Skip to main content

Part of the book series: Advances in Delivery Science and Technology ((ADST))

Abstract

Hydrogels are crosslinked polymers with the ability to swell in an aqueous medium. Crosslinking in hydrogels occurs by chemical or physical means depending on the polymer properties and experimental conditions. Owing to a large variety in chemical structure and crosslinking methods, various hydrogels have been prepared for various applications in pharmaceutical and biomedical fields. This chapter begins with hydrogel classification, properties, and their methods of preparation. The chapter continues with intelligent hydrogels, which are able to respond to environmental changes such as temperature, pH, and solvent composition, by changing their dimensions. Hydrogel based on polysaccharides, hydrocolloids, and synthetic polymers are discussed accordingly. Finally, the chapter concludes with known hydrogel applications in the pharmaceutical area. These include superdisintegrants, ion exchanging resins, superporous hydrogels, hydrogel implants, hydrogel inserts, osmotic products (devices, implants, and tablets), as well as tissue expanding hydrogels and contact lenses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Celia H, Special Delivery. http://pubs.acs.org/cen/coverstory/7838/7838scit1.html

  2. Chen H et al (2007) Characterization of pH- and temperature-sensitive hydrogel nanoparticles for controlled drug release. PDA J Pharm Sci Technol 61(4):303–313

    PubMed  CAS  Google Scholar 

  3. Satarkar NS, Hilt JZ (2008) Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release. J Control Release 130(3):246–251

    PubMed  CAS  Google Scholar 

  4. Huang G et al (2004) Controlled drug release from hydrogel nanoparticle networks. J Control Release 94(2–3):303–311

    PubMed  CAS  Google Scholar 

  5. Kim JH, Lee TR (2006) Discrete thermally responsive hydrogel-coated gold nanoparticles for use as drug-delivery vehicles. Drug Dev Res 67(1):61–69

    CAS  Google Scholar 

  6. Okuyama Y et al (1993) Swelling controlled zero-order and sigmoidal drug-release from thermoresponsive poly(n-isopropylacrylamide-co-butyl methacrylate) hydrogel. J Biomater Sci Polym Ed 4(5):545–556

    PubMed  CAS  Google Scholar 

  7. Jones DS et al (2008) Characterization of the physicochemical, antimicrobial, and drug release properties of thermoresponsive hydrogel copolymers designed for medical device applications. J Biomed Mater Res B Appl Biomater 85B(2):417–426

    CAS  Google Scholar 

  8. Jeong B, Bae YH, Kim SW (2000) Drug release from biodegradable injectable thermosensitive hydrogel of PEG-PLGA-PEG triblock copolymers. J Control Release 63(1–2):155–163

    PubMed  CAS  Google Scholar 

  9. Slepian MJ (1996) Polymeric endoluminal gel paving: therapeutic hydrogel barriers and sustained drug delivery depots for local arterial wall biomanipulation. Semin Interv Cardiol 1(1):103–116

    PubMed  CAS  Google Scholar 

  10. Mayo L et al (2008) A novel poloxamers/hyaluronic acid in situ forming hydrogel for drug delivery: rheological, mucoadhesive and in vitro release properties. Eur J Pharm Biopharm 70(1):199–206

    Google Scholar 

  11. Zhao Y et al (2006) Study on preparation of the pH sensitive hydroxyethyl chitin/poly (acrylic acid) hydrogel and its drug release property. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 23(2):338–341

    PubMed  CAS  Google Scholar 

  12. Bilia A et al (1996) In vitro evaluation of a pH-sensitive hydrogel for control of GI drug delivery from silicone-based matrices. Int J Pharm 130(1):83–92

    CAS  Google Scholar 

  13. Kim IS, Oh IJ (2005) Drug release from the enzyme-degradable and pH-sensitive hydrogel composed of glycidyl methacrylate dextran and poly(acrylic acid). Arch Pharm Res 28(8):983–987

    PubMed  CAS  Google Scholar 

  14. Ali Ael-H, Hegazy el-SA (2007) Radiation synthesis of poly(ethylene glycol)/acrylic acid hydrogel as carrier for site specific drug delivery. J Biomed Mater Res B Appl Biomater 81(1):168–174

    Google Scholar 

  15. Liu YY et al (2006) pH-responsive amphiphilic hydrogel networks with IPN structure: a strategy for controlled drug. Int J Pharm 308(1–2):205–209

    PubMed  CAS  Google Scholar 

  16. Sadeghi M, Hosseinzadeh H (2008) Synthesis of starch-poly(sodium acrylate-co-acrylamide) superabsorbent hydrogel with salt and pH-responsiveness properties as a drug delivery system. J Bioact Comp Polym 23(4):381–404

    CAS  Google Scholar 

  17. Mundargi RC et al (2008) Sequential interpenetrating polymer network hydrogel microspheres of poly(methacrylic acid) and poly(vinyl alcohol) for oral controlled drug delivery to intestine. J Microencapsul 25(4):228–240

    PubMed  CAS  Google Scholar 

  18. Bajpai SK, Saggu SPS (2007) Controlled release of an anti-malarial drug from a pH-sensitive poly(methacrylamide-co-methacrylic acid) hydrogel system. Desig Monom Polymer 10(6):543–554

    CAS  Google Scholar 

  19. Varshosaz J, Hajian M (2004) Characterization of drug release and diffusion mechanism through hydroxyethylmethacrylate/methacrylic acid pH-sensitive hydrogel. Drug Deliv 11(1):53–58

    PubMed  CAS  Google Scholar 

  20. Jain SK et al (2007) Design and development of hydrogel beads for targeted drug delivery to the colon. AAPS PharmSciTech 8(3):E56

    PubMed  Google Scholar 

  21. Jain SK et al (2007) Design and development of hydrogel beads for targeted drug delivery to the colon. AAPS PharmSciTech 8:E34–E41

    Google Scholar 

  22. Lin YW, Chen Q, Luo HB (2007) Preparation and characterization of N-(2-carboxybenzyl)chitosan as a potential pH-sensitive hydrogel for drug delivery. Carbohydr Res 342(1):87–95

    PubMed  CAS  Google Scholar 

  23. Sun LP et al (2004) The synthesis of carboxymethylchitosan hydrogel and the application in drug controlled release systems. Acta Polymerica Sinica 2:191–195

    Google Scholar 

  24. Zhou YS et al (2008) A pH-sensitive water-soluble N-carboxyethyl chitosan/poly(hydroxyethyl methacrylate) hydrogel as a potential drug sustained release matrix prepared by photopolymerization technique. Polymer Adv Technol 19(8):1133–1141

    CAS  Google Scholar 

  25. Chen SC et al (2004) A novel pH-sensitive hydrogel composed of N, O-carboxymethyl chitosan and alginate crosslinked by genipin for protein drug delivery. J Control Release 96(2):285–300

    PubMed  CAS  Google Scholar 

  26. Castelli F et al (2008) Differential scanning calorimetry study on drug release from an inulin-based hydrogel and its interaction with a biomembrane model: pH and loading effect. Eur J Pharm Sci 35(1–2):76–85

    PubMed  CAS  Google Scholar 

  27. Varshosaz J, Falamarzian M (2001) Drug diffusion mechanism through pH-sensitive hydrophobic/polyelectrolyte hydrogel membranes. Eur J Pharm Biopharm 51(3):235–240

    PubMed  CAS  Google Scholar 

  28. Kulkarni RV, Sa B (2008) Evaluation of pH-sensitivity and drug release characteristics of (Polyacrylamide-Grafted-Xanthan)-carboxymethyl cellulose-based pH-sensitive interpenetrating network hydrogel beads. Drug Develop Ind Pharm 34(12):1406–1414

    CAS  Google Scholar 

  29. http://www.rxlist.com

  30. Bettini R et al (1994) Swelling and drug-release in hydrogel matrices – polymer viscosity and matrix porosity effects. Eur J Pharm Sci 2(3):213–219

    CAS  Google Scholar 

  31. Alvarez-Mancenido F et al (2006) Characterization of diffusion of macromolecules in konjac glucomannan solutions and gels by fluorescence recovery after photobleaching technique. Int J Pharm 316(1–2):37–46

    PubMed  CAS  Google Scholar 

  32. Antony PJ, Sanghavi NM (1997) A new disintegrant for pharmaceutical dosage forms. Drug Dev Ind Pharm 23(4):413–415

    CAS  Google Scholar 

  33. Antony PJ, Sanghavi NM (1997) A new binder for pharmaceutical dosage forms. Drug Dev Ind Pharm 23(4):417–418

    CAS  Google Scholar 

  34. Deasy PB, Quigley KJ (1991) Rheological evaluation of deacetylated Gellan gum (Gelrite) for pharmaceutical use. Int J Pharm 73(2):117–123

    CAS  Google Scholar 

  35. Beck GM, Neau SH (2000) Optimization of lambda-carrageenan as a chiral selector in capillary electrophoresis separations. Chirality 12(8):614–620

    PubMed  CAS  Google Scholar 

  36. Valenta C, Schultz K (2004) Influence of carrageenan on the rheology and skin permeation of microemulsion formulations. J Control Release 95(2):257–265

    PubMed  CAS  Google Scholar 

  37. Binello A et al (2004) Synthesis of chitosan-cyclodextrin adducts and evaluation of their bitter-masking properties. Flav Fragr J 19(5):394–400

    CAS  Google Scholar 

  38. Chae SY, Jang MK, Nah JW (2005) Influence of molecular weight on oral absorption of water soluble chitosans. J Control Release 102(2):383–394

    PubMed  CAS  Google Scholar 

  39. El Fattah EA et al (1998) Physical characteristics and release behavior of salbutamol sulfate beads prepared with different ionic polysaccharides. Drug Dev Ind Pharm 24(6):541–547

    PubMed  CAS  Google Scholar 

  40. Felt O, Buri P, Gurny R (1998) Chitosan: a unique polysaccharide for drug delivery. Drug Dev Ind Pharm 24(11):979–993

    PubMed  CAS  Google Scholar 

  41. George M, Abraham TE (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan – a review. J Control Release 114(1):1–14

    PubMed  CAS  Google Scholar 

  42. Singla AK, Chawla M (2001) Chitosan: some pharmaceutical and biological aspects – an update. J Pharm Pharmacol 53(8):1047–1067

    PubMed  CAS  Google Scholar 

  43. Thanou M, Verhoef JC, Junginger HE (2001) Oral drug absorption enhancement by chitosan and its derivatives. Adv Drug Deliv Rev 52(2):117–126

    PubMed  CAS  Google Scholar 

  44. Grant J, Cho J, Allen C (2006) Self-assembly and physicochemical and rheological properties of a polysaccharide-surfactant system formed from the cationic biopolymer chitosan and nonionic sorbitan esters. Langmuir 22(9):4327–4335

    PubMed  CAS  Google Scholar 

  45. Harding SE (2006) Trends in mucoadhesive analysis. Trends Food Sci Technol 17(5):255–262

    CAS  Google Scholar 

  46. Kas HS (1997) Chitosan: properties, preparations and application to microparticulate systems. J Microencapsul 14(6):689–711

    PubMed  CAS  Google Scholar 

  47. Senel S, McClure SJ (2004) Potential applications of chitosan in veterinary medicine. Adv Drug Deliv Rev 56(10):1467–1480

    PubMed  CAS  Google Scholar 

  48. Wu J et al (2007) Water soluble complexes of chitosan-g-MPEG and hyaluronic acid. J Biomed Mater Res A 80(4):800–812

    CAS  Google Scholar 

  49. Yu SY et al (2006) Stable and pH-sensitive nanogels prepared by self-assembly of chitosan and ovalbumin. Langmuir 22(6):2754–2759

    PubMed  CAS  Google Scholar 

  50. Chan LW, Lee HY, Heng PWS (2002) Production of alginate microspheres by internal gelation using an emulsification method. Int J Pharm 242(1–2):259–262

    PubMed  CAS  Google Scholar 

  51. Dusseault J et al (2006) Evaluation of alginate purification methods: effect on polyphenol, endotoxin, and protein contamination. J Biomed Mater Res A 76(2):243–251

    CAS  Google Scholar 

  52. Daraio ME, Francois N, Bernik DL (2003) Correlation between gel structural properties and drug release pattern in scleroglucan matrices. Drug Deliv 10(2):79–85

    PubMed  CAS  Google Scholar 

  53. Deodhar UP, Paradkar AR, Purohit AP (1998) Preliminary evaluation of Leucaena leucocephala seed gum as a tablet binder. Drug Dev Ind Pharm 24(6):577–582

    PubMed  CAS  Google Scholar 

  54. Rubinstein A, Glikokabir I (1995) Synthesis and swelling-dependent enzymatic degradation of Borax-modified guar gum for colonic delivery purposes. Stp Pharma Sciences 5(1):41–46

    CAS  Google Scholar 

  55. Desai UR, Linhardt RJ (1995) Molecular-weight of heparin using C-13 nuclear-magnetic-resonance spectroscopy. J Pharm Sci 84(2):212–215

    PubMed  CAS  Google Scholar 

  56. Fuchs T, Richtering W, Burchard W (1995) Thermoreversible gelation of a polysaccharide with immunological activity – rheology and dynamic light-scattering. Macromol Symp 99:227–238

    CAS  Google Scholar 

  57. Munzberg J, Rau U, Wagner F (1995) Investigations on the regioselective hydrolysis of a branched beta-1,3-glucan. Carbohydr Polymers 27(4):271–276

    Google Scholar 

  58. Song KW, Kim YS, Chang GS (2006) Rheology of concentrated xanthan gum solutions: steady shear flow behavior. Fibers & Polymers 7(2):129–138

    Google Scholar 

  59. Tobyn MJ et al (1996) Prediction of physical properties of a novel polysaccharide controlled release system 1. Int J Pharm 128(1–2):113–122

    CAS  Google Scholar 

  60. Uekama K et al (1995) Modification of rectal absorption of morphine from hollow-type suppositories with a combination of alpha-cyclodextrin and viscosity-enhancing polysaccharide. J Pharm Sci 84(1):15–20

    PubMed  CAS  Google Scholar 

  61. Liu WG, Griffith M, Li FF (2008) Alginate microsphere-collagen composite hydrogel for ocular drug delivery and implantation. J Mater Sci Mater Med 19(11):3365–3371

    PubMed  CAS  Google Scholar 

  62. Bajpai SK, Sharma S (2006) Investigation of pH-sensitive swelling and drug release behavior of barium alginate/carboxymethyl guar gum hydrogel beads. J Macromol Sci Part A-Pure Appl Chem 43(10):1513–1521

    CAS  Google Scholar 

  63. Soppimath KS, Kulkarni AR, Aminabhavi TM (2000) Controlled release of antihypertensive drug from the interpenetrating network poly(vinyl alcohol)-guar gum hydrogel microspheres. J Biomater Sci Polym Ed 11(1):27–43

    PubMed  CAS  Google Scholar 

  64. Soppirnath KS, Aminabhavi TM (2002) Water transport and drug release study from crosslinked polyacrylamide grafted guar gum hydrogel microspheres for the controlled release application. Eur J Pharm Biopharm 53(1):87–98

    PubMed  CAS  Google Scholar 

  65. Knapczyk J (1993) Chitosan hydrogel as a base for semisolid drug forms. Int J Pharm 93(1–3):233–237

    CAS  Google Scholar 

  66. Dai YN et al (2008) Swelling characteristics and drug delivery properties of nifedipine-loaded pH sensitive alginate-chitosan hydrogel beads. J Biomed Mater Res B Appl Biomater 86B(2):493–500

    CAS  Google Scholar 

  67. Bodek KH (2000) Evaluation of properties microcrystalline chitosan as a drug carrier. Part 1. In vitro release of diclofenac from mictocrystalline chitosan hydrogel. Acta Pol Pharm 57(6):431–440

    PubMed  CAS  Google Scholar 

  68. Kubota N (1993) Molecular-weight dependence of the properties of chitosan and chitosan hydrogel for use in sustained-release drug. Bull Chem Soc Jpn 66(6):1807–1812

    CAS  Google Scholar 

  69. Liu TY et al (2006) Synthesis and characterization of amphiphatic carboxymethyl-hexanoyl chitosan hydrogel: water-retention ability and drug encapsulation. Langmuir 22(23):9740–9745

    PubMed  CAS  Google Scholar 

  70. Qiu LY (2004) Preparation and evaluation of chitosan-coated polyphosphazene hydrogel beads for drug controlled release. J Appl Polym Sci 92(3):1993–1999

    CAS  Google Scholar 

  71. Taleb MFA (2008) Radiation synthesis of polyampholytic and reversible pH-responsive hydrogel and its application as drug delivery system. Polym Bull 61(3):341–351

    Google Scholar 

  72. Vodna L, Bubenikova S, Bakos D (2007) Chitosan based hydrogel microspheres as drug carriers. Macromol Biosci 7(5):629–634

    PubMed  CAS  Google Scholar 

  73. Yao KD et al (1994) pH-dependent hydrolysis and drug-release of chitosan polyether interpenetrating polymer network hydrogel. Polym Int 34(2):213–219

    CAS  Google Scholar 

  74. Ishihara M et al (2006) Chitosan hydrogel as a drug delivery carrier to control angiogenesis. J Artif Organs 9(1):8–16

    PubMed  CAS  Google Scholar 

  75. Mohamadnia Z et al (2007) pH-sensitive IPN hydrogel beads of carrageenan-alginate for controlled drug delivery. J Bioact Compat Polym 22(3):342–356

    CAS  Google Scholar 

  76. Liu JH, Li L, Cai YY (2006) Immobilization of camptothecin with surfactant into hydrogel for controlled drug release. Eur Polym J 42(8):1767–1774

    CAS  Google Scholar 

  77. Makino K et al (2001) Design of a rate- and time-programming drug release device using a hydrogel: pulsatile drug release from kappa-carrageenan hydrogel device by surface erosion of the hydrogel. Colloids Surf B Biointerfaces 20(4):355–359

    PubMed  CAS  Google Scholar 

  78. Coviello T et al (2003) Structural and rheological characterization of Scleroglucan/borax hydrogel for drug delivery. Int J Biol Macromol 32(3–5):83–92

    PubMed  CAS  Google Scholar 

  79. Coviello T et al (2003) Scleroglucan/borax: characterization of a novel hydrogel system suitable for drug delivery. Biomaterials 24(16):2789–2798

    PubMed  CAS  Google Scholar 

  80. Coviello T et al (2005) A new scleroglucan/borax hydrogel: swelling and drug release studies. Int J Pharm 289(1–2):97–107

    PubMed  CAS  Google Scholar 

  81. Palleschi A et al (2006) Investigation on a new scleroglucan/borax hydrogel: structure and drug release. Int J Pharm 322(1–2):13–21

    PubMed  CAS  Google Scholar 

  82. Hayashi K et al (2007) Development of new drug delivery system for implant bone augmentation using a basic fibroblast growth factor-gelatin hydrogel complex. Dent Mater J 26(2):170–177

    PubMed  CAS  Google Scholar 

  83. David L et al (2008) Hyaluronan hydrogel: an appropriate three-dimensional model for evaluation of anticancer drug sensitivity. Acta Biomater 4(2):256–263

    PubMed  CAS  Google Scholar 

  84. Luo Y, Kirker KR, Prestwich GD (2000) Crosslinked hyaluronic acid hydrogel films: new biomaterials for drug delivery. J Control Release 69(1):169–184

    PubMed  CAS  Google Scholar 

  85. Sungthongjeen S et al (1999) Studies on pectins as potential hydrogel matrices for controlled-release drug delivery. Drug Dev Ind Pharm 25(12):1271–1276

    PubMed  CAS  Google Scholar 

  86. Sutar PB et al (2008) Development of pH sensitive polyacrylamide grafted pectin hydrogel for controlled drug delivery system. J Mater Sci Mater Med 19(6):2247–2253

    PubMed  CAS  Google Scholar 

  87. Mishra RK, Datt M, Banthia AK (2008) Synthesis and characterization of pectin/PVP hydrogel membranes for drug delivery system. AAPS PharmSciTech 9(2):395–403

    PubMed  CAS  Google Scholar 

  88. Munjeri O, Collett JH, Fell JT (1997) Hydrogel beads based on amidated pectins for colon-specific drug delivery: the role of chitosan in modifying drug release. J Control Release 46(3):273–278

    CAS  Google Scholar 

  89. Ramaraj B, Radhakrishnan G (1994) Interpenetrating hydrogel networks based on gelatin and polyacrylamide – synthesis, swelling, and drug-release analysis. J Appl Polym Sci 52(7):837–846

    CAS  Google Scholar 

  90. Wang N, Wu XS (1997) Preparation and characterization of agarose hydrogel nanoparticles for protein and peptide drug delivery. Pharm Dev Technol 2(2):135–142

    PubMed  CAS  Google Scholar 

  91. Chen F, Wu Z, Jin Y (2005) Application research on dextran-based hydrogel and its drug controlled release. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 19(11):919–922

    PubMed  CAS  Google Scholar 

  92. Vervoort L et al (1997) Inulin hydrogels as carriers for colonic drug targeting: I. Synthesis and characterization of methacrylated inulin and hydrogen formation. Pharm Res 14(12):1730–1737

    PubMed  CAS  Google Scholar 

  93. Vervoort L et al (1999) Inulin hydrogels as carriers for colonic drug targeting. Rheological characterization of the hydrogel formation and the hydrogel network. J Pharm Sci 88(2):209–214

    PubMed  CAS  Google Scholar 

  94. Kuzma P et al (1996) Subcutaneous hydrogel reservoir system for controlled drug delivery. Macromol Symp 109:15–26

    CAS  Google Scholar 

  95. Eljarrat-Binstock E et al (2007) Preparation, characterization, and sterilization of hydrogel sponges for iontophoretic drug-delivery use. Polymer Adv Technol 18:720–730

    Google Scholar 

  96. Arica MY et al (2005) Novel hydrogel membrane based on copoly(hydroxyethyl methacrylate/p-vinylbenzylpoly(ethylene oxide)) for biomedical applications: properties and drug release characteristics. Macromol Biosci 5(10):983–992

    PubMed  CAS  Google Scholar 

  97. Blanco MD, Rego JM, Huglin MB (1994) Drug-release with simultaneous dimensional changes from a new copolymeric hydrogel. Polymer 35(16):3487–3491

    CAS  Google Scholar 

  98. De Giglio E et al (2009) Electrosynthesis of hydrogel films on metal substrates for the development of coatings with tunable drug delivery performances. J Biomed Mater Res A 88(4):1048–1057

    PubMed  Google Scholar 

  99. Eljarrat-Binstock E et al (2004) Hydrogel probe for iontophoresis drug delivery to the eye. J Biomater Sci Polym Ed 15(4):397–413

    PubMed  CAS  Google Scholar 

  100. Eljarrat-Binstock E et al (2005) Transcorneal and transscleral iontophoresis of dexamethasone phosphate using drug loaded hydrogel. J Control Release 106(3):386–390

    PubMed  CAS  Google Scholar 

  101. Eljarrat-Binstock E et al (2004) Delivery of gentamicin to the rabbit eye by drug-loaded hydrogel iontophoresis. Invest Ophthalmol Vis Sci 45(8):2543–2548

    PubMed  Google Scholar 

  102. Gulsen D, Chauhan A (2005) Dispersion of microemulsion drops in HEMA hydrogel: a potential ophthalmic drug delivery vehicle. Int J Pharm 292(1–2):95–117

    PubMed  CAS  Google Scholar 

  103. Gayet JC, Fortier G (1995) Drug-release from new bioartificial hydrogel. Artif Cells Blood Substit Immobil Biotechnol 23(5):605–611

    PubMed  CAS  Google Scholar 

  104. Gayet JC, Fortier G (1996) High water content BSA-PEG hydrogel for controlled release device: evaluation of the drug release properties. J Control Release 38(2–3):177–184

    CAS  Google Scholar 

  105. Qiu B et al (2003) A hydrogel prepared by in situ crosslinking of a thiol-containing poly(ethylene glycol)-based copolymer: a new biomaterial for protein drug delivery. Biomaterials 24(1):11–18

    PubMed  Google Scholar 

  106. Missirlis D, Tirelli N, Hubbell JA (2005) Amphiphilic hydrogel nanoparticles. Preparation, characterization, and preliminary assessment as new colloidal drug carriers. Langmuir 21(6):2605–2613

    PubMed  CAS  Google Scholar 

  107. Shekunov BY et al (2007) Structure and drug release in a crosslinked poly(ethylene oxide) hydrogel. J Pharm Sci 96(5):1320–1330

    PubMed  CAS  Google Scholar 

  108. Shekunov BY, Taylor P, Grossmann JG (1999) Structural phenomena in hydrogel-drug systems. J Crystal Growth 198:1335–1339

    Google Scholar 

  109. Lin H et al (2006) Synthesis, characterization and drug release of temperature-sensitive PLGA-PEG-PLGA hydrogel. Chem J Chinese Universities-Chinese 27(7):1385–1388

    CAS  Google Scholar 

  110. Varshosaz J, Koopaie N (2002) Crosslinked poly (vinyl alcohol) hydrogel: study of swelling and drug release behaviour. Iranian Polym J 11(2):123–131

    CAS  Google Scholar 

  111. Wang N, Wu XS, Li JK (1999) A heterogeneously structured composite based on poly(lactic-co-glycolic acid) microspheres and poly(vinyl alcohol) hydrogel nanoparticles for long-term protein drug delivery. Pharm Res 16(9):1430–1435

    PubMed  CAS  Google Scholar 

  112. Ramaraj B, Radhakrishnan G (1994) Hydrogel capsules for sustained drug-release. J Appl Polym Sci 51(6):979–988

    CAS  Google Scholar 

  113. Mandal TK et al (2002) Poly(d, l-lactide-co-glycolide) encapsulated poly(vinyl alcohol) hydrogel as a drug delivery system. Pharm Res 19(11):1713–1719

    PubMed  CAS  Google Scholar 

  114. Tada D et al (2005) Drug release from hydrogel containing albumin as crosslinker. J Biosci Bioeng 100(5):551–555

    PubMed  CAS  Google Scholar 

  115. Stanojevic M et al (2006) An investigation into the influence of hydrogel composition on swelling behavior and drug release from poly(acrylamide-co-itaconic acid) hydrogels in various media. Drug Deliv 13(1):1–7

    PubMed  CAS  Google Scholar 

  116. Barthus RC, Lira LM, de Torresi SIC (2008) Conducting polymer-hydrogel blends for electrochemically controlled drug release devices. J Braz Chem Soc 19(4):630–636

    CAS  Google Scholar 

  117. Lee WF, Chiu RJ (2002) Thermoreversible hydrogel. XVII. Investigation of the drug release behavior for [N-isopropylacrylamide-co-trimethyl acrylamidopropyl ammonium iodide-co-3-dimethyl (methacryloyloxyethyl) ammonium propane sulfortate] copolymeric hydrogels. J Appl Polym Sci 86(7):1592–1598

    CAS  Google Scholar 

  118. Reimer K et al (2000) An innovative topical drug formulation for wound healing and infection treatment: in vitro and in vivo investigations of a povidone-iodine liposome hydrogel. Dermatology 201(3):235–241

    PubMed  CAS  Google Scholar 

  119. Chen J et al (2005) Preparation and characterization of magnetic targeted drug controlled-release hydrogel microspheres. Macromol Symp 225:71–80

    CAS  Google Scholar 

  120. Giammona G et al (1997) A hydrogel based on a polyaspartamide: characterization and evaluation of in-vivo biocompatibility and drug release in the rat. J Pharm Pharmacol 49(11):1051–1056

    PubMed  CAS  Google Scholar 

  121. Aikawa K et al (1998) Drug release from pH-response polyvinylacetal diethylaminoacetate hydrogel, and application to nasal delivery. Int J Pharm 168(2):181–188

    CAS  Google Scholar 

  122. http://www.drugs.com

  123. Chen J, Park H, Park K (1999) Synthesis of superporous hydrogels: hydrogels with fast swelling and superabsorbent properties. J Biomed Mater Res 44(1):53–62

    PubMed  CAS  Google Scholar 

  124. Chen J, Park K (1999) Superporous hydrogels: fast responsive hydrogel systems. J Macromol Sci-Pure Appl Chem A36(7–8):917–930

    CAS  Google Scholar 

  125. Chen J, Park K (2000) Synthesis and characterization of superporous hydrogel composites. J Control Release 65(1–2):73–82

    PubMed  CAS  Google Scholar 

  126. Omidian H, et al (2005) Hydrogels having enhanced elasticity and mechanical strength properties in US patent 6,960,617

    Google Scholar 

  127. Omidian H, Rocca JG (2006) Formation of strong superporous hydrogels in US patent 7,056,957

    Google Scholar 

  128. Omidian H, Rocca JG, Park K (2006) Elastic, superporous hydrogel hybrids of polyacrylamide and sodium alginate. Macromol Biosci 6(9):703–710

    PubMed  CAS  Google Scholar 

  129. Omidian H, Park K (2008) Swelling agents and devices in oral drug delivery. J Drug Deliv Sci Technol 18(2):83–93

    CAS  Google Scholar 

  130. Omidian H, Park K, Rocca JG (2007) Recent developments in superporous hydrogels. J Pharm Pharmacol 59(3):317–327

    PubMed  CAS  Google Scholar 

  131. Omidian H, Rocca JG, Park K (2005) Advances in superporous hydrogels. J Control Release 102(1):3–12

    PubMed  CAS  Google Scholar 

  132. Dorkoosh FA et al (2001) Development and characterization of a novel peroral peptide drug delivery system. J Control Release 71(3):307–318

    PubMed  CAS  Google Scholar 

  133. Dorkoosh FA et al (2002) Intestinal absorption of human insulin in pigs using delivery systems based on superporous hydrogel polymers. Int J Pharm 247(1–2):47–55

    PubMed  CAS  Google Scholar 

  134. Dorkoosh FA et al (2002) Evaluation of superporous hydrogel (SPH) and SPH composite in porcine intestine ex-vivo: assessment of drug transport, morphology effect, and mechanical fixation to intestinal wall. Eur J Pharm Biopharm 53(2):161–166

    PubMed  CAS  Google Scholar 

  135. Yang SC et al (2004) Application of poly(acrylic acid) superporous hydrogel microparticles as a super-disintegrant in fast-disintegrating tablets. J Pharm Pharmacol 56(4):429–436

    PubMed  CAS  Google Scholar 

  136. Wiese KG (1996) Tissue expander inflating due to osmotic driving forces of a shaped body of hydrogel and an aqueous solution. US Patent #5,496,368

    Google Scholar 

  137. Wiese KG et al (2001) Biomaterial properties and biocompatibility in cell culture of a novel self-inflating hydrogel tissue expander. J Biomed Mater Res 54(2):179–188

    PubMed  CAS  Google Scholar 

  138. Osmed (GMBH), Hydrogel competence: self-inflating tissue expander. http://www.osmed.biz

  139. Akina, Tissue expanding hydrogel (Resitex). http://www.akinainc.com

  140. List of contact lenses allowed to be sold in the United States. Food and Drug Administration Website, http://www.fda.gov/cdrh/contactlenses/lenslist.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Omidian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer US

About this chapter

Cite this chapter

Omidian, H., Park, K. (2012). Hydrogels. In: Siepmann, J., Siegel, R., Rathbone, M. (eds) Fundamentals and Applications of Controlled Release Drug Delivery. Advances in Delivery Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0881-9_4

Download citation

Publish with us

Policies and ethics