Skip to main content

UV-B Radiation, Its Effects and Defense Mechanisms in Terrestrial Plants

  • Chapter
  • First Online:
Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change

Abstract

The UV-B is an important component of solar radiation to which all terrestrial and aquatic plants were exposed during the early evolutionary phase of the Earth. Hence the plants, principally terrestrial, have evolved different mechanisms to avoid and repair the UV-B damage; therefore, it is not surprising that photomorphogenic responses to the solar UV-B are erroneously assumed to be adaptations to the harmful UV radiation. The responses to UV-B enhancement include changes in the leaf area, leaf thickness, stomatal density, wax deposition, stem elongation, and branching pattern, as well as in the synthesis of secondary metabolites, alterations in plant–pathogen and plant–predator interactions, and in gene expression. However, under field conditions the ambient solar UV-B provides an important signal for the normal plant development and may be perceived by the plants through nondestructive processes involving both UV-B specific and UV-B nonspecific signaling pathways. The specific signaling pathways include the components UVR8 and COP1 which regulate the expression of a set of genes that are essential for the plants’ protection. The nonspecific signaling pathways involve DNA damage, reactive oxygen species (ROS), hormones, and wound/defense signaling molecules. Indeed under the field conditions, the ambient UV-B might more properly be viewed as a photomorphogenic signal than as a stressor. Therefore, it might not be appropriate to evaluate the adaptive roles of plant responses to UV-B cues upon stress tolerance by the simultaneous application of both solar radiation and supplemental UV-B. In this chapter, we analyzed the information regarding physiological and morphogenic responses of the terrestrial plants to the UV-B radiation, as well as the events related to UV-B perception, signal transduction, gene expression, and ROS formation from different studies carried out in greenhouses, growth chambers, and field conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agati G, Tattini M (2010) Multiple functional roles of flavonoids in photoprotection. New Phytol 186:786–793

    PubMed  CAS  Google Scholar 

  • Agati G, Matteini P, Goti A, Tattini M (2007) Chloroplast-located flavonoids can scavenge singlet oxygen. New Phytol 174:77–89

    PubMed  CAS  Google Scholar 

  • Agrawal SB, Singh S, Agrawal M (2009) Ultraviolet-B induced changes in gene expression and antioxidants in plants. Adv Bot Res 52:47–86

    CAS  Google Scholar 

  • A-H-Mackerness S, Surplus SL, Blake P, John CF, Buchanan-Wollaston V et al (1999) Ultraviolet-B-induced stress and changes in gene expression in Arabidopsis thaliana: role of signaling pathways controlled by jasmonic acid, ethylene and reactive oxygen species. Plant Cell Environ 22:1413–1423

    Google Scholar 

  • A-H-Mackerness S, John CF, Jordan B, Thomas B (2001) Early signalling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide. FEBS Lett 489:237–242

    PubMed  CAS  Google Scholar 

  • Amudha P, Jayakumar M, Kulandaivelu G (2010) Photosystems activities and polypeptide composition of Cyamopsis tetragonoloba and Vigna mungo thylakoids as affected by exclusion of solar UV radiation. Biol Plant 54:339–343

    CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    PubMed  CAS  Google Scholar 

  • Archetti M, Döring TF, Hagen SB, Hughes NM, Leather SR et al (2009) Unraveling the evolution of autumn colours: an interdisciplinary approach. Trends Ecol Evol 24:166–173

    PubMed  Google Scholar 

  • Ballaré CL (2003) Stress under the sun. Spotlight on ultraviolet-B responses. Plant Physiol 132:1725–1727

    PubMed  Google Scholar 

  • Ballaré CL, Barnes PW, Flint SD (1995) Inhibition of hypocotyl elongation by UV-B radiation in deetiolating tomato seedlings. 1. The photoreceptor. Physiol Plant 93:584–592

    Google Scholar 

  • Ballaré CL, Rousseaux MC, Searles PS, Zaller JG, Giordano CV et al (2001) Impacts of solar ultraviolet-B radiation on terrestrial ecosystems of Tierra del Fuego (southern Argentina): an overview of recent progress. J Photochem Photobiol B Biol 62:67–77

    Google Scholar 

  • Barnes PW, Shinkle JR, Flint SD, Ryel RJ (2005) UV-B radiation, photomorphogenesis and plant–plant interactions. Prog Bot 66:313–340

    Google Scholar 

  • Bassman JH (2004) Ecosystem consequences of enhanced solar ultraviolet radiation: secondary plant metabolites as mediators of multiple trophic interactions in terrestrial plant communities. Photochem Photobiol 79:382–398

    PubMed  CAS  Google Scholar 

  • Bieza K, Lois R (2001) An Arabidopsis mutant tolerant to lethal ultraviolet-B levels shows constitutively elevated accumulation of flavonoids and other phenolics. Plant Physiol 126:1105–1115

    PubMed  CAS  Google Scholar 

  • Björn LO, McKenzie RL (2007) Attempts to probe the ozone layer and the ultraviolet-B levels of the past. Ambio 36:366–371

    PubMed  Google Scholar 

  • Björn LO, Widell S, Wang T (2002) Evolution of UV-B regulation and protection in plants. Adv Space Res 30:1557–1562

    PubMed  Google Scholar 

  • Boccalandro HE, Mazza CA, Mazzella MA, Casal JJ, Ballaré CL (2001) Ultraviolet B radiation enhances a phytochrome-B mediated photomorphogenic response in Arabidopsis. Plant Physiol 126:780–788

    PubMed  CAS  Google Scholar 

  • Brenes-Arguedas T, Horton MW, Coley PD, Lokvam J, Rachel A, Waddell RA et al (2006) Contrasting mechanisms of secondary metabolite accumulation during leaf development in two tropical tree species with different leaf expansion strategies. Oecologia 149:91–100

    PubMed  Google Scholar 

  • Britt AB (2004) Repair of DNA damage induced by solar UV. Photosynth Res 81:105–112

    CAS  Google Scholar 

  • Brosché M, Schuler MA, Kalbina I, Connor L, Strid Ǻ (2002) Gene regulation by low level UV-B radiation: identification by DNA array analysis. Photochem Photobiol Sci 1:656–664

    PubMed  Google Scholar 

  • Brown BA, Jenkins GI (2008) UV-B signalling pathways with different fluence-rate response profiles are distinguished in mature Arabidopsis leaf tissue by requirement for UVR8, HY5, and HYH. Plant Physiol 146:576–588

    PubMed  CAS  Google Scholar 

  • Brown BA, Cloix C, Jiang GH, Kaiserli E, Herzyk P et al (2005) A UV-B-specific signaling component orchestrates plant UV protection. Proc Natl Acad Sci USA 102:18225–18230

    PubMed  CAS  Google Scholar 

  • Bruno JF, Stachowicz JJ, Bertness MD (2003) Inclusion of facilitation into ecological theory. Trends Ecol Evol 18:119–125

    Google Scholar 

  • Buer CS, Imin N, Djordjevic MA (2010) Flavonoids: new roles for old molecules. J Integr Plant Biol 52:98–111

    PubMed  CAS  Google Scholar 

  • Bukhov NG (2004) Dynamic light regulation of photosynthesis (A review). Russ J Plant Physiol 51:742–753

    CAS  Google Scholar 

  • Burchard P, Bilger W, Weissenböck G (2000) Contribution of hydroxycinnamates and flavonoids to epidermal shielding of UV-A and UV-B radiation in developing rye primary leaves as assessed by ultraviolet-induced chlorophyll fluorescence measurements. Plant Cell Environ 23:1373–1380

    CAS  Google Scholar 

  • Caldwell MM, Bornman JF, Ballaré CL, Flint SD, Kulandaivelu G (2007) Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. Photochem Photobiol Sci 6:252–266

    PubMed  CAS  Google Scholar 

  • Carvalho RF, Takaki M, Azevedo RA (2010) Plant pigments: the many faces of light perception. Acta Physiol Plant. doi:10.1007/s11738-010-0533-7

  • Chalker-Scott L (2002) Do anthocyanins function as osmoregulators in leaf tissues? Adv Bot Res 37:103–127

    CAS  Google Scholar 

  • Clarke LJ, Robinson SA (2008) Cell wall-bound ultraviolet-screening compounds explain the high ultraviolet tolerance of the Antarctic moss, Ceratodon purpureus. New Phytol 179:776–783

    PubMed  Google Scholar 

  • Cloix C, Jenkins GI (2008) Interaction of the Arabidopsis UV-B-specific signaling component UVR8 with chromatin. Mol Plant 1:118–128

    PubMed  CAS  Google Scholar 

  • Close DC, Beadle CL (2003) The ecophysiology of foliar anthocyanin. Bot Rev 69:149–161

    Google Scholar 

  • Cockell CS, Horneck G (2001) The history of the UV radiation climate of the Earth–theoretical and space-based observations. Photochem Photobiol 73:447–451

    PubMed  CAS  Google Scholar 

  • Convey P, Smith RIL (2006) Responses of terrestrial Antarctic ecosystems to climate change. Plant Ecol 182:1–10

    Google Scholar 

  • Cybulski WJ, Peterjohn WT, Sullivan JH (2000) The influence of elevated ultraviolet-B radiation on tissue quality and decomposition of loblolly pine needles. Environ Exp Bot 44:231–241

    PubMed  CAS  Google Scholar 

  • Dany AL, Douki T, Triantaphylides C, Cadet J (2001) Repair of the main UV-induced thymine dimeric lesions within Arabidopsis thaliana DNA: evidence for the major involvement of photoreactivation pathways. J Photochem Photobiol B Biol 65:127–135

    CAS  Google Scholar 

  • Day TA, Ruhland CT, Xiong F (2001) Influence of solar UV-B radiation on Antarctic terrestrial plants: results from a 4-year field study. J Photochem Photobiol B Biol 62:78–87

    CAS  Google Scholar 

  • Demkura PV, Abdala G, Baldwin IT, Ballaré CL (2010) Jasmonate-dependent and -independent pathways mediate specific effects of solar ultraviolet B radiation on leaf phenolics and antiherbivore defense. Plant Physiol 152:1084–1095

    PubMed  CAS  Google Scholar 

  • Dixon P, Weinig C, Schmitt J (2001) Susceptibility to UV damage in Impatiens capensis (Balsaminaceae): testing for opportunity costs to shade-avoidance and population differentiation. Am J Bot 88:1401–1408

    PubMed  CAS  Google Scholar 

  • Dormann CF, Woodin SJ (2002) Climate change in the Arctic: using plant functional types in a meta-analysis of field experiments. Funct Ecol 16:4–17

    Google Scholar 

  • Favory J, Stec A, Gruber H, Rizzini L, Oravecz A et al (2009) Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO J 28:591–601

    PubMed  CAS  Google Scholar 

  • Feucht W, Treutter D, Polster J (2004) Flavanol binding of nuclei from tree species. Plant Cell Rep 22:430–436

    PubMed  CAS  Google Scholar 

  • Flint SD, Caldwell MM (2003) A biological spectral weighting function for ozone depletion research with higher plants. Physiol Plant 117:137–144

    CAS  Google Scholar 

  • Flint SD, Ryel RJ, Caldwell MM (2003) Ecosystem UV-B experiments in terrestrial communities: a review of recent findings and methodologies. Agric For Meteorol 120:177–189

    Google Scholar 

  • Flint SD, Ryel RJ, Hudelson TJ, Caldwell MM (2009) Serious complications in experiments in which UV doses are affected by using different lamp heights. J Photochem Photobiol B Biol 97:48–53

    CAS  Google Scholar 

  • Fukuda S, Satoh A, Kasahara H, Matsuyama H, Takeuchi Y (2008) Effects of ultraviolet-B irradiation on the cuticular wax of cucumber (Cucumis sativus) cotyledons. J Plant Res 121:179–189

    PubMed  CAS  Google Scholar 

  • Furness NH, Upadhyaya MK (2002) Differential susceptibility of agricultural weeds to ultraviolet-B radiation. Can J Plant Sci 82:789–796

    Google Scholar 

  • Gallo ME, Sinsabaugh RL, Cabaniss SE (2006) The role of ultraviolet radiation in litter decomposition in arid ecosystems. Appl Soil Ecol 34:82–91

    Google Scholar 

  • Gerhardt KE, Wilson MI, Greenberg BM (2005) Ultraviolet wavelength dependence of photomorphological and photosynthetic responses in Brassica napus and Arabidopsis thaliana. Photochem Photobiol 81:1061–1068

    PubMed  CAS  Google Scholar 

  • Gilbert M, Pörs Y, Grover K, Weingart I, Skotnica J et al (2009) Intra- and interspecific differences of 10 barley and 10 tomato cultivars in response to short-time UV-B radiation: a study analysing thermoluminescence, fluorescence, gas-exchange and biochemical parameters. Environ Pollut 157:1603–1612

    PubMed  CAS  Google Scholar 

  • Giordano CV, Galatro A, Puntarulo S, Ballaré CL (2004) The inhibitory effects of UV-B radiation (280–315 nm) on Gunnera magellanica growth correlate with increased DNA damage but not with oxidative damage to lipids. Plant Cell Environ 27:1415–1423

    CAS  Google Scholar 

  • González JA, Liberman-Cruz M, Boero C, Gallardo M, Prado FE (2002) Leaf thickness, protective and photosynthetic pigments and carbohydrate content in leaves of the world’s highest elevation tree Polylepis tarapacana (Rosaceae). Phyton 71:41–53

    Google Scholar 

  • González JA, Gallardo MG, Boero C, Liberman-Cruz M, Prado FE (2007) Altitudinal and seasonal variation of protective and photosynthetic pigments in leaves of the world’s highest elevation trees Polylepis tarapacana (Rosaceae). Acta Oecol 32:36–41

    Google Scholar 

  • González JA, Rosa MA, Parrado MF, Hilal M, Prado FE (2009) Morphological and physiological responses of two varieties of a highland species (Chenopodium quinoa Willd.) growing under near-ambient and strongly reduced solar UV-B in a lowland location. J Photochem Photobiol B Biol 96:144–151

    Google Scholar 

  • Gould KS (2004) Nature’s swiss army knife: the diverse protective roles of anthocyanins in leaves. J Biomed Biotechnol 5:314–320

    Google Scholar 

  • Hada H, Hidema J, Maekawa M, Kumagai T (2003) Higher amounts of anthocyanins and UV-absorbing compounds effectively lowered CPD photorepair in purple rice (Oryza sativa L.). Plant Cell Environ 26:1691–1701

    CAS  Google Scholar 

  • He JM, Bai XL, Wang RB, Cao B, She XP (2007) The involvement of nitric oxide in ultraviolet-B-inhibited pollen germination and tube growth of Paulownia tomentosa in vitro. Physiol Plant 131:273–282

    PubMed  CAS  Google Scholar 

  • Hectors K, Prinsen E, De Coen W, Jansen MAK, Guisez Y (2007) Arabidopsis thaliana plants acclimated to low dose rates of ultraviolet B radiation show specific changes in morphology and gene expression in the absence of stress symptoms. New Phytol 175:255–270

    PubMed  CAS  Google Scholar 

  • Hidema J, Taguchi T, Ono T, Teranishi M, Yamamoto K, Kumagai T (2007) Increase in CPD photolyase activity functions effectively to prevent growth inhibition caused by UVB radiation. Plant J 50:70–79

    PubMed  CAS  Google Scholar 

  • Hilal M, Parrado MF, Rosa M, Gallardo M, Orce L et al (2004) Epidermal lignin deposition in quinoa cotyledons in response to UV-B radiation. Photochem Photobiol 79:205–210

    PubMed  CAS  Google Scholar 

  • Hilal M, Rodríguez-Montelongo L, Rosa M, Gallardo M, González JA et al (2008) Solar and supplemental UV-B radiation effects in lemon peel UV-B absorbing compound content Seasonal variations. Photochem Photobiol 84:1480–1486

    PubMed  CAS  Google Scholar 

  • Hofmann RW, Campbell BD, Bloor SJ, Swinny EF, Markham KR et al (2003) Responses to UV-B radiation in Trifolium repens L. – physiological links to plant productivity and water availability. Plant Cell Environ 26:603–612

    CAS  Google Scholar 

  • Holton N, Cano-Delgado A, Harrison K, Montoya T, Chory J, Bishop GJ (2007) Tomato BRASSINOSTEROID INSENSITIVE1 is required for systemin-induced root elongation in Solanum pimpinellifolium but is not essential for wound signaling. Plant Cell 19:1709–1717

    PubMed  CAS  Google Scholar 

  • Hoque E, Remus G (1999) Natural UV-screening mechanisms of Norway spruce (Picea abies [L.] Karst.) needles. Photochem Photobiol 69:177–192

    CAS  Google Scholar 

  • Hughes NM, Neufeld HS, Burkey KO (2005) Functional role of anthocyanins in high-light winter leaves of the evergreen herb Galax urceolata. New Phytol 168:575–587

    PubMed  CAS  Google Scholar 

  • Ibañez S, Rosa M, Hilal M, González JA, Prado FE (2008) Leaves of Citrus aurantifolia exhibit a different sensibility to solar UV-B radiation according to development stage in relation to photosynthetic pigments and UV-B absorbing compounds production. J Photochem Photobiol B 90:163–169

    PubMed  Google Scholar 

  • Imamoto Y, Kataoka M (2007) Structure and photoreaction of photoactive yellow protein, a structural prototype of the PAS domain superfamily. Photochem Photobiol 83:40–49

    PubMed  CAS  Google Scholar 

  • Ivanova PI, Dobrikova AG, Taneva SG, Apostolova EL (2008) Sensitivity of the photosynthetic apparatus to UV-A radiation: role of light-harvesting complex II-photosystem II supercomplex organization. Radiat Environ Biophys 47:169–177

    PubMed  CAS  Google Scholar 

  • Izaguirre MM, Scopel AL, Baldwin IT, Ballaré CL (2003) Convergent responses to stress: solar ultraviolet-B radiation and Manduca sexta herbivory elicit overlapping transcriptional responses in field-grown plants of Nicotiana longiflora. Plant Physiol 132:1755–1767

    PubMed  CAS  Google Scholar 

  • Izaguirre MM, Mazza CA, Svatǒs A, Baldwin IT, Ballaré CL (2007) Solar ultraviolet-B radiation and insect herbivory trigger partially overlapping phenolic responses in Nicotiana attenuata and Nicotiana longiflora. Ann Bot 99:103–109

    PubMed  CAS  Google Scholar 

  • Jenkins GI (2009) Signal transduction in responses to UV-B radiation. Annu Rev Plant Biol 60:407–431

    PubMed  CAS  Google Scholar 

  • Jiang L, Wang Y, Björn LO, Li S (2009) Arabidopsis RADICAL-INDUCED CELL DEATH1 is involved in UV-B signaling. Photochem Photobiol Sci 8:838–846

    PubMed  CAS  Google Scholar 

  • Jordan BR (2002) Molecular response of plant cells to UV-B stress. Funct Plant Biol 29:909–916

    CAS  Google Scholar 

  • Julkunen-Tiitto R, Häggman H, Aphalo PJ, Lavola A, Tegelberg R, Veteli T (2005) Growth and defense in deciduous trees and shrubs under UV-B. Environ Pollut 137:404–414

    PubMed  CAS  Google Scholar 

  • Kadur G, Swapan B, Sunita K, Sanjeev Y, Arjun T et al (2007) Growth enhancement of soybean (Glycine max) upon exclusion of UV-B and UV-B/A components of solar radiation: characterization of photosynthetic parameters in leaves. Photosynth Res 94:299–306

    PubMed  CAS  Google Scholar 

  • Kakani VG, Reddy KR, Zhao D, Mohammed AR (2003) Effects of ultraviolet-B radiation on cotton (Gossypium hirsutum L.) morphology and anatomy. Ann Bot 91:817–826

    PubMed  CAS  Google Scholar 

  • Kalbina I, Li S, Kalbin G, Björn LO, Strid Å (2008) Two separate UV-B radiation wavelength regions control expression of different molecular markers in Arabidopsis thaliana. Funct Plant Biol 35:222–227

    CAS  Google Scholar 

  • Kimura S, Tahira Y, Ishibashi T, Mori Y, Mori T et al (2004) DNA repair in higher plants; photoreactivation is the major DNA repair pathway in non proliferating cells while excision repair (nucleotide excision repair and base excision repair) is active in proliferating cells. Nucleic Acids Res 32:2760–2767

    PubMed  CAS  Google Scholar 

  • Kolodner D, Marsischky GT (1999) Eukaryotic DNA mismatch repair. Curr Opin Genet Dev 9:89–96

    PubMed  CAS  Google Scholar 

  • Koti S, Reddy KR, Kakani VG, Zhao D, Reddy VR (2004) Soybean (Glycine max) pollen germination characteristics, flower and pollen morphology in response to enhanced ultraviolet-B radiation. Ann Bot 94:855–864

    PubMed  CAS  Google Scholar 

  • Krauss P, Markstädter C, Rieder M (1997) Attenuation of UV radiation by plant cuticles from woody species. Plant Cell Environ 20:1079–1085

    Google Scholar 

  • Krizek DT (2004) Influence of PAR and UV-A in determining plant sensitivity and photomorphogenic responses to UV-B radiation. Photochem Photobiol 79:307–315

    PubMed  CAS  Google Scholar 

  • Krizek DT, Mirecki RM (2004) Evidence for phytotoxic effects of cellulose acetate in UV exclusion studies. Environ Exp Bot 51:33–43

    CAS  Google Scholar 

  • Krizek DT, Clark HD, Mirecki RM (2005) Spectral properties of selected UV-blocking and UV-transmitting covering materials with application for production of high-value crops in high tunnels. Photochem Photobiol 81:1047–1051

    PubMed  CAS  Google Scholar 

  • Kucera B, Leubner-Metzger G, Wellmann E (2003) Distinct ultraviolet-signaling pathways in bean leaves. DNA damage is associated with β-1,3 glucanase gene induction, but not with flavonoid formation. Plant Physiol 133:1445–1452

    PubMed  CAS  Google Scholar 

  • Kytridis VP, Manetas Y (2006) Mesophyll versus epidermal anthocyanins as potential in vivo antioxidants: evidence linking the putative antioxidant role to the proximity of oxy-radical source. J Exp Bot 57:2203–2210

    PubMed  CAS  Google Scholar 

  • Láposi R, Veres S, Mile O, Mészáros I (2002) Photosynthesis-ecophysiological properties of beech (Fagus sylvatica L.) under the exclusion of ambient UV-B radiation. Acta Biol Szegediensis 46:243–245

    Google Scholar 

  • Leshem YY, Kuiper PJC (1996) Is there a GAS (general adaptation syndrome) response to various types of environmental stress? Biol Plant 38:1–18

    Google Scholar 

  • Li FR, Peng SL, Chen BM, Hou YP (2010) A meta-analysis of the responses of woody and herbaceous plants to elevated ultraviolet-B radiation. Acta Oecol 36:1–9

    Google Scholar 

  • Liakopoulos G, Stavrianakou S, Karabourniotis G (2006) Trichome layers versus dehaired lamina of Olea europaea leaves: differences in flavonoid distribution, UV-absorbing capacity, and wax yield. Environ Exp Bot 55:294–304

    CAS  Google Scholar 

  • Liu Z, Hong SW, Escobar M, Vierling E, Mitchell D et al (2003) Arabidopsis UVH6, a homolog of human XPD and yeast RAD3 DNA repair genes, functions in DNA repair and is essential for plant growth. Plant Physiol 132:1405–1414

    PubMed  CAS  Google Scholar 

  • Long JC, Jenkins GI (1998) Involvement of plasma membrane redox activity and calcium homeostasis in the UV-B and UV-A/blue light induction of gene expression in Arabidopsis. Plant Cell 10:2077–2086

    PubMed  CAS  Google Scholar 

  • McKenzie RL, Seckmeyer G, Bais AF, Kerr JB, Madronich S (2001) Satellite retrievals of erythemal UV dose compared with ground–based measurements at northern and southern midlatitudes. J Geophys Res 106:24051–24062

    Google Scholar 

  • McKenzie RL, Aucamp PJ, Bais AF, Björn LO, Ilyas M (2007) Changes in biologically-active ultraviolet radiation reaching the Earth’s surface. Photochem Photobiol Sci 6:218–231

    PubMed  CAS  Google Scholar 

  • Merzlyak MN, Chivkunova OB, Solovchenko AE, Naqvi KR (2008a) Light absorption by anthocyanins in juvenile, stressed, and senescing leaves. J Exp Bot 59:3903–3911

    PubMed  CAS  Google Scholar 

  • Merzlyak MN, Melø TB, Naqvi KR (2008b) Effect of anthocyanins, carotenoids, and flavonols on chlorophyll fluorescence excitation spectra in apple fruit: signature analysis, assessment, modelling, and relevance to photoprotection. J Exp Bot 59:349–359

    PubMed  CAS  Google Scholar 

  • Micheletti MI, Piacentini RD, Madronich S (2003) Sensitivity of biologically active UV radiation to stratospheric ozone changes: effects of action spectrum shape and wavelength range. Photochem Photobiol 78:456–461

    PubMed  CAS  Google Scholar 

  • Morales LO, Tegelberg R, Brosché M, Keinánen M, Lindfor A, Aphalo PJ (2010) Effects of solar UV-A and UV-B radiation on gene expression and phenolic accumulation in Betula pendula leaves. Tree Physiol 30:923–934

    PubMed  CAS  Google Scholar 

  • Mpoloka SW, Abratt VA, Mundree SG, Thomson JA, Musil CF (2007) Potential effects of prolonged ultraviolet radiation exposure in plants: chloroplast DNA analysis. Am Eur J Agric Environ Sci 2:437–441

    Google Scholar 

  • Musil CF, Björn LO, Scourfield MWJ, Bodeker GE (2002a) How substantial are ultraviolet B supplementation inaccuracies in experimental square-wave delivery systems? Environ Exp Bot 47:25–38

    Google Scholar 

  • Musil CF, Chimphango SBM, Dakora FD (2002b) Effects of elevated ultraviolet-B radiation on native and cultivated plants of Southern Africa. Ann Bot 90:127–137

    PubMed  CAS  Google Scholar 

  • Neill SO, Gould KS (2003) Anthocyanins in leaves: light attenuators or antioxidants? Funct Plant Biol 30:865–873

    CAS  Google Scholar 

  • Newsham KK, Robinson SA (2009) Responses of plants in polar regions to UVB exposure: a meta-analysis. Glob Change Biol 15:2574–2589

    Google Scholar 

  • Oravecz A, Baumann A, Máté Z, Brzezinska A, Molinier J et al (2006) CONSTITUTIVELY PHOTOMORPHOGENIC1 is required for the UV-B response in Arabidopsis. Plant Cell 18:1975–1990

    PubMed  CAS  Google Scholar 

  • Page JE, Towers GHN (2002) Anthocyanins protect light-sensitive thiarubrine phototoxins. Planta 215:478–484

    PubMed  CAS  Google Scholar 

  • Pal M, Sharma A, Abrol YP, Sengupta UK (1997) Exclusion of UV-B radiation from normal solar spectrum on the growth of mung bean and maize. Agric Ecosyst Environ 61:29–34

    CAS  Google Scholar 

  • Pancotto VA, Sala OE, Cabello M, López NI, Robson TM et al (2003) Solar UV-B decreases decomposition in herbaceous plant litter in Tierra del Fuego, Argentina: potential role of an altered decomposer community. Glob Change Biol 9:1465–1474

    Google Scholar 

  • Phoenix GK, Gwynn-Jones D, Lee JA, Callaghan TV (2003) Ecological importance of ambient solar ultraviolet radiation to a sub-arctic heath community. Plant Ecol 165:263–273

    Google Scholar 

  • Pliura A, Baliuckiene A, Baliuckas V (2008) Phenogenetic response of silver birch populations and half-sib families to elevated ozone and ultraviolet-B radiation at juvenile age. Environ Pollut 156:152–161

    PubMed  CAS  Google Scholar 

  • Pradhan MK, Joshi PN, Nair JS, Ramaswamy NK, Iyer RK et al (2006) UV-B exposure enhances senescence of wheat leaves: modulation by photosynthetically active radiation. Radiat Environ Biophys 45:221–229

    PubMed  CAS  Google Scholar 

  • Qaderi MM, Reid DM (2005) Growth and physiological responses of canola (Brassica napus) to UV-B and CO2 under controlled environment conditions. Physiol Plant 125:247–259

    CAS  Google Scholar 

  • Ren J, Duan B, Zhang X, Korpelainen H, Li C (2010) Differences in growth and physiological traits of two poplars originating from different altitudes as affected by UV-B radiation and nutrient availability. Physiol Plant 138:278–288

    PubMed  CAS  Google Scholar 

  • Rex M, Salawitch RJ, von der Gathen P, Harris NRP, Chipperfield MP, Naujokat B (2004) Arctic ozone loss and climate change. Geophys Res Lett 31:L04116

    Google Scholar 

  • Robson TM, Pancotto VA, Flint SD, Ballaré CL, Sala OE et al (2003) Six years of solar UV-B manipulations affect growth of Sphagnum and vascular plants in a Tierra del Fuego peatland. New Phytol 160:379–389

    Google Scholar 

  • Rozema J (2000) Effects of solar UV-B radiation on terrestrial biota. In: Hester RE, Harrison RM (eds) Causes and environmental implications of increased UV-B radiation. issues in environmental science and technology, vol 14. RSC, Cambridge, pp 86–105

    Google Scholar 

  • Rozema J, van de Staaij JWM, Tosserams M (1997) Effects of UV-B radiation on plants from agro- and natural ecosystems. In: Lumsden P (ed) Plants and UV-B. Responses to environmental change. Cambridge University Press, Cambridge, pp 213–232

    Google Scholar 

  • Rozema J, Noordijk AJ, Broekman RA, van Beem A, Meijkamp BM et al (2001) (Poly)phenolic compounds in pollen and spores of Antarctic plants as indicators of solar UV-B. Plant Ecol 154:11–26

    Google Scholar 

  • Rozema J, Björn LO, Bornman JF, Gaberščik A, Häder DP et al (2002) The role of UV-B radiation in aquatic and terrestrial ecosystems–an experimental and functional analysis of the evolution of UV-absorbing compounds. J Photochem Photobiol B Biol 66:2–12

    CAS  Google Scholar 

  • Rozema J, Boelen P, Blokker P (2005) Depletion of stratospheric ozone over the Antarctic and Arctic: responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview. Environ Pollut 137:428–442

    PubMed  CAS  Google Scholar 

  • Rozema J, Boelen P, Solheim B, Zielke M, Buskens A et al (2006) Stratospheric ozone depletion: high arctic tundra plant growth on Svalbard is not affected by enhanced UV-B after 7 years of UV-B supplementation in the field. Plant Ecol 182:121–135

    Google Scholar 

  • Ryan KG, Hunt JE (2005) The effects of UVB radiation on temperate southern hemisphere forests. Environ Pollut 137:415–427

    PubMed  CAS  Google Scholar 

  • Sampson BJ, Cane JH (1999) Impact of enhanced ultraviolet-B radiation on flower, pollen, and nectar production. Am J Bot 86:108–114

    PubMed  CAS  Google Scholar 

  • Santos I, Fidalgo F, Almeida JM, Salema R (2004) Biochemical and ultrastructural changes in leaves of potato plants grown under supplementary UV B radiation. Plant Sci 167:925–935

    CAS  Google Scholar 

  • Sarma AD, Sharma R (1999) Anthocyanin–DNA copigmentation complex: mutual protection against oxidative damage. Phytochemistry 52:1313–1318

    CAS  Google Scholar 

  • Schmitz-Hoerner R, Weissenböck G (2003) Contribution of phenolic compounds to the UV-B screening capacity of developing barley primary leaves in relation to DNA damage and repair under elevated UV-B levels. Phytochemistry 64:243–245

    PubMed  CAS  Google Scholar 

  • Searles PS, Flint SD, Caldwell MM (2001) A meta-analysis of plant field studies simulating stratospheric ozone depletion. Oecologia 127:1–10

    Google Scholar 

  • Searles PS, Flint SD, Diaz SB, Rousseaux MC, Ballaré CL, Caldwell MM (2002) Plant response to solar ultraviolet-B radiation in a southern South American Sphagnum peatland. J Ecol 90:704–713

    Google Scholar 

  • Semerdjieva SI, Sheffield E, Phoenix GK, Gwynn-Jones D, Callaghan TV, Johnson GN (2003) Contrasting strategies for UV-B screening in sub-Arctic dwarf shrubs. Plant Cell Environ 26:957–964

    PubMed  Google Scholar 

  • Shinkle JR, Atkins AK, Humphrey EE, Rodgers CW, Wheeler SL, Barnes PW (2004) Growth and morphological responses to different UV wavebands in cucumber (Cucumis sativum) and other dicotyledonous seedlings. Physiol Plant 120:240–248

    PubMed  CAS  Google Scholar 

  • Shulski MD, Walter-Shea EA, Hubbard KG, Yuen GY, Horst G (2004) Penetration of photosynthetically active radiation and ultraviolet radiation into alfalfa and tall Fescue canopies. Agron J 96:1562–1571

    Google Scholar 

  • Singh SP, Kumari S, Rastogi RP, Singh KL, Sinha RP (2008) Mycosporine-like amino acids (MAAs): chemical structure, biosynthesis and significance as UV-absorbing/screening compounds. Indian J Exp Biol 46:7–17

    PubMed  CAS  Google Scholar 

  • Smith GJ, Markham KR (1998) Tautomerism of flavonol glucosides – relevance to plant UV protection and flower colour. J Photochem Photobiol A Chem 118:99–105

    CAS  Google Scholar 

  • Snell KRS, Kokubun T, Griffiths H, Convey P, Hodgson DA, Newsham KK (2009) Quantifying the metabolic cost to an Antarctic liverwort of responding to UV-B radiation exposure. Glob Change Biol 15:2563–2573

    Google Scholar 

  • Solovchenko AE, Merzlyak MN (2008) Screening of visible and UV radiation as a photoprotective mechanism in plants. Russ J Plant Physiol 55:803–822

    Google Scholar 

  • Stratmann J (2003) Ultraviolet-B radiation co-opts defense signaling pathways. Trends Plant Sci 8:526–533

    PubMed  CAS  Google Scholar 

  • Sullivan JH (2005) Possible impacts of changes in UV-B radiation on North American trees and forests. Environ Pollut 137:380–389

    PubMed  CAS  Google Scholar 

  • Surplus SL, Jordan BR, Murphy AM, Carr JP, Thomas B, A-H-Mackerness S (1998) Ultraviolet-B induced responses in Arabidopsis thaliana: role of salicylic acid and reactive oxygen species in the regulation of transcripts encoding photosynthetic and acidic pathogenesis-related proteins. Plant Cell Environ 21:685–694

    CAS  Google Scholar 

  • Taalas P, Kaurola J, Kylling A, Shindell D, Sausen R et al (2000) The impact of greenhouse gases and halogenated species on future solar UV radiation doses. Geophys Res Lett 27:1127–1130

    CAS  Google Scholar 

  • Takeuchi Y, Inoue T, Takemura K, Hada M, Takahashi S et al (2007) Induction and inhibition of cyclobutane pyrimidine dimer photolyase in etiolated cucumber (Cucumis sativus) cotyledons after ultraviolet irradiation depends on wavelength. J Plant Res 120:365–374

    PubMed  CAS  Google Scholar 

  • Tattini M, Galardi C, Pinelli P, Massai R, Remorini D, Agati G (2004) Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytol 163:547–561

    CAS  Google Scholar 

  • Tattini M, Guidi L, Morassi-Bonzi L, Pinelli P, Remorini D et al (2005) On the role of flavonoids in the integrated mechanisms of response of Ligustrum vulgare and Phillyrea latifolia to high solar radiation. New Phytol 167:457–470

    PubMed  CAS  Google Scholar 

  • Tegelberg R, Julkunen-Tiitto R, Aphalo PJ (2004) Red:far-red light ratio and UV-B radiation: their effects on leaf phenolics and growth of silver birch seedlings. Plant Cell Environ 27:1005–1013

    CAS  Google Scholar 

  • Trošt-Sedej T, Gaberščik A (2008) The effects of enhanced UV-B radiation on physiological activity and growth of Norway spruce planted outdoors over 5 years. Trees 22:423–435

    Google Scholar 

  • Turcsányi E, Vass I (2000) Inhibition of photosynthetic electron transport by UV-A radiation targets the photosystem II complex. Photochem Photobiol 72:513–520

    PubMed  Google Scholar 

  • Turunen M, Latola K (2005) UV-B radiation and acclimation in timberline plants. Environ Pollut 137:390–403

    PubMed  CAS  Google Scholar 

  • Tuteja N, Singh MB, Misra MK, Bhalla PL, Tuteja R (2001) Molecular mechanisms of DNA damage and repair: progress in plants. Crit Rev Biochem Mol Biol 36:337–397

    PubMed  CAS  Google Scholar 

  • Ulm R, Nagy F (2005) Signalling and gene regulation in response to ultraviolet light. Curr Opin Plant Biol 8:477–482

    PubMed  CAS  Google Scholar 

  • Varalakshmi D, Lakshmi N, Guruprasad KN (2003) Physiological changes in soybean Cv. JS 71–05 after the exclusion of UV-A and UV-B from the solar radiation. Indian J Plant Physiol (special issue):602–606

    Google Scholar 

  • Velders GJM, Andersen SO, Daniel JS, Fahey DW, McFarland M (2007) The importance of the Montreal Protocol in protecting climate. Proc Natl Acad Sci USA 104:4814–4819

    PubMed  CAS  Google Scholar 

  • Wang ZY, He JX (2004) Brassinosteroid signal transduction – choices of signals and receptors. Trends Plant Sci 9:91–96

    PubMed  CAS  Google Scholar 

  • Winefield C (2002) The final steps in anthocyanin formation: a story of modification and sequestration. Adv Bot Res 37:55–74

    CAS  Google Scholar 

  • Winter TR, Rostás M (2008) Ambient ultraviolet radiation induces protective responses in soybean but does not attenuate indirect defense. Environ Pollut 155:290–297

    PubMed  CAS  Google Scholar 

  • Xu K, Qiu S (2007) Responses of superhigh-yield hybrid rice Liangyoupeijiu to enhancement of ultraviolet-B radiation. Plant Sci 172:139–149

    CAS  Google Scholar 

  • Xu C, Natarajan S, Sullivan JH (2008) Impact of solar ultraviolet-B radiation on the antioxidant defense system in soybean lines differing in flavonoid contents. Environ Exp Bot 63:39–48

    CAS  Google Scholar 

  • Yamasaki H, Sakihama Y, Ikehara N (1997) Flavonoid-peroxidase reaction as a detoxification mechanism of plant cells against H2O2. Plant Physiol 115:1405–1412

    PubMed  CAS  Google Scholar 

  • Yang H, Clendenin WM, Wong D, Demple B, Slupska MM et al (2001) Enhanced activity of adenine-DNA glycosylase (Myh) by AP endonuclease (Ape1) in mammalian base excision repair of an A/GO mismatch. Nucleic Acids Res 29:743–752

    PubMed  CAS  Google Scholar 

  • Yang Y, Yao Y, He H (2008) Influence of ambient and enhanced ultraviolet-B radiation on the plant growth and physiological properties in two contrasting populations of Hippophae rhamnoides. J Plant Res 121:377–385

    PubMed  CAS  Google Scholar 

  • Yi C, Deng XW (2005) COP1 – from plant photomorphogenesis to mammalian tumorigenesis. Trends Cell Biol 15:618–625

    PubMed  CAS  Google Scholar 

  • Zavala JA, Ravetta DA (2002) The effect of solar UV-B radiation on terpenes and biomass production in Grindelia chiloensis (Asteraceae), a woody perennial of Patagonia. Argent Plant Ecol 161:185–191

    Google Scholar 

  • Zu YG, Pang HH, Yu JH, Li DW, Wei XX et al (2010) Responses in the morphology, physiology and biochemistry of Taxus chinensis var. mairei grown under supplementary UV-B radiation. J Photochem Photobiol B Biol 98:152–158

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to anonymous reviewers for their useful comments on the manuscript. We are also grateful for the financial support provided by the Consejo Nacional de Investigaciones de la Universidad Nacional de Tucumán (CIUNT, grants 26/G423 and 26/G437). FEP and MR are members of the Career of Investigator from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando E. Prado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Prado, F.E. et al. (2012). UV-B Radiation, Its Effects and Defense Mechanisms in Terrestrial Plants. In: Ahmad, P., Prasad, M. (eds) Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0815-4_3

Download citation

Publish with us

Policies and ethics