Skip to main content

Plant Tolerance and Fatty Acid Profile in Responses to Heavy Metals

  • Chapter
  • First Online:
Abiotic Stress Responses in Plants

Abstract

Heavy metals are more widespread around the world and dangerous for biosphere because they cannot be degraded or destroyed rather tend to be bioaccumulated. Plants can survive even in the extreme environmental conditions, but some environmental factors can affect its various growth aspects and hence the plant productivity. The problem of heavy metal toxicity is further aggravated by the persistence of the metals in the environment. Toxic heavy metals entering the plant tissues inhibit most physiological processes at all levels of metabolism. The extent of inhibition of photosynthesis, ion water uptake, and nitrate assimilation is greatly dependent on the concentration of the metal ions, sensitivity, and tolerance of the plant. There is, therefore, a pressing need to deal with the problem of excess metal already present in the soil and to prevent future contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adriano DC (1986) Trace elements in the terrestrial environment. Springer, New York, pp 1–533

    Google Scholar 

  • Ahmad A, Abdin MZ (1999) NADH: nitrate reductase and NAD(P)H: nitrite reductase activities in mustard seedlings. Plant Sci 143:1–8

    CAS  Google Scholar 

  • Aijen 2004 Importance of root growth parameters to Cd and Zn acquisition by non-hyperaccumulator and hyperaccumulator plants. Dissert of Hohenheim University, Verlag Grauer Beuren, Stuttgart

    Google Scholar 

  • Ali G, Srivastava PS, Iqbal M (1998) Effect of cadmium and copper on growth of Bacopa monniera regenerants. Biol Plant 41:635–639

    CAS  Google Scholar 

  • Alia K, Saradhi PP (1991) Proline accumulation under heavy metal stress. J Plant Physiol 138:554–558

    CAS  Google Scholar 

  • Allakhverdiev SI, Nishiyama Y, Suzuki I, Tasaka Y, Murata N (1999) Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of synechacystis to salt stress. Proc Natl Acad Sci USA 96:5862–5867

    PubMed  CAS  Google Scholar 

  • Al-Najar H, Schulz R, Roemheld V (2003) Plant availability of thallium in the rhizosphere of hyperaccumulator plants a key factor for assessment of phytoextraction. Plant Soil 249:97–105

    CAS  Google Scholar 

  • Anderson TA (1997) Development of a phytoremediation handbook: consideration for enhancing microbial degradation in the rhizosphere. Environmental Science and Engineering Fellow, Claudia Sturges, 202–326.

    Google Scholar 

  • Andrade JL, Larque SA, Trejo CL (1995) Proline accumulation in leaves of four cultivars of Phaseolus ­vulgaris L. with different drought resistance. Phyton Beunas Aires 57:149–155

    CAS  Google Scholar 

  • Anonymous (2001) CERCLA priority list of hazardous substances. ATSDR HazDat Data base information centre: US Department of Health and Human Services

    Google Scholar 

  • Aspinall D, Paleg LD (1981) Proline accumulation: physiological aspects. In: Paleg LD, Aspinall D (eds) Physiology and biochemistry of drought resistance in plants. Academic, Sydney, pp 215–228

    Google Scholar 

  • Aydinalp C, Marinova S (2003) Distribution and forms of heavy metals in some agricultural soils. Pol J Environ Stud 12(5):629–633

    CAS  Google Scholar 

  • Bala R, Setia RC (1990) Some aspects of cadmium and lead toxicity in plants. In: Malik CP, Setia RC, Singh P (eds) Advances in frontier areas of plant. Narendra Publishing House, Delhi, India, pp 167–180

    Google Scholar 

  • Barber SA (1984) Soil nutrient bioavailability: a mechanistic approach. Oxford Claradon Press, Wiley, New York

    Google Scholar 

  • Barber SA, Lee RB (1974) The effect of micro-organisms on the absorption of manganese by plants. New Phytol 73:97–106

    CAS  Google Scholar 

  • Barcelo J, Vazquez MD, Poschensieder C (1988) Structural and ultrastructural disorders in Cd-treated bush bean plants (Phaseolus vulgaris L.). New Phytol 108:37–49

    CAS  Google Scholar 

  • Baszynski T, Wajda L, Krol M, Wolinska D, Krupa Z, Tukendorf A (1980) Photosynthetic activities of cadmium treated tomato plants. Physiol Plant 48:365–370

    CAS  Google Scholar 

  • Bazzaz FA, Rolfe GL, Carlson RW (1974) Effect of Cd on photosynthesis and transpiration of excised leaves of corn and sunflower. Physiol Plant 32:373–376

    CAS  Google Scholar 

  • Bhardwaj R, Mascarenhas C (1989) Cadmium-induced inhibition of photosynthesis in vivo during development of chloroplasts in Triticum aestivum L. Plant Physiol Biochem 16:40–48

    Google Scholar 

  • Bharti N, Singh RP (1993) Growth and nitrate reduction by Seasum indicum c.v. PB-1 respond differentially to lead. Phytochemistry 33:531–534

    CAS  Google Scholar 

  • Bhattacharyya M, Choudhuri MA (1995) Heavy metal (Pb2+ and Cd2+) stress-induced damage in Vigna seedlings and possible involvement of phytochelatin like substances in mitigation of heavy metal stress. Indian J Exp Biol 33:236–238

    CAS  Google Scholar 

  • Blake RC, Choate DM, Bardhan S, Revis N, Barton LL, Zocco TG (1993) Chemical transformation of toxic metals by a Pseudomonas strain from a toxic waste site. Environ Toxic Chem 12:1365–1376

    CAS  Google Scholar 

  • Bowen HJM (1979) Environmental chemistry of the elements. Academic, New York

    Google Scholar 

  • Bradeen DA, Winget GD, Gould JM, Ort DR (1973) Site-specific inhibition of photophosphorylation in isolated spinach chloroplasts by mercuric chloride. Plant Physiol 52:680–682

    PubMed  CAS  Google Scholar 

  • Brooks RR (1998) Plants that hyperaccumulate heavy metals (Their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining). CAB International, Wallingford

    Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL (2000) Biochemistry and molecular biology of plants. Am Soc Plant Physiol, Rockville, MD 1367

    Google Scholar 

  • Burdin KS, Polyakova EE (1987) Metallothioneins, their structure and functions. Usp Sovern Biol 103:390–400

    Google Scholar 

  • Cakmak I (2002) Plant nutrition research: priorities to meet human needs for food in sustainable ways. Plant Soil 247:3–24

    CAS  Google Scholar 

  • Cedeno-Maldonado A, Swader JA, Heath RL (1972) The cupric ion an inhibitor of photosynthetic electron transport in isolated chloroplasts. Plant Physiol 50:698–701

    PubMed  CAS  Google Scholar 

  • Chaney RL (1988) Metal speciation and interactions among elements affecting trace-element transfer in agricultural and environmental food chains. In: Kramer JR, Allen HE (eds) Metal speciation: theory, analysis and applications. Lewis Publishers Inc, Chelsa, MI, pp 218–260

    Google Scholar 

  • Chaney RL, Li YM, Angel JS, Baker AJM, Reeves RD, Brown SL, Homer FA, Malik M, Chin M (1999) Improving metal hyperaccumulators wild plants to develop commercial phytoextraction systems: approaches and progress. In: Terry Nand Banuelos GS (ed) Phytoremediation of contaminated soil and water. CRC Press, Boca Raton, FL, pp 129–158

    Google Scholar 

  • Chugh LK, Gupta VK, Sawhney SK (1992) Effect of cadmium on enzymes of nitrogen metabolism in pea seedlings. Phytochemistry 31:395–400

    CAS  Google Scholar 

  • Clijsters H, Van Assche F (1985) Inhibition of photosynthesis by heavy metals. Photosynth Res 7:31–40

    CAS  Google Scholar 

  • Cocking D, Rohrer M, Thomas R, Walker TJ, Ward D (1995) Effect of root morphology and Hg concentration in the soil on uptake by terrestrial vascular plants. Water Air Soil Pollut 80:1113–1116

    CAS  Google Scholar 

  • Cooke DT, Burden RS (1990) Lipid modulation of plasma membrane bound ATPase. Physiol Plant 78:153–159

    CAS  Google Scholar 

  • Cordovilla MP, Ligero F, Lluch C (1996) Growth and nitrogen assimilation in nodules in response to nitrate levels in Vicia faba under salt stress. J Exp Bot 47:203–210

    CAS  Google Scholar 

  • Costa G, Spitz E (1997) Infleunce of cadmium on soluble carbohydrates, free amino-acids, protein content of in vitro cultured Lupinus albus. Plant Sci 128: 131–140

    CAS  Google Scholar 

  • Crowley DE, Wang YC, Reid CP, Szansiszlo PJ (1991) Mechanism of iron acquisition from siderophores by micro-organisms and plants. Plant Soil 130:179–198

    CAS  Google Scholar 

  • Dabas S, Singh RP (1995) Differential effect of lead on nitrate reductase activity and organic nitcrogen content in mung bean (var. P-105) seedlings. Indian J Plant Physiol 38:155–157

    CAS  Google Scholar 

  • Datta AK, Misra M, North SL, Kasprzak KS (1992) Enhancement by nickel(II) and L-histidine of 2′-deoxyguanosine oxidation with hydrogen peroxide. Carcinogenesis 13:283–287

    CAS  Google Scholar 

  • Datta AK, Shi X, Kasprzak KS (1993) Effect of carnosine, homocarnosine anserine on hydroxylation of the guanine moiety in 2′-deoxyguanosine, DNA and nucleohistone and hydrogen peroxide in the presence of nickel(II). Carcinogenesis 14:417–422

    PubMed  CAS  Google Scholar 

  • Davies BE (1980) Trace element pollution. In: Davies BE (ed) Applied oil trace elements. Wiley, New York, pp 287–351

    Google Scholar 

  • Davies MS (1991) Effects of toxic concentration of metals on root growth and development. In: Alkinson D (ed) Plant root growth. Blackwell, London UK, pp 211–227

    Google Scholar 

  • De Filippis LF, Pallaghy CK (1976) The effect of sub-lethal concentrations of mercury and zinc on Chlorella. In: Growth characteristics and uptake of metals. Z. Pflanzenphysiol. Bd. 78:197–207

    Google Scholar 

  • De Vos CHR, Schat H, De Waal MAM, Voojis R, Ernst WHO (1991) Increased resistance to copper-induced damage of the root cell plasmalemma in copper-tolerant Silene cucubalus. Physiol Plant 82:523–528

    Google Scholar 

  • De Vos CHR, Ten Bookum W, Vooijis R, Schat H, De Kok LJ (1993) Effect of copper on fatty acid composition and peroxidation of lipids in the roots of copper-tolerant and sensitive Silene cucubalus. Plant Physiol Biochem 31:151–158

    Google Scholar 

  • De Vos CHR, Vonk MJ, Vooijis R, Schat H (1992) Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiol 98:853–858

    PubMed  Google Scholar 

  • Di Cagno R, Guidi L, Stefani A, Soldatini GF (1999) Effect of cadmium on growth of Helianthus annus seedlings: Physiological aspects. New Phytol 144: 65–71

    Google Scholar 

  • Elenkov I, Stefanv K, Dimitrova-Konaklieve S, Popov S (1996) Effect of salinity on lipid composition of Cladophora vagabunda. Phytochemistry 42:39–44

    CAS  Google Scholar 

  • Elstner EF, Osswald W (1994) Mechanisms of oxygen activation during plant stress. Proc Roy Soc Edinb 102:131–154

    Google Scholar 

  • Erdmann B, Hoffmann P, Wiedenroth EM (1986) Changes in root system of wheat seedlings following root anaerobiosis. Ann Bot 58:597–605

    Google Scholar 

  • Ernst WHO (1998) Effects of heavy metals in plants at the cellular and organismic level. In: Schuurmann G, Markert B (eds) Ecotoxicolology. Wiley, Specktrum Akademischer Veriog, New York, pp 587–620

    Google Scholar 

  • Ernst WHO (2005) Evolution of metal tolerance and the implication on processes from the cellular to the whole plant level. In: Abstract of workshop on metal fluxes and stresses in terrestrial ecosystems. Swiss Federal Institute for Forest, Snow and Landscape Research WSL. Birmensdorf, 31–32

    Google Scholar 

  • Ernst WHO, Verkeij JAC, Schat H (1992) Metal tolerance in plants. Acta Bot Neerl 41(3):229–248

    CAS  Google Scholar 

  • Ferner DJ (2001) Toxicity, heavy metals. eMed J 2:1

    Google Scholar 

  • Ferrara R, Maserti BE, Paterno P (1989) Mercury distribution in marine sediment and its correlation with the Posidonia oceanica Prairie in a coastal area by a Chlor-alkali complex. Toxicol Environ Chem 22: 131–134

    CAS  Google Scholar 

  • Ferrara R, Mazzolai B, Lanzillotta E (2000) Temporal trends in gaseous mercury evasion from Mediterranean seawaters. Sci Total Environ 259:183–190

    PubMed  CAS  Google Scholar 

  • Fodor E, Szabo-Nagy A, Erdei L (1995) The effect of cadmium on the fluidity and H+ ATPase activity of plasma membrane from sunflower and wheat roots. J Plant Physiol 147:87–92

    CAS  Google Scholar 

  • Foyer CH, Harbinson J (1994) Oxygen metabolism and the regulation of photosynthetic electron transport. In: Foyer CH, Mullineaux PM (eds) Causes of Photooxidative stress and amelioration of defense systems in plants. CRC, London, pp 2–42

    Google Scholar 

  • Galvan A, Cardenas J, Fernandez E (1992) Nitrate reductase regulates expression of nitrite uptake and nitrite reductase activities in Chlamydomonas reinhardtii. Plant Physiol 98:422–426

    PubMed  CAS  Google Scholar 

  • Gil J, Morel R, Gomez I, Novarro-Pedrerio J, Matrix J (1995) Effect of cadmium on physiological and nutritional aspects in tomato plant. II. Soluble and rubisco proteins and nutrient evolution. Fresenius Environ Bull 4:436–440

    CAS  Google Scholar 

  • Grancharov I, Popova S (2003) Heavy metals pollution around the metallurgy plants in some regions in Bulgaria. In: Proceedings of the workshop “Bulgarian Priorities in Chemical Risk Assessment and Management”, held on 12 September 2003 Sofia, 38–47

    Google Scholar 

  • Greenfield SS (1942) Inhibitory effects of inorganic compounds on photosynthesis in Chorella. Am J Bot 29:121–131

    CAS  Google Scholar 

  • Greger M, Ogren E (1991) Direct and indirect effects of cadmium on photosynthesis in sugarbeet (Beta vulgaris) Physiol. Plant 83:129–135

    CAS  Google Scholar 

  • Griffin M, Antikainen M, Hon WC, Pihakaski-Maunsbach K, Yu XM, Chun JU, Yang DSC (1997) Antifreeze proteins in winter rye. Plant Physiol 100:327–332

    Google Scholar 

  • Guo T, Zhang G, Zhou M, Wu F, Chen J (2004) Effects of aluminium and cadmium toxicity on growth and antioxidant activities of two barley genotypes with different Al resistance. Plant Soil 258:241–248

    CAS  Google Scholar 

  • Gwozdz EA, Kopyra M (2003) Plant cell responses to heavy metals-biotechnological aspects. Biotechnologia 62:107–123

    Google Scholar 

  • Hall DO, Rao KK (1999) Photosynthesis 6th Ed. Cambridge University Press, UK

    Google Scholar 

  • Heeraman DA, Claassen VP, Zasoki RJ (2001) Interaction of lime, organic matter and fertilizer on growth and uptake of arsenic and mercury by Zorrofescue (Vulpia myuros L.). Plant Soil 234:215–231

    CAS  Google Scholar 

  • Hemalatha S, Anburaj A, Francis K (1997) Effect of heavy metals on certain biochemical constituents and nitrate reductase activity in Oryza sativa L. seedlings. J Environ Biol 18:313–319

    CAS  Google Scholar 

  • Hirt H, Casari G, Barta A (1989) Cadmium enhanced gene expression in suspension culture cells of tobacco. Planta 179:414–420

    CAS  Google Scholar 

  • Hock B, Elstner E (2005) Preface. In: Hock B, Elstner E (eds) Plant toxicology, 4th edn. Marcel Dekker, New York

    Google Scholar 

  • Horvath G, Droppa M, Oraveez A, Raskin VI, Marder JB (1996) Formation of the photosynthetic apparatus during greening and cadmium poisoning barley leaves. Planta 199:238–243

    CAS  Google Scholar 

  • Howlett NG, Avery SV (1997) Relationship between cadmium sensitivity and degree of plasma membrane fatty acid unsaturation in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 48:539–546

    PubMed  CAS  Google Scholar 

  • International Occupational Safety and Health Information Centre (1999) Basics of chemical safety. International Labour Organization, Geneva

    Google Scholar 

  • Ivanov VB, Bistrova EI, Seregin IV (2003) Comparison of influence of heavy metals on root growth in connection with problems of specificity and selectivity of their action. Plant Physiol 50:445–454 (in Russian)

    Google Scholar 

  • Jafri S, Srivastava K, Ahmad KJ (1979) Environmental pollution and epidermal structure in Syzygium cumini L. Skeel Indian J Air pollut Control 2:74–77

    Google Scholar 

  • Jager HG, Meyer HR (1977) Effect of water stress on growth and proline oxidation by water stress. Plant Physiol 59:930–932

    Google Scholar 

  • Jemal F, Zarrouk M, Ghorbal MH (2000) Effects of Cd on lipid composition of pepper. Biochem Soc Trans 28:907–912

    PubMed  CAS  Google Scholar 

  • Kaiser WM, Weiner H, Huber SC (1999) Nitrate reductase in higher plants: a case study for transduction of environmental stimuli into control of catalytic activity. Physiol Plant 105:385–390

    CAS  Google Scholar 

  • Kaschl A, Romheld V, Chen Y (2002) The influence of soluble organic matter from municipal solid waste compost on trace metal leaching in calcareous soils. Sci Total Environ 291:45–57

    PubMed  CAS  Google Scholar 

  • Keating MH, Mahaffey KR, Schoney R, Rice GE, Bullock OR, Ambrose RB, Swartout J, Nichols JW (1997) Mercury Study Report to congress. Washington DC, 3(1):6–7

    Google Scholar 

  • Kelly-John J, Haggblom Max M, Tate-Robert L (2003) Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter as indicated by analysis of microbial community phospholipids fatty acid profiles. Biol Fertil Soils 38:65–71

    Google Scholar 

  • Keltjens WG, Van Beusichem ML (1998) Phytochelatins as biomarkers for heavy metal stress in maize (Zea mays L.) and wheat (Triticum aestivum L.): combined effects of copper and cadmium. Plant Soil 203: 119–126

    CAS  Google Scholar 

  • Keswick BH (1984) Sources of ground water pollution. In: Bitton G, Gerba CP (eds) Ground water pollution Microbiology. John Wiley, New York, USA, pp 39–69

    Google Scholar 

  • Kevreson S, Ksristic B, Popovic M, Kovacev L, Pajevic S, Kandrac J, Malenic D (1998) Biochemical changes in sugar beet lines as dependence on soil moisture. Biol Plant 40:245–250

    Google Scholar 

  • Khan MG (1996) Nitrate and nitrite reductase activities in soybean plants raised with saline water. Indian J Plant Physiol 1:128–129

    CAS  Google Scholar 

  • Kobayashi T, Nakagawa Y, Mitsugi H, Watanabi H (1986) Estimation of atmosphere pollution by mercury by means of epiphyte lichens. Tayki osen gakkaysi, J Jap Soc Air Pollut 2:151–155 (in Japanese)

    Google Scholar 

  • Kramer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638

    CAS  Google Scholar 

  • Kramer U, Grime GW, Smith JAC, Hawes CR, Baker AJM (1997) Micro-PIXE as a technique for studying nickel localization in leaves of the hyperaccumulator plant Alyssum lesbiacum. Nucl Instrum Methods Phys Res B 130:346–350

    Google Scholar 

  • Krupa Z, Baszynski T (1989) Acyl lipid composition of thylakoid membranes of cadmium treated tomato plants. Acta Physiol Plant 11:111–116

    CAS  Google Scholar 

  • Krupa Z, Skorzynska F, Maksymiec W, Baszynski T (1987) Effect of Cd2+ treatment on the photosynthetic apparatus and its photochemical activities in greening radish seedlings. Photosynthetica 21:156–164

    CAS  Google Scholar 

  • Kulakov P, Zeeb K, Teritze I, Atanasov A, Vassilev R, Donkova, 2009. Textbook on phytoremediation of contaminated soils and sites. Academic Press, Agricultural University – Plovdiv. 104 (In Bulgarian)

    Google Scholar 

  • Lasat MM (2000) Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. J Hazard Subs Res 2:5–25

    Google Scholar 

  • Lata S (1989a) Effects of cadmium on seedling growth, mobilization of food reserves and activity of hydrolytic enzymes in Phaseolus aureus cv. T-44 seeds. Acta Bot Indica 17:290–293

    Google Scholar 

  • Lata S (1989b) Phasic pretreatment effect cadmium on seedling growth and activity of certain hydrolytic enzymes of Phaseolus aureus cv. T-44 seeds. Acta Bot Indica 17:222–224

    Google Scholar 

  • Lavrinenko OV, Lavrinenko IA (1999) Heavy metal accumulation by lichens from Peltigora genus. Mater. of Intern. Conf. “Plant Physiology – Sci. of III millenium”, Moscow, Russia

    Google Scholar 

  • Leuning R, Kelliher FM, De-Pury DGG, Schulze ED (1995) Leaf nitrogen, photosynthesis, conductance and transpiration: scaling from leaves to canopies. Plant Cell Environ 18:1183–1200

    Google Scholar 

  • Lichtenberger O, Neumann D (1997) Analytical electron microscopy as a powerful tool in plant cell biology: Examples using electron energy loss spectroscopy and X-ray microanalysis. Eur J Cell Biol 73:378–386

    PubMed  CAS  Google Scholar 

  • Lichtenthaler HK (1996) An introduction to the stress concept in plants. J Plant Physiol 148:4–14

    CAS  Google Scholar 

  • Long SP, Farage PK, Garcia RL (1996) Measurement of leaf and canopy photosynthetic CO2 exchange in field. J Exp Bot 47:1629–1642

    CAS  Google Scholar 

  • Lozano-Rodriguez E, Hernandez LE, Bonay P, Carpena-Ruiz RO (1997) Distribution of cadmium in root tissues of maize and pea plants: physiological disturbances. J Exp Bot 48:123–128

    CAS  Google Scholar 

  • Lue-Kim H, Rauser WE (1986) Partial characterization of cadmium binding proteins from roots of tomato. Plant Physiol 81:896–900

    PubMed  CAS  Google Scholar 

  • Lutts S, Majerus V, Kinet JM (1999) NaCl effects on proline metabolism in rice (Oryza sativa) seedlings. Physiol Plant 105:450–458

    CAS  Google Scholar 

  • Macnair MR, Tilstone GH, Smith SE (2000) The genetics of metal tolerance and accumulation in higher plants. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soils and water. CRC Press LLC, Boca Raton, pp 235–250

    Google Scholar 

  • Macnicol RD, Beckett PHT (1985) Critical tissue concentrations of potentially toxic elements. Plant Soil 85: 107–129

    CAS  Google Scholar 

  • Mantovi P, Bonassi G, Maestri E, Marmirolli N (2003) Accumulation of copper and zinc from liquid manure in agricultural soils and crop plants. Plant Soil 250: 249–257

    CAS  Google Scholar 

  • Marschner H (1983) Heavy metals. In: Lauchli A, Bieleski RL (eds) Inorganic plant nutrition encyclopedia of plant physiol, vol 15A. Springer, Berlin, pp 39–49

    Google Scholar 

  • Marschner H (1986) Mineral nutrition of higher plants. Academic, London, 254

    Google Scholar 

  • Martínez-Martínez S, Faz Á, Acosta JA, Carmona DM, Zornoza R, BüYükkiliç A, Kabas S (2010) Heavy metals distribution in soil particle size fractions from a mining area in the southeast of Spain. In: 19th World Congress of Soil Science, Soil Solutions for a Changing World 1–6 August 2010, Brisbane, Australia. Published on DVD

    Google Scholar 

  • Masarovicova E, Cicak A, Stefancik I (1999) Plant response to air pollution and heavy metal stresses. In: Pessarakli M (ed) Handbook of plant and crop Stresses, 2nd edn. Marcel Dekker, Basel, AG, pp 569–599

    Google Scholar 

  • Meagher RB, Rugh CL, Kandasamy MK, Gragson G, Wang NJ (2000) Engineered phytoremediation of mercury pollution in soil and water using bacterial genes. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. Lewis, Boca Raton, FL, p 201

    Google Scholar 

  • Mehindirata S, Ali ST, Siddiqi MTO, Iqbal M (1999) Cadmium-induced changes in foliar responses of Solanum melongena L. Phytomorphology 49:295–302

    Google Scholar 

  • Mengel K, Kirkby EA (2001) Principles of plant nutrition, 5th edn. Kluwer Academic, Dordrecht, The Netherlands, 849

    Google Scholar 

  • Menzer RE, Nelson JO (1986) Water and soil pollutants. In: Kaassen CD, Andur MO, Doull J (eds) The basic science of poisons. Lasarett and Doull’s toxicology. Macmillan, NY, USA, pp 825–856

    Google Scholar 

  • Mills HA, Scoggins HL (1998) Nutritional levels for anthurium: young versus mature leaves. J Plant Nutr 21:199–203

    CAS  Google Scholar 

  • Misra M, Olinski R, Dizdaroglu M, Kasprzak KS (1993) Enhancement by l-histidine of nickel(II)-induced DNA-protein cross-linking and oxidative DNA base damage in the rat kidney. Chem Res Toxicol 6:33–37

    PubMed  CAS  Google Scholar 

  • Mitchell RL (1964) Trace elements in soils. In: Bear FE (ed) Chemistry of the soil. Reinhold, New York, pp 320–368

    Google Scholar 

  • Moniri HM (2005) Influence of pollutants on vegetation in Southwest Iran resulting from the burning oil wells of Kuwait in 1991. In: Siddiqi TO, Ahmad A (eds.) Book of a satellite Session of ICPEP-3 on “Herbal Drugs and Environmental Pollution”. Absr. Depart. Of Botany, Faculty of Sci, Jamia Hamdard Univ, New Delhi, pp 73–74

    Google Scholar 

  • Moreno FN, Anderson CWN, Stewart RB, Robinson BH (2004) Phytoremediation of mercury contaminated mine tailing by induced plant-mercury accumulation. Environ Pract 6:165–175

    Google Scholar 

  • Nagoor S (1999) Physiological and biochemical responses of heavy metals to graded levels of heavy metal. II. Effect on protein metabolism in maize seedlings. Adv Plant Sci 12:424–433

    Google Scholar 

  • Naidu R, Oliver D, Mc Cornell S (2003) Heavy metal phytotoxicity in soils. In: Langley A, Gilbey M, Kennedy B (eds) Proceedings of the 5th National Workshop on the Assessment of site contamination. NEPC Service Corp, Adelaide, pp 235–241

    Google Scholar 

  • Neumann D, Nieden U, Lichtenberger O, Leopold I (1995) How does Armeria maritama tolerate high heavy metal concentrations? J Plant Physiol 146:704–717

    CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol 49:249–279

    CAS  Google Scholar 

  • Nozaki JO (1986) Determination of the concentration of protein by dry wt: a comparison with spectrophotometric methods. Arch Biochem Biophys 249:437–446

    PubMed  CAS  Google Scholar 

  • Nwokolo E, Smartt J (1996) Food and feed from legumes and oil seeds. Chapman and Hall, New York, USA

    Google Scholar 

  • Nye PH, Tinker TB (1977) Solute movement in the soil-root system. University of California Press, Berkeley, CA, 342

    Google Scholar 

  • Oleksyn J, Innes JL (2000) Air pollution and forests in heavily industrialized regions: An introduction. In: Innes JL, Oleksyn J (eds) Forest dynamics in heavily polluted regions, 1st edn. CABI Publishing, Oxon, pp 1–7

    Google Scholar 

  • Ouarti O, Bussama N, Zarrouk M, Cherif A, Ghorbal MH (1997) Cadmium and copper induced changes in tomato membrane lipids. Phytochemistry 45:1343–1350

    Google Scholar 

  • Pachepsky LB, Acock B, Hoffman-Benning S, Willmitzer L, Fisahn J (1997) Estimation of the anatomical, stomatal and biochemical components of differences in photosynthesis and transpiration of wild type and transgenic (expressing yeast-derived invertase targeted to the vacuole) tobacco leaves. Plant Cell Environ 20: 1070–1078

    Google Scholar 

  • Pahlsson AMB (1989) Toxicity of heavy metals (Zn, Cu, Cd and Pb) to vascular plants. Water Air Soil Pollut 47:287–319

    Google Scholar 

  • Park CH, Keyhan M, Matin A (1999) Purification and characterization of chromate reductase in Pseudomanas putida. Abs Gen Meet Am Soc Microbiol 99:536

    Google Scholar 

  • Patel-Davendra K, Kumar R, Prasad S (2004) Variation in the chemical constituents of soybean due to industrial pollution. J Serb Chem Soc 69:635–640

    Google Scholar 

  • Pleines S, Marquard R, Friedt W (1987) Recurrent selection for modified polyenoic fatty acid composition in rapeseed (Brassica napus L.) 7th Rapesees Congress Poznan (Poland) 140–145

    Google Scholar 

  • Poschenrieder C, Gunse B, Barcelo J (1989) Influence of cadmium on water relations, stomatal resistance and abscisic acid content in expanding bean leaves. Plant Physiol 90:1365–1371

    PubMed  CAS  Google Scholar 

  • Prasad MNV (1995) Cd Toxicity and tolerance in vascular plants. Environ Exp Bot 35:525–545

    CAS  Google Scholar 

  • Pandey P, Tripathi AK (2011) Effect of heavy metals on morphological and biochemical characteristics of Albizia procera (Roxb.) Benth. seedlings. Int J Environ Sci 5(1):1009–1018

    Google Scholar 

  • Puckett KJ (1976) The effect of heavy metals on some aspects of lichen physiology. Can J Bot 54: 2695–2703

    CAS  Google Scholar 

  • Punz WF, Sieghardt H (1992) The response of roots of herbaceous plant species to heavy metals. Environ Exp Bot 33:85–98

    Google Scholar 

  • Purves D (1985) Trace element contamination of the environment. Elsevier, Amsterdam

    Google Scholar 

  • Ralph PJ, Burchertt MD (1998) Photosynthetic response of Halophila ovalis to heavy metal stress. Environ Pollut 103:91–101

    CAS  Google Scholar 

  • Rath P, Panigrahi AK, Misra BN (1986) Effects of both inorganic and organic Mercury on the ATPase activity of Westiellopsis prolifica Janet. Environ Pollut (Series A) 42:143–149

    CAS  Google Scholar 

  • Rose AW, Hawkes FE, Webb JS (1979) Geochemistry in mineral exploration. Academic, London, England

    Google Scholar 

  • Ross SM (1994) Toxic metals in soil-plant systems. Wiley, Chichester

    Google Scholar 

  • Saljnikov E, Mrvic V, Cakmak D, Nikoloski M, Perovic V, Kostic L, Brebanovic B (2009) Spatial distribution of selected heavy metals and soil fertility status in South eastern Serbia. Geophys Res Abs 11:1376

    Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA, Vratcheslav D, Ensley BD (1995a) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    PubMed  CAS  Google Scholar 

  • Salt DE, Prince RC, Baker AJM, Raskin I, Pickering IJ (1999) Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy. Environ Sci Tech 33: 713–717

    CAS  Google Scholar 

  • Salt DE, Prince RC, Pickering IJ, Raskin I (1995b) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109:1427–1433

    PubMed  CAS  Google Scholar 

  • Sanita di-Toppi L, Gabbrielli R (1999) Response to ­cadmium in higher plants. Environ Exp Bot 41: 105–130

    Google Scholar 

  • Schickler H, Caspi H (1999) Response of antioxidant enzymes to nickel and cadmium stress in hyperaccumulator plants of the genus Alyssum. Physiol Plant 105:39–44

    CAS  Google Scholar 

  • Schulze E, Beck E, Muller-Hohenstein K (2005) Plant Ecol. Springer, Berlin, Heidelberg, 702

    Google Scholar 

  • Selvaraj K, Hemalatha C, Gandhi SJ (1995) Differential nitrate reductase activity in NO -3 grown cluster bean (Cyamopsis tetragonoloba L.) and green gram (Vigna radiate L.): inhibitory effects of ammonia, amino acids and urea. Indian J Exp Biol 33:456–458

    CAS  Google Scholar 

  • Seregin IV, Ivanov VB (2001) Physiological aspects of cadmium and lead toxic action on higher plants. Plant Physiol 48:606–630 (in Russian)

    Google Scholar 

  • Seregin IV, Kojevnikova AD (2006) Physiological role of nickel and its toxic action on higher plants. Plant Physiol 53:285–308 (in Russian)

    Google Scholar 

  • Seregin IV, Kojevnikova AD, Kozyumina EM, Ivanov VB (2003) Toxic action and distribution of nickel in maize roots. Plant Physiol 50:793–800 (in Russian)

    Google Scholar 

  • Serrano R (1989) Structure and function of plasma membrane ATPase. Ann Rev Plant Physiol Plant Mol Biol 40:60–94

    Google Scholar 

  • Setia RC, Bala R (1994) Anatomical changes in root and stem of wheat (Triticum aestivum L.) in response to different heavy metals. Phytomorphology 44:95–104

    Google Scholar 

  • Setia RC, Setia N, Malik CP (1987) The pod wall structure and function in relation to seed development in some legumes. Phyton 27:205–220

    CAS  Google Scholar 

  • Shacklette HT, Boerngen JG (1984) Element concentrations in soils and other surface materials of the contiguous United States. USGS professional paper 1270. U.S. Government Printing Office, Washington, DC

    Google Scholar 

  • Shah K, Dubey RS (1997) Effect of cadmium on protein, aminoacids and protease, amino peptidase and carboxypeptidases in rice seedlings. Plant Physiol Biochem 24:89–95

    Google Scholar 

  • Somashekaraiah SV, Padmaja K, Prasad ARK (1992) Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): involvement of lipid peroxidation in chlorophyll degradation. Physiol Plant 85:85–89

    CAS  Google Scholar 

  • Srivasankar S, Oaks A (1996) Nitrate assimilation in higher plants: the effect of metabolites and light. Plant Physiol Biochem 34:609–620

    Google Scholar 

  • Sterritt RM, Lester JN (1980) Interaction of heavy metals with bacteria. Sci Total Environ 14:5–17

    PubMed  CAS  Google Scholar 

  • Terashima I, Evans JR (1988) Effects of light and nitrogen nutrition on the organization of the photosynthetic apparatus in spinach. Plant Cell Physiol 29:143–155

    CAS  Google Scholar 

  • Tremolieres A, Dubacq JP, Drapier D (1982) Unsaturated fatty acids in maturing seeds of sunflower and rape: regulation by temperature and light intensity. Phytochemistry 21:41–45

    CAS  Google Scholar 

  • Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13: 195–206

    Google Scholar 

  • Van Steveninck RFM, Van Steveninck ME, Wells AJ, Fernando DR (1990) Zinc tolerance and the binding of zinc as zinc phytate in Lemna minor. X-ray microanalytical evidence. J Plant Physiol 137:140–146

    Google Scholar 

  • Vassilev A, Berova M, Stoeva N, Zlatev Z (2005) Phytotechnologies for sustainable use management of metal contaminated soils: short review. Manage Sustain Dev 3(4):90–96 (In Bulgarian)

    Google Scholar 

  • Vassilev A, Nikolova A (2010) Mechanisms of plant metal tolerance. Ecology and Future Vol IX 2:3–13 (In Bulgarian)

    Google Scholar 

  • Vazquez MD, Poschenrieder CH, Barcelo J, Baker AJM, Hatton P, Cope GH (1994) Compartmentation of zinc in roots and leaves of the zinc hyperaccumulator Thlaspi carulescens. Bot Acta 107:243–250

    CAS  Google Scholar 

  • Verkleij JAC, Schat H (1990) Mechanism of metal tolerance in higher plants. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC, Boca Raton¸FL, pp 179–193

    Google Scholar 

  • Vinogradov AP (1959) The geochemistry of rare and dispersed chemical elements in soils. Consultants Bureau. Inc., New York, NY

    Google Scholar 

  • Vogeli-Lange R, Wagner GJ (1990) Subcellular localization of cadmium and cadmium binding peptides in tobacco leaves. Plant Physiol 92:1086–1093

    Google Scholar 

  • Vyas J, Puranik RM (1993) Inhibition of nitrate reductase activity by mercury in bean leaf segments. Indian J Plant Physiol 1:57–60

    Google Scholar 

  • Wood JM (1989) Transport, bioaccumulation and toxicity of elements in microorganisms under environmental stress. In: Proceedings International Conference on Heavy Metals in the Environment. Geneva CEP Consultants Ltd. Edinburgh 1:1–12

    Google Scholar 

  • Wood JM, Wang HK (1983) Microbial resistance to heavy metals. Environ Sci Tech 17:582–590

    Google Scholar 

  • Woolhouse HW (1974) Cell ageing and cell death. In: Davies I, Sigee DC (eds) Cambridge University Press, London 123–153

    Google Scholar 

  • Woolhouse HW (1983) Toxicity and tolerance in the response of plants to metals. In: Lange OL, Nobel PS, Osmond CB, Zeigler H (eds) Physiological plant ecology III, vol 12. Springer, New york, pp 245–300

    Google Scholar 

  • Wu JT, Chand SJ, Chou TL (1995) Intracellular proline accumulation in some algae exposed to copper and cadmium. Bot Bull Acad Sin 36:89–93

    CAS  Google Scholar 

  • Wyttenbach A, Tobler L, Bajo S (1989) Na, Cl and Br in needles of Norway spruce and in the aerosol adhering to the needles. Toxicol Environ Chem 18:249–256

    Google Scholar 

  • Yadav VK, Yadav N (1995) Influence of cadmium on germination, seedling growth and biochemical traits of wheat. Plant Physiol Biochem 22:74–77

    Google Scholar 

  • Yancey PH, Clarke ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of complete system. Science 217:1214–1222

    PubMed  CAS  Google Scholar 

  • Young AJ, Britton G (1990) Carotenoids and antioxidative stress. Curr Res Photosynth 4:587–590

    CAS  Google Scholar 

  • Zayed AM, Gowthaman S, Terry N (1998) Phytoac­cumulation of trace elements by wetland plants: I. Duckweed. J Environ Qual 27:715–721

    CAS  Google Scholar 

  • Zel J, Sehara M, Svetek J, Nemee M (1993a) Influence of Al on the membrane mycorrhizal fungi. Water Air Soil Pollut 71:101–109

    CAS  Google Scholar 

  • Zel J, Svetek J, Crne H, Sahara M (1993b) Influence of Al on the membrane fluidity of mycorhizal fungus Anamita muscaria. Physiol Plant 89:172–176

    CAS  Google Scholar 

  • Zhang H, Jiang Y, He Z, Ma M (2005) Cadmium accumulation and oxidative burst in garlic (Allium sativum). J Plant Physiol 162:977–984

    PubMed  CAS  Google Scholar 

  • Zhu YL, Pilon-Smits EAH, Jouanin L, Terry N (1999) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing γ –glutamylcysteine synthase. Plant Physiol 121:1169–1177

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asiya Hameed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hameed, A., Qadri, T.N., Mahmooduzzafar, Siddiqi, T.O. (2012). Plant Tolerance and Fatty Acid Profile in Responses to Heavy Metals. In: Ahmad, P., Prasad, M. (eds) Abiotic Stress Responses in Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0634-1_20

Download citation

Publish with us

Policies and ethics