Skip to main content

Lipids in Oral Controlled Release Drug Delivery

  • Chapter
  • First Online:

Part of the book series: Advances in Delivery Science and Technology ((ADST))

Abstract

Lipids can perform many useful functions that modify or otherwise enhance drug absorption or disposition. They may influence release/absorption-controlling processes such as gastro retention and muco-adhesion. They can facilitate lymphatic transport of lipophilic drugs, and make them less susceptible to “first pass effects” by avoiding or reducing the hepatic portal route. Understanding lipid digestion and structure formation in vivo is key to exploiting possibilities for their use in controlling absorption or disposition. In particular, liquid crystalline structures are being increasingly investigated for their roles in the aforementioned processes. Such phenomena and possibilities are discussed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. MacGregor K, Embleton J, Lacy J, Perry E, Pouton C (1997) Influence of lipolysis of drug absorption from the gastrointestinal tract. Adv Drug Deliv Rev 25:33–46

    Article  CAS  Google Scholar 

  2. Fahy E, Subramaniam S, Brown H, Glass C, Merrill A, Murphy R, Raetz C, Russell D, Seyama Y, Shaw W, Shimizu T, Spener F, Meer G, Van Nieuwenhze M, White S, Witztum J, Dennis E (2005) A comprehensive classification system of lipids. J Lipid Res 46:839–861

    Article  PubMed  CAS  Google Scholar 

  3. Small D (1968) A classification of biological lipids based upon their interaction in aqueous systems. J Am Oil Chem Soc 45:108–119

    Article  PubMed  CAS  Google Scholar 

  4. Carey MC, Small D, Bliss C (1983) Lipid digestion and absorption. Annu Rev Physiol 45:651–677

    Article  PubMed  CAS  Google Scholar 

  5. Zanenberg N (2001) A dynamic in vitro digestion model. The Danish School of Pharmacy, Copenhagen

    Google Scholar 

  6. Kossena G, Charman WN, Wilson C, O’Mahony B, Lindsay B, Hempenstall J, Davison C, Crowley P, Porter CJH (2007) Low dose lipid formulations: Effects on gastric emptying and biliary secretion. Pharm Res 24:2084–2096

    Article  PubMed  CAS  Google Scholar 

  7. Hunt J, Knox M (1961) The regulation of gastric emptying of meals containing citric acid and salts of citric acid. J Physiol 163:34–45

    Google Scholar 

  8. Zittel T, Rothenhofer I, Meyer J, Raybould H (1994) Small intestinal capsaicin-sensitive afferents mediate feedback inhibition of gastric emptying in rats. Am J Physiol Gastrointest Liver Physiol 267:G1142–G1145

    CAS  Google Scholar 

  9. Hunt J, Pathak J (1960) Osmotic effects of some simple molecules and ions on gastric emptying. J Physiol 154:254–269

    PubMed  CAS  Google Scholar 

  10. Meeroff J, Go V, Phillips S (1975) Control of gastric emptying by osmolality of duodenal contents in man. Gastroenterology 68:1144–1151

    PubMed  CAS  Google Scholar 

  11. Miller J, Kauffman G, Elashoff J, Ohashi H, Carter D, Meyer J (1981) Search for resistances controlling canine gastric emptying of liquid meals. Am J Physiol Gastrointest Liver Physiol 241:G403–G415

    CAS  Google Scholar 

  12. Hunt J, Stubbs D (1975) The volume and energy content of meals as determinants of gastric emptying. J Physiol 245:209–225

    PubMed  CAS  Google Scholar 

  13. McHugh P, Moran T (1979) Calories and gastric emptying: A regulatory capacity with implications for feeding. Am J Physiol Regul Integr Comp Physiol 236:R254–R260

    CAS  Google Scholar 

  14. Hunt J, Knox M (1968) A relation between the chain length of fatty acids and the slowing of gastric emptying. J Physiol 194:327–336

    PubMed  CAS  Google Scholar 

  15. Tso P, Liu M (2004) Apolipoprotein a-iv, food intake, and obesity. Physiol Behav 83:631–643

    Article  PubMed  CAS  Google Scholar 

  16. Armand M, Borel P, Pasquier B, Dubois C, Senft M, Andre M, Peyrot J, Salducci J, Lairon D (1996) Physicochemical characteristics of emulsions during fat digestion in human stomach and duodenum. Am J Physiol 271:G172–G183

    PubMed  CAS  Google Scholar 

  17. Carriere F, Barrowman J, Verger R, Laugier R (1993) Secretion and contribution to lipolysis of gastric and pancreatic lipases during a test meal in humans. Gastroenterology 105:876–888

    PubMed  CAS  Google Scholar 

  18. Fernando-Warnakulasuriya G, Staggers JE, Frost S, Wells M (1981) Studies of fat digestion, absorption, and transport in the suckling rat. I. Fatty acid composition and concentrations of major lipid components. J Lipid Res 22:668–674

    PubMed  CAS  Google Scholar 

  19. Lai H, Ney D (1998) Gastric digestion modifies absorption of butterfat into lymph chylomicrons in rats. J Nutr 128:2403–2410

    PubMed  CAS  Google Scholar 

  20. Borel P, Armand M, Ythier P, Dutot G, Senft M, Lanfont H, Lairon D (1994) Hydrolysis of emulsions with different triglycerides and droplet sizes by gastric lipase in vitro. Effect on pancreatic lipase activity. J Nutr Biochem 5:124–133

    Article  CAS  Google Scholar 

  21. DeNigris S, Hamosh M, Dinkar K, Fink C, Lee T, Hamosh P (1985) Secretion of human gastric lipase from dispersed gastric glands. Biochem Biophys Acta Lipids Lipid Metab 836:67–72

    Article  CAS  Google Scholar 

  22. Dressman J, Berardi RR, Dermentzoglou LC, Russell TL, Schmaltz SP, Barnett JL, Jarvenpaa KM (1990) Upper gastrointestinal (GI) pH in young, healthy men and women. Pharm Res 7:756–761

    Article  PubMed  CAS  Google Scholar 

  23. Evans DF, Pye G, Bramley R, Clark AG, Dyson TJ, Hardcastle JD (1988) Measurement of gastrointestinal ph profiles in normal ambulant human subjects. Gut 29:1035–1041

    Article  PubMed  CAS  Google Scholar 

  24. Ros E (2000) Intestinal absorption of triglycerides and cholesterol. Dietary and pharmacological inhibition to reduce cardiovascular risk. Atherosclerosis 151:357–379

    Article  PubMed  CAS  Google Scholar 

  25. Humberstone A, Charman WN (1997) Lipid-based vehicles for the oral delivery of poorly water soluble drugs. Adv Drug Deliv Rev 25:103–128

    Article  CAS  Google Scholar 

  26. Sek L, Porter CJH, Kaukonen A-M, Charman WN (2001) Characterisation and quantification of medium and long chain triglycerides and their in vitro digestion products, by HPTLC coupled with in situ densiometric analysis. J Pharmaceut Biomed Anal 25:651–661

    Google Scholar 

  27. Embleton J, Pouton C (1997) Structure and function of gastrointestinal lipases. Adv Drug Deliv Rev 25:15–32

    Article  CAS  Google Scholar 

  28. Porter CJH, Charman WN (2001) In vitro assessment of oral lipid based formulations. Adv Drug Deliv Rev 50:S127–S147

    Article  PubMed  CAS  Google Scholar 

  29. Armand M, Pasquier B, Andre M, Borel P, Senft M, Peyrot J, Salducci J, Portugal H, Jaussan V, Lairon D (1999) Digestion and absorption of 2 fat emulsions with different droplet sizes in the human digestive tract. Am J Clin Nutr 70:1096–1106

    PubMed  CAS  Google Scholar 

  30. Hernell O, Staggers JE, Carey MC (1990) Physical-chemical behaviour of dietary and biliary lipids during intestinal digestion and absorption. 2. Phase analysis and aggregation states of luminal lipids during duodenal fat digestion in healthy adult human beings. Biochemistry 29:2041–2056

    Article  PubMed  CAS  Google Scholar 

  31. Kossena GA, Boyd BJ, Porter CJH, Charman WN (2003) Separation and characterization of the colloidal phases produced on digestion of common formulation lipids and assessment of their impact on the apparent solubility of selected poorly water soluble drugs. J Pharm Sci 92:634–648

    Article  PubMed  CAS  Google Scholar 

  32. Rigler M, Honkanen R, Patton J (1986) Visualization by freeze fracture in-vitro and in-vivo of the products of fat digestion. J Lipid Res 27:836–857

    PubMed  CAS  Google Scholar 

  33. Staggers JE, Hernell O, Stafford R, Carey M (1990) Physical-chemical behavior of dietary and biliary lipids during intestinal digestion and absorption. 1. Phase behavior and aggregation states of model lipid systems patterned after aqueous duodenal contents of healthy adult human beings. Biochemistry 29:2028–2040

    Article  PubMed  CAS  Google Scholar 

  34. Nordskog B, Phan C, Nutting D, Tso P (2001) An examination of the factors affecting intestinal lymphatic absorption of dietary lipids. Adv Drug Deliv Rev 50:21–44

    Article  PubMed  CAS  Google Scholar 

  35. Stremmel W (1988) Uptake of fatty acids by jejunal mucosal cells is mediated by a fatty acid binding membrane protein. J Clin Invest 82:2001–2010

    Article  PubMed  CAS  Google Scholar 

  36. Black D (2007) Development and physiological regulation of intestinal lipid absorption. I. Development of intestinal lipid absorption: Cellular events in chylomicron assembly and secretion. Am J Physiol Gastrointest Liver Physiol 293:G519–G524

    Article  PubMed  CAS  Google Scholar 

  37. Charman WN, Stella VJ (1991) Transport of lipophilic molecules by the intestinal lymphatic system. Adv Drug Deliv Rev 7:1–14

    Article  CAS  Google Scholar 

  38. Trevaskis NL, Shanker RM, Charman WN, Porter CJH (2010) The mechanism of lymphatic access of two cholesteryl ester transfer protein inhibitors (CP524,515 and CP532,623) and evaluation of their impact on lymph lipoprotein profiles. Pharm Res 27:1949–1964

    Article  PubMed  CAS  Google Scholar 

  39. Pozzi F, Furlani P, Gazzaniga A, Davis SS, Wilding IR (1994) The time clock system - a new oral dosage form for fast and complete release of drug after a predetermined lag time. J Control Release 31:99–108

    Article  CAS  Google Scholar 

  40. Hunt JN, Knox MT (1968) Control of gastric emptying. Am J Dig Dis 13:372–375

    Article  PubMed  CAS  Google Scholar 

  41. Hunt JN, Knox MT (1968) A relation between the chain length of fatty acids and the slowing of gastric emptying. J Physiol (Lond) 194:327–336

    CAS  Google Scholar 

  42. Chauhan H, Shimpi S, Mahadik KR, Paradkar A (2005) Preparation and evaluation of floating risedronate sodium-Gelucire® 43/01 formulations. Drug Dev Ind Pharm 31:851–860

    Article  PubMed  CAS  Google Scholar 

  43. Chansanroj K, Betz G, Leuenberger H, Mitrevej A, Sinchaipanid N (2007) Development of a multi-unit floating drug delivery system by hot melt coating technique with drug-lipid dispersion. J Drug Deliv Sci Technol 17:333–338

    CAS  Google Scholar 

  44. Siripuram PK, Bandari S, Jukanti R, Veerareddy PR (2010) Formulation and characterization of floating gelucire matrices of metoprolol succinate. Dissol Technol 17:34–39

    CAS  Google Scholar 

  45. Patel DM, Patel NM, Patel VF, Bhatt DA (2007) Floating granules of ranitidine hydrochloride-gelucire 43/01: Formulation optimization using factorial design. AAPS Pharmscitech 8:Article 30

    Google Scholar 

  46. Upadhyay P, Pandit JK, Upadhyay S, Ghosh AK (2010) Studies on formulation and optimization of gastro retentive multi-particulates of glibenclamide and metformin hydrochloride for the treatment of type ii diabetes mellitus using gelucire: A review. J Pharm Sci Res 2:351–354

    CAS  Google Scholar 

  47. Shimpi S, Chauhan B, Mahadik KR, Paradkar A (2004) Preparation and evaluation of diltiazem hydrochloride-gelucire 43/01 floating granules prepared by melt granulation. AAPS Pharmscitech 5:e43

    Article  PubMed  Google Scholar 

  48. Hamdani J, Goole J, Moes AJ, Amighi K (2006) In vitro and in vivo evaluation of floating riboflavin pellets developed using the melt pelletization process. Int J Pharm 323:86–92

    Article  PubMed  CAS  Google Scholar 

  49. Hamdani J, Moes AJ, Amighi K (2006) Development and in vitro evaluation of a novel floating multiple unit dosage form obtained by melt pelletization. Int J Pharm 322:96–103

    Article  PubMed  CAS  Google Scholar 

  50. Kumar KM, Shah MH, Ketkar A, Mahadik KR, Paradkar A (2004) Effect of drug solubility and different excipients on floating behaviour and release from glyceryl monooleate matrices. Int J Pharm 272:151–160

    Article  CAS  Google Scholar 

  51. Woodley JF (2000) Lectins for gastrointestinal targeting - 15 years on. J Drug Target 7:325–333

    Article  PubMed  CAS  Google Scholar 

  52. Nielsen LS, Schubert L, Hansen J (1998) Bioadhesive drug delivery systems - i. Characterisation of mucoadhesive properties of systems based on glyceryl mono-oleate and glyceryl monolinoleate. Eur J Pharm Sci 6:231–239

    Article  PubMed  CAS  Google Scholar 

  53. Chung H, Jeong SY, Kwon IC, Park Y, Lee IH, Yuk SH, Choi YW, Park JH, Chung JW (2004) Composition for solubilization of paclitaxel and preparation method thereof. KR PCT/KR2003/001427 (18 July 2003)

    Google Scholar 

  54. Shin BS, Kim HJ, Hong SH, Lee JB, Hwang SW, Lee MH, Yoo SD (2009) Enhanced absorption and tissue distribution of paclitaxel following oral administration of DHP 107, a novel mucoadhesive lipid dosage form. Cancer Chemother Pharmacol 64:87–94

    Article  PubMed  CAS  Google Scholar 

  55. Yamamoto H, Takeuchi H, Hino T, Kawashima Y (2000) Mucoadhesive liposomes: Physicochemical properties and release behavior of water-soluble drugs from chitosan-coated liposomes. STP Pharma Sci 10:63–68

    CAS  Google Scholar 

  56. Lindmark T, Nikkila T, Artursson P (1995) Mechanisms of absorption enhancement by medium-chain fatty-acids in intestinal epithelial caco-2 cell monolayers. J Pharmacol Exp Ther 275:958–964

    PubMed  CAS  Google Scholar 

  57. White KL, Nguyen G, Charman WN, Edwards GA, Faassen WA, Porter CJH (2009) Lymphatic transport of methylnortestosterone undecanoate (MU) and the bioavailability of methylnortestosterone are highly sensitive to the mass of coadministered lipid after oral administration of MU. J Pharmacol Exp Ther 331:700–709

    Article  PubMed  CAS  Google Scholar 

  58. Dahan A, Duvdevani R, Shapiro I, Elmann A, Finkelstein E, Hoffman A (2008) The oral absorption of phospholipid prodrugs: In vivo and in vitro mechanistic investigation of trafficking of a lecithin-valproic acid conjugate following oral administration. J Control Release 126:1–9

    Article  PubMed  CAS  Google Scholar 

  59. Pouton CW (2006) Formulation of poorly water-soluble drugs for oral administration: Physicochemical and physiological issues and the lipid formulation classification system. Eur J Pharm Sci 29:278–287

    Article  PubMed  CAS  Google Scholar 

  60. Pouton C, Porter C (2008) Formulation of lipid-based delivery systems for oral administration: Materials, methods and strategies. Adv Drug Deliv Rev 60:625–637

    Article  PubMed  CAS  Google Scholar 

  61. Pouton CW (2000) Lipid formulations for oral administration of drugs: Non-emulsifying, self emulsifying and ‘self microemulsifying’ drug delivery systems. Eur J Pharm Sci 11(suppl 2):S93–S98

    Article  PubMed  CAS  Google Scholar 

  62. Cuine J, McEvoy C, Charman W, Pouton C, Edwards G, Benameur H, Porter C (2007) Evaluation of the impact of surfactant digestion on the bioavailability of danazol after oral administration of lipidic self-emulsifying formulations to dogs. J Pharm Sci 97:995–1012

    Article  CAS  Google Scholar 

  63. Magenheim B, Levy MY, Benita S (1993) A new in vitro technique for the evaluation of drug release profile from colloidal carriers - ultrafiltration technique at low pressure. Int J Pharm 94:115–123

    Article  CAS  Google Scholar 

  64. Levy MY, Benita S (1990) Drug release from submicronized o/w emulsion - a new invitro kinetic evaluation model. Int J Pharm 66:29–37

    Article  CAS  Google Scholar 

  65. Charman W, Rogge M, Boddy A, Berger B (1993) Effect of food and a monoglyceride emulsion formulation on danazol bioavailability. J Clin Pharmacol 33:381–386

    PubMed  CAS  Google Scholar 

  66. Bates T, Sequeira J (1975) Bioavailability of micronized griseofulvin from corn oil-in-water emulsion, aqueous suspension, and commercial tablet dosage forms in humans. J Pharm Sci 64:793–797

    Article  PubMed  CAS  Google Scholar 

  67. Hauss D, Fogal S, Ficorilli J, Price C, Roy T, Jayaraj A, Keirns J (1998) Lipid based delivery systems for improving the bioavailability and lymphatic transport of a poorly water-soluble ltb4 inhibitor. J Pharm Sci 87:164–169

    Article  PubMed  CAS  Google Scholar 

  68. Caliph S, Charman WN, Porter CJH (2000) Effect of short-, medium-, and long-chain fatty acid-based vehicles on the absolute oral bioavailability and intestinal lymphatic transport of halofantrine and assessment of mass balance in lymph-cannulated and non-cannulated rats. J Pharm Sci 89:1073–1084

    Article  PubMed  CAS  Google Scholar 

  69. Tokumura T, Tsushima Y, Tatsuishi K, Kayano M, Machida Y, Nagai T (1987) Enhancement of the oral bioavailability of cinnarizine in oleic acid in beagle dogs. J Pharm Sci 76:286–288

    Article  PubMed  CAS  Google Scholar 

  70. Dahan A, Hoffman A (2007) The effect of different lipid based formulations on oral absorption of lipophilic drugs: The ability of in vitro lipolysis and consecutive ex vivo intestinal permeability data to predict in vivo bioavailability in rats. Eur J Pharm Biopharm 67:96–107

    Article  PubMed  CAS  Google Scholar 

  71. Faham A, Prinderre P, Piccerelle P, Farah N, Joachim J (2000) Hot melt coating technology: Influence of compritol (r) 888 ato and granule size on chloroquine release. Pharmazie 55:444–448

    PubMed  CAS  Google Scholar 

  72. Faham A, Prinderre P, Farah N, Eichler KD, Kalantzis G, Joachim J (2000) Hot-melt coating technology. I. Influence of Compritol 888 ato and granule size on theophylline release. Drug Dev Ind Pharm 26:167–176

    Article  PubMed  CAS  Google Scholar 

  73. Montousse C, Pruvost M, Rodriguez F, Brossard C (1999) Extrusion-spheronization manufacture of gelucire (r) matrix beads. Drug Dev Ind Pharm 25:75–80

    Article  PubMed  CAS  Google Scholar 

  74. Siepmann F, Muschert S, Flament MP, Leterme P, Gayot A, Siepmann J (2006) Controlled drug release from gelucire-based matrix pellets: Experiment and theory. Int J Pharm 317:136–143

    Article  PubMed  CAS  Google Scholar 

  75. Zhou F, Vervaet C, Remon JP (1996) Matrix pellets based on the combination of waxes, starches and maltodextrins. Int J Pharm 133:155–160

    Article  CAS  Google Scholar 

  76. Qi S, Marchaud D, Craig DQM (2010) An investigation into the mechanism of dissolution rate enhancement of poorly water-soluble drugs from spray chilled Gelucire 50/13 microspheres. J Pharm Sci 99:262–274

    Article  PubMed  CAS  Google Scholar 

  77. Serajuddin ATM (1999) Solid dispersion of poorly water-soluble drugs: Early promises, subsequent problems, and recent breakthroughs. J Pharm Sci 88:1058–1066

    Article  PubMed  CAS  Google Scholar 

  78. Khoo S, Porter CJH, Charman WN (2000) The formulation of halofantrine as either non-solubilising PEG 6000 or solubilising lipid based solid dispersions: Physical stability and absolute bioavailability assessment. Int J Pharm 205:65–78

    Article  PubMed  CAS  Google Scholar 

  79. Damian F, Blaton N, Kinget R, Van den Mooter G (2002) Physical stability of solid dispersions of the antiviral agent UC-781 with PEG 6000, Gelucire® 44/14 and PVP K30. Int J Pharm 244:87–98

    Article  PubMed  CAS  Google Scholar 

  80. Unga J, Matsson P, Mahlin D (2010) Understanding polymer-lipid solid dispersions-the properties of incorporated lipids govern the crystallisation behaviour of PEG. Int J Pharm 386:61–70

    Article  PubMed  CAS  Google Scholar 

  81. Li P, Hynes SR, Haefele TF, Pudipeddi M, Royce AE, Serajuddin ATM (2009) Development of clinical dosage forms for a poorly water-soluble drug ii: Formulation and characterization of a novel solid microemulsion preconcentrate system for oral delivery of a poorly water-soluble drug. J Pharm Sci 98:1750–1764

    Article  PubMed  CAS  Google Scholar 

  82. Muller RH, Mader K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm 50:161–177

    Article  PubMed  CAS  Google Scholar 

  83. Rai S, Paliwal R, Gupta PN, Khatri K, Goyal AK, Vaidya B, Vyas SP (2008) Solid lipid nanoparticles (SLNs) as a rising tool in drug delivery science: One step up in nanotechnology. Curr Nanosci 4:30–44

    Article  CAS  Google Scholar 

  84. Uner M, Yener G (2007) Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomed 2:289–300

    CAS  Google Scholar 

  85. Souto EB, Doktorovova S (2009) Solid lipid nanoparticle formulations: Pharmacokinetic and biopharmaceutical aspects in drug delivery. Methods Enzymol Liposomes F 464:105–129

    Google Scholar 

  86. Yang SC, Zhu JB, Lu Y, Liang BW, Yang CZ (1999) Body distribution of camptothecin solid lipid nanoparticles after oral administration. Pharm Res 16:751–757

    Article  PubMed  CAS  Google Scholar 

  87. Zhang QN, Yie GQ, Li Y, Yang QS, Nagai YT (2000) Studies on the cyclosporin a loaded stearic acid nanoparticles. Int J Pharm 200:153–159

    Article  PubMed  CAS  Google Scholar 

  88. Penkler L, Muller RH, Runge SA, Ravelli V (1999) Pharmaceutical cyclosporin formulation with improved biopharmaceutical properties, improved physical quality and greater stability, and method for producing said formulation. WO/1999/056733

    Google Scholar 

  89. Carrigan PJ, Bates TR (1973) Biopharmaceutics of drugs administered in lipid-containing dosage forms i: GI absorption of griseofulvin from an oil-in-water emulstions in the rat. J Pharm Sci 62:1476–1479

    Article  PubMed  CAS  Google Scholar 

  90. Li HL, Zhao XB, Ma YK, Zhai GX, Li LB, Lou HX (2009) Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J Control Release 133:238–244

    Article  PubMed  CAS  Google Scholar 

  91. Priano L, Esposti D, Esposti R, Castagna G, De Medici C, Fraschini F, Gasco MR, Mauro A (2007) Solid lipid nanoparticles incorporating melatonin as new model for sustained oral and transdermal delivery systems. J Nanosci Nanotechnol 7:3596–3601

    Article  PubMed  CAS  Google Scholar 

  92. Varshosaz J, Tabbakhian M, Mohammadi MY (2010) Formulation and optimization of solid lipid nanoparticles of buspirone hcl for enhancement of its oral bioavailability. J Liposome Res 20:286–296

    Article  PubMed  CAS  Google Scholar 

  93. Luo Y, Chen DW, Ren LX, Zhao XL, Qin J (2006) Solid lipid nanoparticles for enhancing vinpocetine’s oral bioavailability. J Control Release 114:53–59

    Article  PubMed  CAS  Google Scholar 

  94. Westesen K, Bunjes H, Koch MHJ (1997) Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J Control Release 48:223–236

    Article  CAS  Google Scholar 

  95. Westesen K, Bunjes H (1995) Do nanoparticles prepared from lipids solid at room temperature always possess a solid lipid matrix? Int J Pharm 115:129–131

    Article  CAS  Google Scholar 

  96. Kato T (2002) Self-assembly of phase-segregated liquid crystal structures. Science 295:2414–2418

    Article  PubMed  CAS  Google Scholar 

  97. Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans II 72:1525–1568

    Article  Google Scholar 

  98. Kaasgaard T, Drummond CJ (2006) Ordered 2-D and 3-D nanostructured amphiphile self-assembly materials stable in excess water. Phys Chem Chem Phys 8:4957–4975

    Article  PubMed  CAS  Google Scholar 

  99. Caffrey M, Cheng A (1995) Kinetics of lipid phase changes. Curr Opin Struct Biol 5:548–555

    Article  CAS  Google Scholar 

  100. Fontell K (1990) Cubic phases in surfactant and surfactant-like lipid systems. Colloid Polym Sci 268:264–285

    Article  CAS  Google Scholar 

  101. Landh T (1995) From entangled membranes to eclectic morphologies: Cubic membranes as subcellular space organizers. FEBS Lett 369:13–17

    Article  PubMed  CAS  Google Scholar 

  102. Lindblom G, Rilfors L (1988) Cubic phases and isotropic structures formed by membrane lipids- possible biological relevance. Biochem Biophys Acta 988:221–256

    Google Scholar 

  103. Luzzati V (1997) Biological significance of lipid polymorphism; cubic phases. Curr Opin Struct Biol 7:661–668

    Article  PubMed  CAS  Google Scholar 

  104. Mariani P, Luzzati V, Delacroix H (1988) Cubic phases of lipid containing systems structure analysis and biological implications. J Mol Biol 204:165–189

    Article  PubMed  CAS  Google Scholar 

  105. Schwarz US, Gompper G (2001) Bending frustration of lipid-water mesophases based on cubic minimal surfaces. Langmuir 17:2084–2096

    Article  CAS  Google Scholar 

  106. Israelachvili JN (1994) The science and application of emulsions - an overview Colloid Surf A 91:1–8

    Article  CAS  Google Scholar 

  107. Boyd B, Rizwan S, Dong Y, Hook S, Rades T (2007) Self-assembled geometric liquid-crystalline nanoparticles imaged in three dimensions: Hexosomes are not necessarily flat hexagonal prisms. Langmuir 23:12461–12464

    Article  PubMed  CAS  Google Scholar 

  108. Siekmann B, Bunjes H, Koch M, Westesen K (2002) Preparation and structural investigations of colloidal dispersions prepared from cubic phase monoglyceride/water phases. Int J Pharm 244:33–43

    Article  PubMed  CAS  Google Scholar 

  109. Esposito E, Cortesi R, Drechsler M, Paccamiccio L, Mariani P, Contado C, Stellin E, Menegatti E, Bonina F, Puglia C (2005) Cubosome dispersions as delivery systems for percutaneous administration of indomethacin. Pharm Res 22:2163–2173

    Article  PubMed  CAS  Google Scholar 

  110. Dong YD, Larson I, Hanley T, Boyd BJ (2006) Bulk and dispersed aqueous phase behavior of phytantriol: Effect of vitamin E acetate and F127 polymer on liquid crystal nanostructure. Langmuir 22:9512–9518

    Article  PubMed  CAS  Google Scholar 

  111. Yang D, Armitage B, Marder S (2004) Cubic liquid-crystalline nanoparticles. Angew Chem Int Ed 43:4402–4409

    Article  CAS  Google Scholar 

  112. Boyd BJ (2003) Characterisation of drug release from cubosomes using the pressure ultrafiltration method. Int J Pharm 260:239–247

    Article  PubMed  CAS  Google Scholar 

  113. Boyd BJ, Whittaker DV, Khoo S-M, Davey G (2006) Lyotropic liquid crystalline phases formed from glycerate surfactants as sustained release drug delivery systems. Int J Pharm 309:218–226

    Article  PubMed  CAS  Google Scholar 

  114. Fong C, Krodkiewska I, Wells D, Boyd BJ, Booth J, Bhargava S, McDowall A, Hartley P (2005) Submicron dispersions of hexosomes based in novel glycerate surfactants. Aust J Chem 58:683–687

    Article  CAS  Google Scholar 

  115. Barauskas J, Johnsson M, Nylander T, Tiberg F (2006) Hexagonal liquid crystalline nanoparticles in aqueous mixtures of glyceryl monooleyl ether and Pluronic F127. Chem Lett 35:830–831

    Article  CAS  Google Scholar 

  116. Popescu G, Barauskas J, Nylander T, Tiberg F (2006) Liquid crystalline phases and their dispersions in aqueous mixtures of glycerol monooleate and glycerol monooleyl ether. Langmuir 23:496–503

    Article  CAS  Google Scholar 

  117. Clogston J, Rathman J, Tomasko D, Walker H, Caffrey M (2000) Phase behavior of a monoacylglycerol (Myverol 18-99K)/water system. Chem Phys Lipids 107:191–220

    Article  PubMed  CAS  Google Scholar 

  118. Hato M, Minamikawa H, Salkar R, Matsutani S (2004) Phase behavior of phytanyl-chained akylglycoside/water systems. Prog Colloid Polym Sci 123:56–60

    CAS  Google Scholar 

  119. Hato M, Yamashita I, Kato T, Abe Y (2004) Aqueous phase behavior of a 1-o-phytanyl-b-d-xyloside/water system. Glycolipid-based bicontinuous cubic phases of crystallographic spacegroups Pn3m and Ia3d. Langmuir 20:11366–11373

    Article  PubMed  CAS  Google Scholar 

  120. Barauskas J, Landh T (2003) Phase behaviour of the phytantriol/water system. Langmuir 19:9562–9565

    Article  CAS  Google Scholar 

  121. Fong C, Wells D, Krodkiewska I, Weerawardeena A, Booth J, Hartley P, Drummond CJ (2007) Diversifying the solid state and lyotropic phase behavior of nonionic urea-based surfactants. J Phys Chem B 111:10713–10722

    Article  PubMed  CAS  Google Scholar 

  122. Fong C, Wells D, Krodkiewska I, Hartley P, Drummond C (2006) New role for urea as a surfactant headgroup promoting self-assembly in water. Chem Mater 18:594–597

    Article  CAS  Google Scholar 

  123. Spicer PT, Hayden KL (2001) Novel process for producing cubic crystalline nanoparticles (Cubosomes). Langmuir 17:5748–5756

    Article  CAS  Google Scholar 

  124. Shah JC, Sadhale Y, Chilukuri DM (2001) Cubic phase gels as drug delivery systems. Adv Drug Deliv Rev 47:229–250

    Article  PubMed  CAS  Google Scholar 

  125. Drummond CJ, Fong C (1999) Surfactant self-assembly objects as novel drug delivery vehicles. Curr Opin Colloid Interface Sci 4:449–456

    Article  CAS  Google Scholar 

  126. Wyatt DM, Dorshel D (1992) A cubic-phase delivery system composed of glyceryl monooleate and water for sustained release of water-soluble drugs. Pharm Tech 16:116–130

    CAS  Google Scholar 

  127. Clogston J, Caffrey M (2005) Controlling release from the lipidic cubic phase. Amino acids, peptides, proteins and nucleic acids. J Control Release 107:97–111

    Article  PubMed  CAS  Google Scholar 

  128. Boyd BJ, Khoo S-M, Whittaker DV, Davey G, Porter CJH (2007) A lipid-based liquid crystalline matrix that provides sustained release and enhanced oral bioavailability for a model poorly water soluble drug in rats. Int J Pharm 340:52–60

    Google Scholar 

  129. Lee KWY, Nguyen TH, Hanley T, Boyd BJ (2009) Nanostructure of liquid crystalline matrix determines in vitro sustained release and in vivo oral absorption kinetics for hydrophilic model drugs. Int J Pharm 365:190–199

    Article  PubMed  CAS  Google Scholar 

  130. Chang C-M, Bodmeier R (1998) Low viscosity monoglyceride based drug delivery systems transforming into a highly viscous cubic phase. Int J Pharm 173:51–60

    Article  CAS  Google Scholar 

  131. Fong WK, Hanley T, Boyd BJ (2009) Stimuli responsive liquid crystals provide ‘on-demand’ drug delivery in vitro and in vivo. J Control Release 135:218–226

    Article  PubMed  CAS  Google Scholar 

  132. Chung H, Kim J, Um JY, Kwon IC, Jeong SY (2002) Self-assembled “Nanocubicle” as a carrier for peroral insulin delivery. Diabetologia 45:448–451

    Article  PubMed  CAS  Google Scholar 

  133. Kossena GA, Charman WN, Boyd BJ, Porter CJH (2004) A novel cubic phase of medium chain lipid origin for the delivery of poorly water soluble drugs. J Control Release 99:217–229

    Article  PubMed  CAS  Google Scholar 

  134. Nguyen T, Hanley T, Larson I, Porter CJH, Boyd BJ (2010) Phytantriol and glyceryl monooleate cubic liquid crystalline phases as sustained-release oral drug delivery systems for poorly water soluble drugs ii. In vivo evaluation. J Pharm Pharmacol 62:856–865

    PubMed  CAS  Google Scholar 

  135. Nguyen T (2009) Investigation of novel liquid crystalline materials for the sustained oral delivery of poorly water soluble drugs. Monash University, Melbourne

    Google Scholar 

  136. Yamahira Y, Noguchi T, Takenaka H, Maeda T (1979) Biopharmaceutical studies of lipid-containing oral dosage forms: Relationship between drug absorption rate and digestibility of vehicles. Int J Pharm 3:23–31

    Article  CAS  Google Scholar 

  137. Myers R, Stella VJ (1992) Systemic bioavailability of penclomedine (NSC-338720) from oil-in-water emulsions administered intraduodenally to rats. Int J Pharm 78:217–226

    Article  CAS  Google Scholar 

  138. Bloedow D, Hayton W (1976) Effects of lipids on bioavailability of sulfisoxazole acetyl, dicumarol, and griseofulvin in rats. J Pharm Sci 65:328–334

    Article  PubMed  CAS  Google Scholar 

  139. Geraghty P, Attwood D, Collett J, Sharma H, Dandiker Y (1997) An investigation of the parameters influencing the bioadhesive properties of Myverol 18-99/water gels. Biomaterials 18:63–67

    Article  PubMed  CAS  Google Scholar 

  140. Nguyen T, Hanley T, Porter CJH, Larson I, Boyd BJ (2010) Nanostructured liquid crystalline particles provide long duration sustained-release effect for a poorly water soluble drug after oral administration. J Control Release 153:180–186

    Google Scholar 

  141. Lai J, Chen JM, Lu Y, Sun J, Hu FQ, Yin ZN, Wu W (2009) Glyceryl monooleate/Poloxamer 407 cubic nanoparticles as oral drug delivery systems: I. In vitro evaluation and enhanced oral bioavailability of the poorly water-soluble drug simvastatin. AAPS Pharmscitech 10:960–966

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben J. Boyd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Controlled Release Society

About this chapter

Cite this chapter

Boyd, B.J., Nguyen, TH., Müllertz, A. (2011). Lipids in Oral Controlled Release Drug Delivery. In: Wilson, C., Crowley, P. (eds) Controlled Release in Oral Drug Delivery. Advances in Delivery Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1004-1_15

Download citation

Publish with us

Policies and ethics