519

    Article  CAS  Google Scholar 

  123. Katayama H, Kanke M (1992) Drug release from directly compressed tablets containing zein. Drug Dev Ind Pharm 18(20):2173–2184

    Article  CAS  Google Scholar 

  124. Pearnchob N, Siepmann J, Bodmeier R (2003) Pharmaceutical applications of shellac: moisture-protective and taste-masking coatings and extended-release matrix tablets. Drug Dev Ind Pharm 29(8):925–938

    Article  PubMed  CAS  Google Scholar 

  125. Lin SY, Kawashima Y (1987) Drug release from tablets containing cellulose acetate phthalate as an additive or enteric-coating material. Pharm Res 4(1):70–74

    Article  PubMed  CAS  Google Scholar 

  126. Hilton AK, Deasy PB (1993) Use of hydroxypropyl methylcellulose acetate succinate in an enteric polymer matrix to design controlled release tablets of amoxicillin trihydrate. J Pharm Sci 82(7):737–743

    Article  PubMed  CAS  Google Scholar 

  127. Liu C-H et al (1993) Properties of hydroxypropylmethylcellulose granules produced by water spraying. Int J Pharm 100:241–248

    Article  CAS  Google Scholar 

  128. Shah N et al (1996) Effects of processing techniques in controlling the release rate and mechanical strength of hydroxypropyl methylcellulose based hydrogel matrices. Eur J Pharm Biopharm 42:183–187

    CAS  Google Scholar 

  129. Foamed binder technology. www.dow.com/scripts/litorder.asp?filepath=/198-02124.pdf. Accessed 30 Mar 2011

  130. Roth W et al (2009) Ethanol effects on drug release from Verapamil Meltrex®, an innovative melt extruded formulation. Int J Pharm 368(1–2):72–75

    Article  PubMed  CAS  Google Scholar 

  131. Repka MA et al (2007) Pharmaceutical applications of hot-melt extrusion: Part II. Drug Dev Ind Pharm 33(10):1043–1057

    Article  PubMed  CAS  Google Scholar 

  132. Crowley MM et al (2007) Pharmaceutical applications of hot-melt extrusion: part I. Drug Dev Ind Pharm 33(9):909–926

    Article  PubMed  CAS  Google Scholar 

  133. Velasco MV et al (1999) Influence of drug:hydroxypropylmethylcellulose ratio, drug and polymer particle size and compression force on the release of diclofenac sodium from HPMC tablets. J Control Release 57(1):75–85

    Article  PubMed  CAS  Google Scholar 

  134. Haahr A et al (2007) Drug abuse resistant, controlled release, using Egalet® dosage units

    Google Scholar 

  135. Tygesen PH et al (2010) Pharmaceutical compositions resistant to abuse. Google Patents

    Google Scholar 

  136. Corporate presentation: Egalet. http://www.egalet.com/multimedia/Egalet_Corp_Presentation_200913.pdf. Accessed 30 Mar 2011

  137. Washington N, Wilson CG (2006) The future for controlled & sustained drug delivery. Drug Deliv Technol 6(9):71–74

    CAS  Google Scholar 

  138. HyperStart® formulation service. https://www.colorcon.com/formulation/formulation-tools. Accessed 28 Mar 2011

  139. Gamlen tablet press. http://www.compressibility.com/. Accessed 12 Mar 2011

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandip B. Tiwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Controlled Release Society

About this chapter

Cite this chapter

Tiwari, S.B., DiNunzio, J., Rajabi-Siahboomi, A. (2011). Drug–Polymer Matrices for Extended Release. In: Wilson, C., Crowley, P. (eds) Controlled Release in Oral Drug Delivery. Advances in Delivery Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1004-1_7

Download citation

Publish with us

Policies and ethics