Skip to main content

Bioremediation and Mitigation of Organic Contaminants in the Era of Climate Changes

  • Chapter
  • First Online:
Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change

Abstract

In the present chapter, we addressed the possible links between climate changes and the fate, degradation, and mitigation of organic contaminants in the environment. Particular interest was devoted to techniques based on plants (phytoremediation, wetlands, and buffer strips), organic biomass residues (biobeds), as well as on bioremediation processes controlled by microorganisms. Climate change scenarios were identified, and the obtained info critically correlated on available info about the effects of climatic parameters (temperature, precipitations, soil humidity, pH, organic matter, and nutrients) on the fate, degradation, and mitigation of contaminants.

We conclude that climate change most probably has a significant effect on the fate and behavior of contaminants, and a more limited effect on bioremediation and mitigation strategies. Since fate and behavior determine the exposure of biological receptor to contaminant toxicity, it will be very important to carry out risk assessment evaluations in the context of climate change. Bioremediation and mitigation will remain as powerful tool to address the ever increasing global pollution. Attention must be devoted to adapt these tools to climatic changes, in order to maintain and, if possible, improve their efficiencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Zreig M (2001) Factors affecting sediment trapping in vegetated filter strips: simulation study using VFSMOD. Hydrolog Process 15:1477–1488

    Article  Google Scholar 

  • Alexander M (1994) Biodegradation and bioremediation. Academic Press, San Diego

    Google Scholar 

  • Atagana HI, Haynes RJ, Wallis FM (2003) Optimization of soil physical and chemical conditions for the bioremediation of creosote-contaminated soil. Biodegradation 14:297–307

    Article  PubMed  CAS  Google Scholar 

  • Atlas RM, Bartha R (1972) Degradation and mineralization of petroleum in sea water: Limitation by nitrogen and phosphorous. Biotechnol Bioeng 14:309–318

    Article  PubMed  CAS  Google Scholar 

  • Baath E, Anderson T (2003) Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol Biochem 35:955–963

    Article  CAS  Google Scholar 

  • Barling RD, Moore ID (1994) Role of buffer strips in management of waterway pollution: a review. Environ Manage 18:543–558

    Article  Google Scholar 

  • Benoit P, Barriuso E, Vidon P, Real B (1999) Isoproturon sorption and degradation in a soil from grassed buffer strip. J Environ Qual 28:121–129

    Article  CAS  Google Scholar 

  • Bloomfield JP, Williams RJ, Gooddy DC, Cape JN, Guha P (2006) Impacts of climate change on the fate and behaviour of pesticides in surface and groundwater-a UK perspective. Sci Total Environ 369:163–177

    Article  PubMed  CAS  Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Biores Technol 74:63–67

    Article  CAS  Google Scholar 

  • Borin M, Vianello M, Morari F, Zanin G (2005) Effectiveness of buffer strips in removing pollutants in runoff from a cultivated field in North-East Italy. Agr Ecosyst Environ 105:101–114

    Article  CAS  Google Scholar 

  • Borin M, Passoni M, Thiene M, Tempesta T (2010) Multiple functions of buffer strips in farming areas. Eur J Agron 32:103–111

    Article  Google Scholar 

  • Brentner L, Mukherji S, Merchie K, Yoon J, Schnoor J, Aken B (2008) Expression of glutathione S-transferases in poplar trees (Populus trichocarpa) exposed to 2, 4, 6-trinitrotoluene (TNT). Chemosphere 73:657–662

    Article  PubMed  CAS  Google Scholar 

  • Brix H (1994) Functions of macrophytes in constructed wetlands. Water Sci Technol 29:71–74

    CAS  Google Scholar 

  • Calderbank A (1989) The occurrence and significance of bound pesticide residues in soil. Environ Contam Toxicol 108:71–103

    Article  CAS  Google Scholar 

  • Castillo MdP, Torstensson L (2007) Effect of biobed composition, moisture, and temperature on the degradation of pesticides. J Agric Food Chem 55:5725–5733

    Article  CAS  Google Scholar 

  • Castillo MdP, Torstensson L, Stenström J (2008) Biobeds for Environmental Protection from Pesticide Use A Review. J Agric Food Chem 56:6206–6219

    Article  CAS  Google Scholar 

  • Chai LK, Wong MH, Mohd-Tahir N, Hansen HC (2010) Degradation and mineralization kinetics of acephate in humid tropic soils of Malaysia. Chemosphere 79:434–440

    Article  PubMed  CAS  Google Scholar 

  • Chen CC, McCarl BA (2001) An investigation of the relationship between pesticide usage and climate change. Climatic Change 50:475–487

    Article  Google Scholar 

  • Cook L, Inouye R, McGonigle T (2009) Evaluation of four grasses for use in phytoremediation of Cs-contaminated arid land soil. Plant Soil 324:169–184

    Article  CAS  Google Scholar 

  • Coppola L, Castillo MdP, Monaci E, Vischetti C (2007) Adaptation of the biobed composition for chlorpyrifos degradation to Southern Europe conditions. J Agric Food Chem 55:396–401

    Article  PubMed  CAS  Google Scholar 

  • Coppola L, Castillo MDP, Vischetti C (2011) Degradation of isoproturon and bentazon in peat- and compost-based biomixtures. Pest Manag Sci 67:107–113

    Article  PubMed  CAS  Google Scholar 

  • Cunningham SD, Berti WR (1993) Phytoremediation of contaminated soils: Progress and promise. ACS Press, Denver, CO, USA, pp 265–268

    Google Scholar 

  • Dalla Valle M, Codato E, Marcomini A (2007) Climate change influence on POPs distribution and fate: A case study. Chemosphere 67:1287–1295

    Article  PubMed  CAS  Google Scholar 

  • Davis JW, Madsen S (1996) Factors affecting the biodegradation of toluene in soil. Chemosphere 33:107–130

    Article  PubMed  CAS  Google Scholar 

  • Delgado AN, Periago EL, Diaz-Fierros Viqueira F (1995) Vegetated filter strips for wastewater purification: a review. Biores Technol 5:113–122

    Google Scholar 

  • deLorenzo ME, Wallace SC, Danese LE, Baird TD (2009) Temperature and salinity effects on the toxicity of common pesticides to the grass shrimp, Palaemonetes pugio. J. Environ. Sci. Health - Part B Pesticides, Food Contamin. Agric Wastes 44:455–460

    CAS  Google Scholar 

  • El-Refaie G (2010) Temperature impact on operation and performance of Lake Manzala Engineered Wetland, Egypt. Ain Shams Eng J. doi:10.1016/j.asej.2010.09.001

  • Evans N, Baierl A, Semenov MA, Gladders P, Fitt BD (2008) Range and severity of a plant disease increased by global warming. J R Soc Interface 5:525–531

    Article  PubMed  Google Scholar 

  • Fait G, Nicelli M, Fragoulis G, Trevisan M, Capri E (2007) Reduction of point contamination sources of pesticide from a vineyard farm. Environ Sci Technol 41:3302–3308

    Article  PubMed  CAS  Google Scholar 

  • Fang C, Smith P, Moncrieff JB, Smith JU (2005) Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature 433:57–59

    Article  PubMed  CAS  Google Scholar 

  • Fogg P, Boxall A, Walker A, Jukes A (2003) Pesticide degradation in a ‘biobed’ composting substrate. Pest Manag Sci 59:527–537

    Article  PubMed  CAS  Google Scholar 

  • Fogg P, Boxall A, Walker A, Jukes A (2004) Degradation and leaching potential of pesticides in biobed systems. Pest Manag Sci 60:645–654

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Valcarcel AI, Tadeo JL (1999) Influence of soil moisture on sorption and degradation of hexazinone and simazine in soil. J Agric Food Chem 47:3895–3900

    Article  PubMed  CAS  Google Scholar 

  • Gavrilescu M (2005) Fate of Pesticides in the Environment and its Bioremediation. Eng Life Sci 5:497–526

    Article  CAS  Google Scholar 

  • Graham DW, Smith VH, Cleland DL, Law KP (1999) Effect of nitrogen and phosphorus supply on hexadecane biodegradation in soil system. Water Air Soil Pollut 111:1–18

    Article  CAS  Google Scholar 

  • Gregoire C, Elsaesser D, Huguenot D, Lange J, Lebeau T, Merli A, Mose R, Passeport E, Payraudeau S, Schuetz T, Schulz R, Tapia-Padilla G, Tournebize J, Trevisan M, Wanko A (2009) Mitigation of agricultural nonpoint-source pesticide pollution in artificial wetland ecosystems. Environ Chem Lett 7:205–231

    Article  CAS  Google Scholar 

  • Gustafson DI (1989) Groundwater ubiquity score: a simple method for assessing pesticide leach ability. Environ Toxicol Chem 8:339–357

    Article  CAS  Google Scholar 

  • Hefting MM, de Klein JJM (1998) Nitrogen removal in buffer strips along a lowland stream in the Netherlands: a pilot study. Environ Pollut 102:521–526

    Article  CAS  Google Scholar 

  • Hoff RZ (1993) Bioremediation: an overview of its development and use for oil spill cleanup. Mar Pollut Bull 29:476–481

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis summary for policymakers. Contribution of working group I to the Fourth assessment report of the IPCC.

    Google Scholar 

  • Jury WA, Winer AM, Spencer WF, Focht DD (1987) Transport and transformations of organic chemicals in the soil–air–water ecosystem. Rev Environ Contam Toxicol 99:119–164

    Article  CAS  Google Scholar 

  • Kearney P, Wauchope R (1998) Disposal options based on properties of pesticides in soils and water. In: Kearney P, Roberts T (eds) Pesticide remediation in soil and water. Wiley Series in Agrochemicals and Plant Protection, Chichester, pp 35–57

    Google Scholar 

  • Kravvariti K, Tsiropoulos NG, Karpouzas DG (2010) Degradation and adsorption of terbuthylazine and chlorpyrifos in biobed biomixtures fromcomposted cotton crop residues. Pest Manag Sci 66:1122–1128

    Article  PubMed  CAS  Google Scholar 

  • Kurtz DA, American Chemical Society. Meeting (1990) Long range transport of pesticides. Lewis Publishers, Chelsea, Mich

    Google Scholar 

  • Lamon L, Dalla Valle M, Critto A, Marcomini A (2009) Introducing an integrated climate change perspective in POPs modelling, monitoring and regulation. Environ Pollut 157:1971–1980

    Article  PubMed  CAS  Google Scholar 

  • Larson SJ, Capel PD, Goolsby DA, Zaugg SD, Sandstrom MW (1995) Relations between pesticide use and riverine flux in the Mississippi River basin. Chemosphere 31:3305–3321

    Article  CAS  Google Scholar 

  • Ledwith T (1996) Effects of buffer strip width on air temperature and relative humidity in a stream riparian zone. Humboldt State University, Arcata, CA

    Google Scholar 

  • Leonard RA (1990) Movement of pesticides into surface waters. In the soil Environment, Madison, WI

    Google Scholar 

  • Lu Y, Murase J, Watanabe A, Sugimoto A, Kimura M (2004) Linking microbial community dynamics to rhizosphere carbon flow in a wetland rice soil. FEMS Microbiol Ecol 48:179–186

    Article  PubMed  CAS  Google Scholar 

  • Magee K, Michael A, Ullah H, Dutta S (2008) Dechlorination of PCB in the presence of plant nitrate reductase. Environ Toxicol Pharmacol 25:144–147

    Article  PubMed  CAS  Google Scholar 

  • Marilley L, Hartwig UA, Aragno M (1999) Influence of an elevated atmospheric CO2 content on soil and rhizosphere bacterial communities beneath Lolium perenne and Trifolium repens under field conditions. Microb Ecol 38:39–49

    Article  PubMed  CAS  Google Scholar 

  • Marín S, Sanchis V, Ramos AJ, Magan N (1998) Effect of water activity on hydrolytic enzyme production by Fusarium moniliforme and Fusarium proliferatum during colonisation of maize. Int J Food Microbiol 42:185–194

    Article  PubMed  Google Scholar 

  • Meagher R (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162

    Article  PubMed  CAS  Google Scholar 

  • Mendez M, Maier R (2008) Phytoremediation of mine tailings in temperate and arid environments. Rev Environ Sci Biotechnol 7:47–59

    Article  CAS  Google Scholar 

  • Misra AK, Baker JL, Mickelson SK, Shang H (1996) Contributing area and concentration effects on herbicide removal by vegetative buffer strips. Trans ASAE 39:2105–2111

    CAS  Google Scholar 

  • Monaci E, Coppola L, Casucci C, Perucci P, Vischetti C (2009) Retention capacity of an organic bio-mixture against different mixtures of fungicides used in vineyards. J Environ Sci Health B 44:724–729

    Article  PubMed  CAS  Google Scholar 

  • Moreno D, Pedrocchi C, Comin F, Garcia M, Cabezas A (2007) Creating wetlands for the improvement of water quality and landscape restoration in semi-arid zones degraded by intensive agricultural use. Ecol Eng 30:103–111

    Article  Google Scholar 

  • Morgan P, Watkinson RJ (1989) Hydrocarbon degradation in soil and methods for soil biotreatment. Biotechnology 8:305–333

    CAS  Google Scholar 

  • Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grubler A, Jung T, Kram T (2000) Special report on emissions scenarios: a special report of Working Group III of the Intergovernmental Panel on Climate Change. Pacific Northwest National Laboratory, Richland, WA (US), Environmental Molecular Sciences Laboratory (US)

    Google Scholar 

  • Noyes PD, McElwee MK, Miller HD, Clark BW, Van Tiem LA, Walcott KC, Erwin KN, Levin ED (2009) The toxicology of climate change: environmental contaminants in a warming world. Environ Int 35:971–986

    Article  PubMed  CAS  Google Scholar 

  • Paterson S, MacKay D, Tam D, Shiu WY (1990) Uptake of organic chemical by plant: a review of processes, correlation and model. Chemosphere 21:279–331

    Article  Google Scholar 

  • Patty L, Real B, Gril JJ (1997) The use of grassed buffer strips to remove pesticides, nitrate and soluble phosphorus compounds from runoff water. Pestic Sci 49:243–251

    Article  CAS  Google Scholar 

  • Perfumo A, Banat IM, Marchant R, Vezzulli L (2007) Thermally enhanced approaches for bioremediation of hydrocarbon-contaminated soils. Chemosphere 66:179–184

    Article  PubMed  CAS  Google Scholar 

  • Pigeon O, De Vleeschouwer C, Cors F, Weickmans B, De Ryckel B, Pussemier L, Debongnie P, Culot M (2005) Development of biofilters to treat the pesticides wastes from spraying applications. Commun Agric Appl Biol Sci 70:1003

    PubMed  CAS  Google Scholar 

  • Puglisi E, Cappa F, Fragoulis G, Trevisan M, Del Re AAM (2007a) Bioavailability and degradation of phenanthrene in compost amended soils. Chemosphere 67:548–556

    Article  PubMed  CAS  Google Scholar 

  • Puglisi E, Murk AJ, van den Berg HJ, Grotenhuis T (2007b) Extraction and bioanalysis of the ecotoxicologically relevant fraction of contaminants in sediments. Environ Toxicol Chem 26:2122–2128

    Article  PubMed  CAS  Google Scholar 

  • Qui Y, Pang H, Zhou Z, Zhang P, Feng Y, Sheng GD (2009) Competitive Biodegradation of dichlobenil and atrazine coexisting in soil amended with a char and citrate. Environ Pollut 157:2964–2969

    Article  CAS  Google Scholar 

  • Raper SC, Braithwaite RJ (2006) Low sea level rise projections from mountain glaciers and icecaps under global warming. Nature 439:311–313

    Article  PubMed  CAS  Google Scholar 

  • Reilly J, Tubiello F, McCarl B, Abler D, Darwin R, Fuglie K, Hollinger S, Izaurralde C, Jagtap S, Jones J (2003) US agriculture and climate change: new results. Climatic Change 57:43–67

    Article  Google Scholar 

  • Rogers HH, Runion GB, Krupa SV (1994) Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere. Environ Pollut 83:155–189

    Article  PubMed  CAS  Google Scholar 

  • Salmon C, Crabos J, Sambuco J, Bessiere J, Basseres A, Caumette P, Baccou J (1998) Artificial wetland performances in the purification efficiency of hydrocarbon wastewater. Water Air Soil Pollut 104:313–329

    Article  CAS  Google Scholar 

  • Salt DE, Blaylock M, Kumar NP, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    Article  PubMed  CAS  Google Scholar 

  • Samuel T, Pillai MKK (1989) The effect of temperature and solar radiation on volatilisation, mineralisation and degradation of [14C]-DDT in soil. Environ Pollut 57:63–77

    Article  PubMed  CAS  Google Scholar 

  • Schmitt TJ, Dosskey MG, Hoagland KD (1999) Filter strip performance and processes for different vegetation, widths, and contaminants. J Environ Qual 28:1479–1489

    Article  CAS  Google Scholar 

  • Schoefs O, Perrier M, Samson R (2004) Estimation of contaminant depletion in unsaturated soils using a reduced-order biodegradation model and carbon dioxide measurement. Appl Microbiol Biotechnol 64:53–61

    Article  PubMed  CAS  Google Scholar 

  • Semple KT, Reid BJ, Fermor TR (2001) Impact of composting strategies on the treatment of soils contaminated with organic pollutants. Environ Pollut 112:269–283

    Article  PubMed  CAS  Google Scholar 

  • Shaw LJ, Burns RG (2005) Rhizodeposition and the enhanced mineralization of 2,4-dichlorophenoxyacetic acid in soil from the Trifolium pratense rhizosphere. Environ Microbiol 7:191–202

    Article  PubMed  CAS  Google Scholar 

  • Sims GK, Radosevich M, He XT, Traina SJ (1991) The effects of sorption on the bioavailability of pesticides. In: Betts WB (ed) Bio-degradation: Natural and synthetic materials. Springer, London

    Google Scholar 

  • Singh BK, Walker A, Morgan JA, Wright DJ (2003) Effects of soil pH on the biodegradation of chlorpyrifos and isolation of a chlorpyrifos-degrading bacterium. Appl Environ Microbiol 69:5198–5206

    Article  PubMed  CAS  Google Scholar 

  • Smart DR, Ritchie K, Stark JM, Bugbee B (1997) Evidence that elevated CO2 levels can indirectly increase rhizosphere denitrifier activity. Appl Environ Microbiol 63:4621–4624

    PubMed  CAS  Google Scholar 

  • Spliid N, Helweg A, Heinrichson K (2006) Leaching and degradation of 21 pesticides in a full-scale model biobed. Chemosphere 65:2223–2232

    Article  PubMed  CAS  Google Scholar 

  • Steffensen WS, Alexander M (1995) Role of competition for inorganic nutrients in the biodegradation of mixtures of substrates. Appl Environ Microbiol 61:2859–2862

    PubMed  CAS  Google Scholar 

  • Stenrød M, Perceval J, Benoit P, Almvik M, Bolli RI, Eklo OM, Sveistrup TE, Kværner J (2008) Cold climatic conditions: Effects on bioavailability and leaching of the mobile pesticide metribuzin in a silt loam soil in Norway. Cold Regions Sci Technol 53:4–15

    Article  Google Scholar 

  • Stottmeister U, Wießner A, Kuschk P, Kappelmeyer U, Kastner M, Bederski O, Muller RA, Moormann H (2003) Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol Adv 22:93–117

    Article  PubMed  CAS  Google Scholar 

  • Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: An ecological solution to organic chemical contamination. Ecol Eng 18:647–658

    Article  Google Scholar 

  • Tanner CC (2001) Plants as ecosystems engineers in subsurface-flow treatment wetlands. Water Sci Technol 44:9–17

    PubMed  CAS  Google Scholar 

  • Taylor AW, Spencer WF (1990) Volatilization and vapor transport processes. In: Cheng HH (ed) Pesticides in the environment, SSSA book series no. 2. Soil Science Society of America, Madison, WI, pp 213–270

    Google Scholar 

  • Taylor CR, Hook PB, Stein OR, Zabinski CA (2010) Seasonal effects of 19 plant species on COD removal in subsurface treatment wetland microcosms. Ecol Eng. doi:10.1016/j.ecoleng.2010.05.007

  • Thuiller W, Lavorel S, Araujo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102:8245–8250

    Article  PubMed  CAS  Google Scholar 

  • Torstensson L (2000) Experiences of biobeds in practical use in Sweden. Pestic Outlook 11:206–212

    Article  Google Scholar 

  • Torstensson L, Castillo MdP (1997) Use of biobeds in Sweden to minimize environmental spillages from agricultural spraying equipment. Pestic Outlook 8(June):24–27

    CAS  Google Scholar 

  • Trevisan M, Montepiani C, Ragozza L, Bartoletti C, Ioannilli E, Del Re AAM (1993) Pesticides in rainfall and air in Italy. Environ Pollut 80:31–39

    Article  PubMed  CAS  Google Scholar 

  • Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett 8:1–17

    Article  CAS  Google Scholar 

  • Vianello M, Vischetti C, Scarponi L, Zanin G (2005) Herbicide losses in runoff events from a field with a low slope: role of a vegetative filter strip. Chemosphere 61:717–725

    Article  PubMed  CAS  Google Scholar 

  • Vischetti C (2008) Agrofarmaci conoscenze per un uso sostenibile. In: Gennari M, Trevisan M (eds) Agrofarmaci-conoscenze per un uso sostenibile. Oasi Alberto Perdisa, Bologna

    Google Scholar 

  • Vischetti C, Perucci P, Scarponi L (1997) Rimsulfuron in soil: Effect of persistence on growth and activity of microbial biomass at varying environmental conditions. Biogeochemistry 39:165–176

    Article  CAS  Google Scholar 

  • Vischetti C, Capri E, Trevisan M, Casucci C, Perucci P (2004) Biomassbed: a biological system to reduce pesticide point contamination at farm level. Chemosphere 55:823–828

    Article  PubMed  CAS  Google Scholar 

  • Vischetti C, Coppola L, Monaci E, Cardinali A, Castillo MdP (2007) Microbial impact of the pesticide chlorpyrifos on Swedish and Italian biobeds. Agron Sustain Dev 27:267–272

    Article  CAS  Google Scholar 

  • Walker A, Eagle DJ (1983) Prediction of herbicide residues in soil for advisory purposes. Asp Appl Biol 4:503–509

    Google Scholar 

  • Walworth J, Braddock J, Woolard C (2001) Nutrient and temperature interactions in bioremediation of cryic soils. Cold Regions Sci Technol 32:85–91

    Article  Google Scholar 

  • Weaver M, Zablotowicz R, Locke M (2004) Laboratory assessment of atrazine and fluometuron degradation in soils from a constructed wetland. Chemosphere 57:853–862

    Article  PubMed  CAS  Google Scholar 

  • Wilson LG (1967) Sediment removal from flood water by grass filtration. Trans ASAE 10:35–37

    Google Scholar 

  • Worthington C (1988) Worthington enzyme manual. Worthington Biochemical Corporation, Freehold, NJ, pp 254–260

    Google Scholar 

  • Zhang P, Sheng G, Feng Y, Miller D (2005) Role of wheat-residue-derived char in the biodegradation of benzonitrile in soil: nutritional stimulation versus adsorptive inhibition. Environ Sci Technol 39:5442–5448

    Article  PubMed  CAS  Google Scholar 

  • Zhu K, Chen H, and Nan Z (2010) Phytoremediation of Loess Soil Contaminated by Organic Compounds. In Application of Phytotechnologies for Cleanup of Industrial, Agricultural, and Wastewater Contamina-tion. Ed. PA Kulakpw, and VV Pidlisnyuk. pp 159–176. Springer

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edoardo Puglisi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Coppola, L., Puglisi, E., Vischetti, C., Trevisan, M. (2012). Bioremediation and Mitigation of Organic Contaminants in the Era of Climate Changes. In: Ahmad, P., Prasad, M. (eds) Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0815-4_22

Download citation

Publish with us

Policies and ethics