Skip to main content

Drugs for Long Acting Injections and Implants

  • Chapter
  • First Online:
Long Acting Injections and Implants

Part of the book series: Advances in Delivery Science and Technology ((ADST))

Abstract

Long acting injections and implants have been developed for controlled drug delivery to improve therapeutic effects, decrease dosing frequency, and also avoid potential drug toxicity. Many pharmaceutical agents, such as biomacromolecules (e.g. peptides, proteins and gene therapeutics), drugs with poor bioavailability, and drugs for local delivery are good candidates for developing long acting injections and implants. However, not all drugs are suitable for these formulations (for example, drugs with high dose or narrow therapeutic index).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Semalty A, Semalty M, Singh R, Saraf S, Saraf S (2007) Properties and formulation of oral drug delivery systems of protein and peptides. Ind J Pharm Sci 69:741–747

    Article  CAS  Google Scholar 

  2. Constantinides PP, Chaubal MV, Shorr R (2008) Advances in lipid nanodispersions for parenteral drug delivery and targeting. Adv Drug Deliv Rev 60:757–767

    Article  PubMed  CAS  Google Scholar 

  3. Dash AK, Cudworth GC 2nd (1998) Therapeutic applications of implantable drug delivery systems. J Pharmacol Toxicol Methods 40:1–12

    Article  PubMed  CAS  Google Scholar 

  4. Medlicott NJ, Waldron NA, Foster TP (2004) Sustained release veterinary parenteral products. Adv Drug Deliv Rev 56:1345–1365

    Article  PubMed  CAS  Google Scholar 

  5. Torchilin VP, Lukyanov AN (2003) Peptide and protein drug delivery to and into tumors: challenges and solutions. Drug Discov Today 8:259–266

    Article  PubMed  CAS  Google Scholar 

  6. Antosova Z, Mackova M, Kral V, Macek T (2009) Therapeutic application of peptides and proteins: parenteral forever? Trends Biotechnol 27:628–635

    Article  PubMed  CAS  Google Scholar 

  7. Humphrey MJ, Ringrose PS (1986) Peptides and related drugs: a review of their absorption, metabolism, and excretion. Drug Metab Rev 17:283–310

    Article  PubMed  CAS  Google Scholar 

  8. Singh R, Singh S, Lillard JW Jr (2008) Past, present, and future technologies for oral delivery of therapeutic proteins. J Pharm Sci 97:2497–2523

    Article  PubMed  CAS  Google Scholar 

  9. Malik DK, Baboota S, Ahuja A, Hasan S, Ali J (2007) Recent advances in protein and peptide drug delivery systems. Curr Drug Deliv 4:141–151

    Article  PubMed  CAS  Google Scholar 

  10. Morishita M, Peppas NA (2006) Is the oral route possible for peptide and protein drug delivery? Drug Discov Today 11:905–910

    Article  PubMed  CAS  Google Scholar 

  11. Chitkara D, Shikanov A, Kumar N, Domb AJ (2006) Biodegradable injectable in situ depot-forming drug delivery systems. Macromol Biosci 6:977–990

    Article  PubMed  CAS  Google Scholar 

  12. Pawar R, Ben-Ari A, Domb AJ (2004) Protein and peptide parenteral controlled delivery. Expert Opin Biol Ther 4:1203–1212

    Article  PubMed  CAS  Google Scholar 

  13. Senior J, Radomsky M (2000) Sustained-release injectable products. Interpharm Press, Denver, Co, pp 71–108

    Book  Google Scholar 

  14. Wu P, Grainger DW (2006) Drug/device combinations for local drug therapies and infection prophylaxis. Biomaterials 27:2450–2467

    Article  PubMed  CAS  Google Scholar 

  15. Degim IT, Celebi N (2007) Controlled delivery of peptides and proteins. Curr Pharm Des 13:99–117

    Article  PubMed  CAS  Google Scholar 

  16. Frokjaer S, Otzen DE (2005) Protein drug stability: a formulation challenge. Nat Rev Drug Discov 4:298–306

    Article  PubMed  CAS  Google Scholar 

  17. Li S, Schoneich C, Borchardt RT (1995) Chemical instability of protein pharmaceuticals: mechanisms of oxidation and strategies for stabilization. Biotechnol Bioeng 48:490–500

    Article  PubMed  CAS  Google Scholar 

  18. Wang W (1999) Instability, stabilization, and formulation of liquid protein pharmaceuticals. Int J Pharm 185:129–188

    Article  PubMed  CAS  Google Scholar 

  19. Choi S, Kim SW (2003) Controlled release of insulin from injectable biodegradable triblock copolymer depot in ZDF rats. Pharm Res 20:2008–2010

    Article  PubMed  CAS  Google Scholar 

  20. Jay SM, Saltzman WM (2009) Controlled delivery of VEGF via modulation of alginate microparticle ionic crosslinking. J Control Release 134:26–34

    Article  PubMed  CAS  Google Scholar 

  21. Cleland JL, Duenas ET, Park A, Daugherty A, Kahn J, Kowalski J, Cuthbertson A (2001) Development of poly-(d, l-lactide–coglycolide) microsphere formulations containing recombinant human vascular endothelial growth factor to promote local angiogenesis. J Control Release 72:13–24

    Article  PubMed  CAS  Google Scholar 

  22. Patil SD, Papadmitrakopoulos F, Burgess DJ (2007) Concurrent delivery of dexamethasone and VEGF for localized inflammation control and angiogenesis. J Control Release 117:68–79

    Article  PubMed  CAS  Google Scholar 

  23. Wang B, Siahaan T, Soltero R (2005) Drug delivery – principles and applications. Wiley, New Jersey, p 448

    Book  Google Scholar 

  24. Jang JH, Houchin TL, Shea LD (2004) Gene delivery from polymer scaffolds for tissue engineering. Expert Rev Med Devices 1:127–138

    Article  PubMed  CAS  Google Scholar 

  25. Johnson-Saliba M, Jans DA (2001) Gene therapy: optimising DNA delivery to the nucleus. Curr Drug Targets 2:371–399

    Article  PubMed  CAS  Google Scholar 

  26. Kawakami S, Higuchi Y, Hashida M (2008) Nonviral approaches for targeted delivery of plasmid DNA and oligonucleotide. J Pharm Sci 97:726–745

    Article  PubMed  CAS  Google Scholar 

  27. Wang J, Zhang PC, Mao HQ, Leong KW (2002) Enhanced gene expression in mouse muscle by sustained release of plasmid DNA using PPE-EA as a carrier. Gene Ther 9:1254–1261

    Article  PubMed  CAS  Google Scholar 

  28. Yun YH, Goetz DJ, Yellen P, Chen W (2004) Hyaluronan microspheres for sustained gene delivery and site-specific targeting. Biomaterials 25:147–157

    Article  PubMed  CAS  Google Scholar 

  29. Cohen H, Levy RJ, Gao J, Fishbein I, Kousaev V, Sosnowski S, Slomkowski S, Golomb G (2000) Sustained delivery and expression of DNA encapsulated in polymeric nanoparticles. Gene Ther 7:1896–1905

    Article  PubMed  CAS  Google Scholar 

  30. Dang JM, Leong KW (2006) Natural polymers for gene delivery and tissue engineering. Adv Drug Deliv Rev 58:487–499

    Article  PubMed  CAS  Google Scholar 

  31. Scherer F, Schillinger U, Putz U, Stemberger A, Plank C (2002) Nonviral vector loaded collagen sponges for sustained gene delivery in vitro and in vivo. J Gene Med 4:634–643

    Article  PubMed  CAS  Google Scholar 

  32. de Fougerolles A, Vornlocher HP, Maraganore J, Lieberman J (2007) Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov 6:443–453

    Article  PubMed  CAS  Google Scholar 

  33. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  PubMed  CAS  Google Scholar 

  34. Kim SS, Garg H, Joshi A, Manjunath N (2009) Strategies for targeted nonviral delivery of siRNAs in vivo. Trends Mol Med 15:491–500

    Article  PubMed  CAS  Google Scholar 

  35. Murata N, Takashima Y, Toyoshima K, Yamamoto M, Okada H (2008) Anti-tumor effects of anti-VEGF siRNA encapsulated with PLGA microspheres in mice. J Control Release 126:246–254

    Article  PubMed  CAS  Google Scholar 

  36. Singh SK, Hajeri PB (2009) siRNAs: their potential as therapeutic agents – part II. Methods of delivery. Drug Discov Today 14:859–865

    Article  PubMed  CAS  Google Scholar 

  37. Whitehead KA, Langer R, Anderson DG (2009) Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8:129–138

    Article  PubMed  CAS  Google Scholar 

  38. Tanaka T, Mangala LS, Vivas-Mejia PE, Nieves-Alicea R, Mann AP, Mora E, Han HD, Shahzad MM, Liu X, Bhavane R, Gu J, Fakhoury JR, Chiappini C, Lu C, Matsuo K, Godin B, Stone RL, Nick AM, Lopez-Berestein G, Sood AK, Ferrari M (2010) Sustained small interfering RNA delivery by mesoporous silicon particles. Cancer Res 70:3687–3696

    Article  PubMed  CAS  Google Scholar 

  39. Krebs MD, Jeon O, Alsberg E (2009) Localized and sustained delivery of silencing RNA from macroscopic biopolymer hydrogels. J Am Chem Soc 131:9204–9206

    Article  PubMed  CAS  Google Scholar 

  40. Granero GE, Ramachandran C, Amidon GL (2004) Gastrointestinal dissolution and absorption of drugs. In: Drug bioavailability: estimation of solubility, permeability, absorption and bioavailability. Wiley, Heppenheim, pp 189–214

    Google Scholar 

  41. Fahr A, Liu X (2007) Drug delivery strategies for poorly water-soluble drugs. Expert Opin Drug Deliv 4:403–416

    Article  PubMed  CAS  Google Scholar 

  42. Shi Y, Porter W, Merdan T, Li LC (2009) Recent advances in intravenous delivery of poorly water-soluble compounds. Expert Opin Drug Deliv 6:1261–1282

    Article  PubMed  CAS  Google Scholar 

  43. Saravanakumar G, Min KH, Min DS, Kim AY, Lee C-M, Cho YW, Lee SC, Kim K, Jeong SY, Park K, Park JH, Kwon IC (2009) Hydrotropic oligomer-conjugated glycol chitosan as a carrier of paclitaxel: synthesis, characterization, and in vivo biodistribution. J Control Release 140:210–217

    Article  PubMed  CAS  Google Scholar 

  44. Panchagnula R (1998) Pharmaceutical aspects of paclitaxel. Int J Pharm 172:1–15

    Article  CAS  Google Scholar 

  45. Gaucher G, Marchessault RH, Leroux J-C (2010) Polyester-based micelles and nanoparticles for the parenteral delivery of taxanes. J Control Release 143:2–12

    Article  PubMed  CAS  Google Scholar 

  46. Armstrong DK, Fleming GF, Markman M, Bailey HH (2006) A phase I trial of intraperitoneal sustained-release paclitaxel microspheres (Paclimer®) in recurrent ovarian cancer: a gynecologic oncology group study. Gynecol Oncol 103:391–396

    Article  PubMed  CAS  Google Scholar 

  47. Berrada M, Serreqi A, Dabbarh F, Owusu A, Gupta A, Lehnert S (2005) A novel non-toxic camptothecin formulation for cancer chemotherapy. Biomaterials 26:2115–2120

    Article  PubMed  CAS  Google Scholar 

  48. Lalloo A, Chao P, Hu P, Stein S, Sinko PJ (2006) Pharmacokinetic and pharmacodynamic evaluation of a novel in situ forming poly(ethylene glycol)-based hydrogel for the controlled delivery of the camptothecins. J Control Release 112:333–342

    Article  PubMed  CAS  Google Scholar 

  49. Sharma RA, Euden SA, Platton SL, Cooke DN, Shafayat A, Hewitt HR, Marczylo TH, Morgan B, Hemingway D, Plummer SM, Pirmohamed M, Gescher AJ, Steward WP (2004) Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res 10:6847–6854

    Article  PubMed  CAS  Google Scholar 

  50. Shahani K, Swaminathan SK, Freeman D, Blum A, Ma L, Panyam J (2010) Injectable sustained release microparticles of curcumin: a new concept for cancer chemoprevention. Cancer Res 70:4443–4452

    Article  PubMed  CAS  Google Scholar 

  51. Hien TT, Davis TM, Chuong LV, Ilett KF, Sinh DX, Phu NH, Agus C, Chiswell GM, White NJ, Farrar J (2004) Comparative pharmacokinetics of intramuscular artesunate and artemether in patients with severe falciparum malaria. Antimicrob Agents Chemother 48:4234–4239

    Article  PubMed  CAS  Google Scholar 

  52. de Vries PJ, Dien TK (1996) Clinical pharmacology and therapeutic potential of artemisinin and its derivatives in the treatment of malaria. Drugs 52:818–836

    Article  PubMed  Google Scholar 

  53. Joshi M, Pathak S, Sharma S, Patravale V (2008) Design and in vivo pharmacodynamic evaluation of nanostructured lipid carriers for parenteral delivery of artemether: nanoject. Int J Pharm 364:119–126

    Article  PubMed  CAS  Google Scholar 

  54. Cyna AM, McAuliffe GL, Andrew MI (2004) Hypnosis for pain relief in labour and childbirth: a systematic review. Br J Anaesth 93:505–511

    Article  PubMed  CAS  Google Scholar 

  55. Eidelman A, White T, Swarm RA (2007) Interventional therapies for cancer pain management: important adjuvants to systemic analgesics. J Natl Compr Canc Netw 5:753–760

    PubMed  Google Scholar 

  56. Holt DV, Viscusi ER, Wordell CJ (2007) Extended-duration agents for perioperative pain management. Curr Pain Headache Rep 11:33–37

    Article  PubMed  Google Scholar 

  57. Cadden KA (2007) Better pain management. Nurs Manage 38:30–35, quiz 35–36

    Article  PubMed  Google Scholar 

  58. Sendil D, Wise DL, Hasirci V (2002) Assessment of biodegradable controlled release rod systems for pain relief applications. J Biomater Sci Polym Ed 13:1–15

    Article  PubMed  CAS  Google Scholar 

  59. Sendil-Keskin D, Altunay H, Wise DL, Hasirci V (2003) In vivo pain relief effectiveness of an analgesic-anesthetic carrying biodegradable controlled release rod systems. J Biomater Sci Polym Ed 14:497–514

    Article  PubMed  CAS  Google Scholar 

  60. Carvalho B, Riley E, Cohen SE, Gambling D, Palmer C, Huffnagle HJ, Polley L, Muir H, Segal S, Lihou C, Manvelian G (2005) Single-dose, sustained-release epidural morphine in the management of postoperative pain after elective cesarean delivery: results of a multicenter randomized controlled study. Anesth Analg 100:1150–1158

    Article  PubMed  CAS  Google Scholar 

  61. Heilig M, Egli M (2006) Pharmacological treatment of alcohol dependence: target symptoms and target mechanisms. Pharmacol Ther 111:855–876

    Article  PubMed  CAS  Google Scholar 

  62. Dean RL (2005) The preclinical development of Medisorb Naltrexone, a once a month long acting injection, for the treatment of alcohol dependence. Front Biosci 10:643–655

    Article  PubMed  CAS  Google Scholar 

  63. Garbutt JC, Kranzler HR, O’Malley SS, Gastfriend DR, Pettinati HM, Silverman BL, Loewy JW, Ehrich EW (2005) Efficacy and tolerability of long acting injectable naltrexone for alcohol dependence: a randomized controlled trial. J Am Med Assoc 293:1617–1625

    Article  CAS  Google Scholar 

  64. Johnson BA, Ait-Daoud N, Aubin HJ, Van Den Brink W, Guzzetta R, Loewy J, Silverman B, Ehrich E (2004) A pilot evaluation of the safety and tolerability of repeat dose administration of long acting injectable naltrexone (Vivitrex) in patients with alcohol dependence. Alcohol Clin Exp Res 28:1356–1361

    Article  PubMed  CAS  Google Scholar 

  65. Costantini LC, Kleppner SR, McDonough J, Azar MR, Patel R (2004) Implantable technology for long-term delivery of nalmefene for treatment of alcoholism. Int J Pharm 283:35–44

    Article  PubMed  CAS  Google Scholar 

  66. Petitti DB, Sidney S, Bernstein A, Wolf S, Quesenberry C, Ziel HK (1996) Stroke in users of low-dose oral contraceptives. N Engl J Med 335:8–15

    Article  PubMed  CAS  Google Scholar 

  67. Dhanaraju MD, Rajkannan R, Selvaraj D, Jayakumar R, Vamsadhara C (2006) Biodegradation and biocompatibility of contraceptive-steroid-loaded poly (dl-lactide-co-glycolide) injectable microspheres: in vitro and in vivo study. Contraception 74:148–156

    Article  PubMed  CAS  Google Scholar 

  68. Brown A (2010) Long-term contraceptives. Best Pract Res Clin Obstet Gynaecol 24:617–631

    Article  PubMed  Google Scholar 

  69. Garza-Flores J (1994) Pharmacokinetics of once-a-month injectable contraceptives. Contraception 49:347–359

    Article  PubMed  CAS  Google Scholar 

  70. Lahteenmaki P, Jukarainen H (2000) Novel delivery systems in contraception. Br Med Bull 56:739–748

    Article  PubMed  CAS  Google Scholar 

  71. Patton ML, Bashaw MJ, del Castillo SM, Jochle W, Lamberski N, Rieches R, Bercovitch FB (2006) Long-term suppression of fertility in female giraffe using the GnRH agonist deslorelin as a long acting implant. Theriogenology 66:431–438

    Article  PubMed  CAS  Google Scholar 

  72. von Eckardstein S, Noe G, Brache V, Nieschlag E, Croxatto H, Alvarez F, Moo-Young A, Sivin I, Kumar N, Small M, Sundaram K (2003) A clinical trial of 7 alpha-methyl-19-nortestosterone implants for possible use as a long acting contraceptive for men. J Clin Endocrinol Metab 88:5232–5239

    Article  CAS  Google Scholar 

  73. Ma G, Song C, Sun H, Yang J, Leng X (2006) A biodegradable levonorgestrel-releasing implant made of PCL/F68 compound as tested in rats and dogs. Contraception 74:141–147

    Article  PubMed  CAS  Google Scholar 

  74. Buckingham B, Caswell K, Wilson DM (2007) Real-time continuous glucose monitoring. Curr Opin Endocrinol Diabetes Obes 14:288–295

    Article  PubMed  CAS  Google Scholar 

  75. Koschwanez HE, Reichert WM (2007) In vitro, in vivo and post explanation testing of glucose-detecting biosensors: current methods and recommendations. Biomaterials 28:3687–3703

    Article  PubMed  CAS  Google Scholar 

  76. Moses JW, Kipshidze N, Leon MB (2002) Perspectives of drug-eluting stents: the next revolution. Am J Cardiovasc Drugs 2:163–172

    Article  PubMed  CAS  Google Scholar 

  77. Kim MS, Ahn HH, Shin YN, Cho MH, Khang G, Lee HB (2007) An in vivo study of the host tissue response to subcutaneous implantation of PLGA- and/or porcine small intestinal submucosa-based scaffolds. Biomaterials 28:5137–5143

    Article  PubMed  CAS  Google Scholar 

  78. Onuki Y, Bhardwaj U, Papadimitrakopoulos F, Burgess DJ (2008) A review of the biocompatibility of implantable devices: current challenges to overcome foreign body response. J Diabetes Sci Technol 2:1003–1015

    PubMed  Google Scholar 

  79. Vaddiraju S, Tomazos I, Burgess DJ, Jain FC, Papadimitrakopoulos F (2010) Emerging synergy between nanotechnology and implantable biosensors: a review. Biosens Bioelectron 25:1553–1565

    Article  PubMed  CAS  Google Scholar 

  80. Anderson JM (1993) Chapter 4 Mechanisms of inflammation and infection with implanted devices. Cardiovasc Pathol 2:33–41

    Article  Google Scholar 

  81. Baldwin L, Hunt JA (2008) The in vivo cytokine release profile following implantation. Cytokine 41:217–222

    Article  PubMed  CAS  Google Scholar 

  82. Bridges AW, Garcia AJ (2008) Anti-inflammatory polymeric coatings for implantable biomaterials and devices. J Diabetes Sci Technol 2:984–994

    PubMed  Google Scholar 

  83. Morais JM, Papadimitrakopoulos F, Burgess DJ (2010) Biomaterials/tissue interactions: possible solutions to overcome foreign body response. AAPS J 12:188–196

    Article  PubMed  CAS  Google Scholar 

  84. Bhardwaj U, Papadimitrakopoulos F, Burgess DJ (2008) A review of the development of a vehicle for localized and controlled drug delivery for implantable biosensors. J Diabetes Sci Technol 2:1016–1029

    PubMed  Google Scholar 

  85. Bhardwaj U, Sura R, Papadimitrakopoulos F, Burgess DJ (2010) PLGA/PVA hydrogel composites for long-term inflammation control following s.c. implantation. Int J Pharm 384:78–86

    Article  PubMed  CAS  Google Scholar 

  86. Bhardwaj U, Sura R, Papadimitrakopoulos F, Burgess DJ (2007) Controlling acute inflammation with fast releasing dexamethasone-PLGA microsphere/pva hydrogel composites for implantable devices. J Diabetes Sci Technol 1:8–17

    PubMed  Google Scholar 

  87. Patil SD, Papadimitrakopoulos F, Burgess DJ (2004) Dexamethasone-loaded poly(lactic-co-glycolic) acid microspheres/poly(vinyl alcohol) hydrogel composite coatings for inflammation control. Diabetes Technol Ther 6:887–897

    Article  PubMed  CAS  Google Scholar 

  88. Goldberg EP, Hadba AR, Almond BA, Marotta JS (2002) Intratumoral cancer chemotherapy and immunotherapy: opportunities for nonsystemic preoperative drug delivery. J Pharm Pharmacol 54:159–180

    Article  PubMed  CAS  Google Scholar 

  89. Weinberg BD, Blanco E, Gao J (2008) Polymer implants for intratumoral drug delivery and cancer therapy. J Pharm Sci 97:1681–1702

    Article  PubMed  CAS  Google Scholar 

  90. Brem H, Lawson HC (1999) The development of new brain tumor therapy utilizing the local and sustained delivery of chemotherapeutic agents from biodegradable polymers. Cancer 86:197–199

    Article  PubMed  CAS  Google Scholar 

  91. Raza SM, Pradilla G, Legnani FG, Thai QA, Olivi A, Weingart JD, Brem H (2005) Local delivery of antineoplastic agents by controlled-release polymers for the treatment of malignant brain tumours. Expert Opin Biol Ther 5:477–494

    Article  PubMed  CAS  Google Scholar 

  92. Wang PP, Frazier J, Brem H (2002) Local drug delivery to the brain. Adv Drug Deliv Rev 54:987–1013

    Article  PubMed  CAS  Google Scholar 

  93. Gallia GL, Brem S, Brem H (2005) Local treatment of malignant brain tumors using implantable chemotherapeutic polymers. J Natl Compr Canc Netw 3:721–728

    PubMed  Google Scholar 

  94. Strasser JF, Fung LK, Eller S, Grossman SA, Saltzman WM (1995) Distribution of 1,3-bis(2-chloroethyl)-1-nitrosourea and tracers in the rabbit brain after interstitial delivery by biodegradable polymer implants. J Pharmacol Exp Ther 275:1647–1655

    PubMed  CAS  Google Scholar 

  95. Slager J, Tyler B, Shikanov A, Domb AJ, Shogen K, Sidransky D, Brem H (2009) Local controlled delivery of anti-neoplastic RNAse to the brain. Pharm Res 26:1838–1846

    Article  PubMed  CAS  Google Scholar 

  96. Elstad NL, Fowers KD (2009) OncoGel (ReGel/paclitaxel) – clinical applications for a novel paclitaxel delivery system. Adv Drug Deliv Rev 61:785–794

    Article  PubMed  CAS  Google Scholar 

  97. Vukelja SJ, Anthony SP, Arseneau JC, Berman BS, Cunningham CC, Nemunaitis JJ, Samlowski WE, Fowers KD (2007) Phase 1 study of escalating-dose OncoGel (ReGel/paclitaxel) depot injection, a controlled-release formulation of paclitaxel, for local management of superficial solid tumor lesions. Anticancer Drugs 18:283–289

    Article  PubMed  CAS  Google Scholar 

  98. Holtom PD, Patzakis MJ (2003) Newer methods of antimicrobial delivery for bone and joint infections. Instr Course Lect 52:745–749

    PubMed  Google Scholar 

  99. Jia WT, Luo SH, Zhang CQ, Wang JQ (2010) In vitro and in vivo efficacies of teicoplanin-loaded calcium sulfate for treatment of chronic methicillin-resistant Staphylococcus aureus osteomyelitis. Antimicrob Agents Chemother 54:170–176

    Article  PubMed  CAS  Google Scholar 

  100. Mader JT, Landon GC, Calhoun J (1993) Antimicrobial treatment of osteomyelitis. Clin Orthop Relat Res 295:87–95

    PubMed  Google Scholar 

  101. Koort JK, Makinen TJ, Suokas E, Veiranto M, Jalava J, Tormala P, Aro HT (2008) Sustained release of ciprofloxacin from an osteoconductive poly(dl)-lactide implant. Acta Orthop 79:295–301

    Article  PubMed  Google Scholar 

  102. Ramchandani M, Robinson D (1998) In vitro and in vivo release of ciprofloxacin from PLGA 50:50 implants. J Control Release 54:167–175

    Article  PubMed  CAS  Google Scholar 

  103. Zhang JX, Yan MQ, Li XH, Qiu LY, Li XD, Li XJ, Jin Y, Zhu KJ (2007) Local delivery of indomethacin to arthritis-bearing rats through polymeric micelles based on amphiphilic polyphosphazenes. Pharm Res 24:1944–1953

    Article  PubMed  CAS  Google Scholar 

  104. Horisawa E, Hirota T, Kawazoe S, Yamada J, Yamamoto H, Takeuchi H, Kawashima Y (2002) Prolonged anti-inflammatory action of dl-lactide/glycolide copolymer nanospheres containing betamethasone sodium phosphate for an intra-articular delivery system in antigen-induced arthritic rabbit. Pharm Res 19:403–410

    Article  PubMed  CAS  Google Scholar 

  105. Peng KT, Chen CF, Chu IM, Li YM, Hsu WH, Hsu RW, Chang PJ (2010) Treatment of osteomyelitis with teicoplanin-encapsulated biodegradable thermosensitive hydrogel nanoparticles. Biomaterials 31:5227–5236

    Article  PubMed  CAS  Google Scholar 

  106. Bai YM, Chen TT, Wu B, Hung CH, Lin WK, Hu TM, Lin CY, Chou P (2006) A comparative efficacy and safety study of long acting risperidone injection and risperidone oral tablets among hospitalized patients: 12-week randomized, single-blind study. Pharmacopsychiatry 39:135–141

    Article  PubMed  CAS  Google Scholar 

  107. Kane JM, Eerdekens M, Lindenmayer JP, Keith SJ, Lesem M, Karcher K (2003) Long acting injectable risperidone: efficacy and safety of the first long acting atypical antipsychotic. Am J Psychiatr 160:1125–1132

    Article  PubMed  Google Scholar 

  108. Niaz OS, Haddad PM (2007) Thirty-five months experience of risperidone long acting injection in a UK psychiatric service including a mirror-image analysis of in-patient care. Acta Psychiatr Scand 116:36–46

    Article  PubMed  CAS  Google Scholar 

  109. Thyssen A, Rusch S, Herben V, Quiroz J, Mannaert E (2010) Risperidone long acting injection: pharmacokinetics following administration in deltoid versus gluteal muscle in schizophrenic patients. J Clin Pharmacol 50:1011–1021

    Article  PubMed  CAS  Google Scholar 

  110. Kane JM, Detke HC, Naber D, Sethuraman G, Lin DY, Bergstrom RF, McDonnell D (2010) Olanzapine long acting injection: a 24-week, randomized, double-blind trial of maintenance treatment in patients with schizophrenia. Am J Psychiatr 167:181–189

    Article  PubMed  Google Scholar 

  111. Cleland JL (1999) Single-administration vaccines: controlled-release technology to mimic repeated immunizations. Trends Biotechnol 17:25–29

    Article  PubMed  CAS  Google Scholar 

  112. Kemp JM, Kajihara M, Nagahara S, Sano A, Brandon M, Lofthouse S (2002) Continuous antigen delivery from controlled release implants induces significant and anamnestic immune responses. Vaccine 20:1089–1098

    Article  PubMed  CAS  Google Scholar 

  113. Jiang W, Gupta RK, Deshpande MC, Schwendeman SP (2005) Biodegradable poly(lactic-co-glycolic acid) microparticles for injectable delivery of vaccine antigens. Adv Drug Deliv Rev 57:391–410

    Article  PubMed  CAS  Google Scholar 

  114. Feng L, Qi XR, Zhou XJ, Maitani Y, Cong Wang S, Jiang Y, Nagai T (2006) Pharmaceutical and immunological evaluation of a single-dose hepatitis B vaccine using PLGA microspheres. J Control Release 112:35–42

    Article  PubMed  CAS  Google Scholar 

  115. Kazzaz J, Neidleman J, Singh M, Ott G, O’Hagan DT (2000) Novel anionic microparticles are a potent adjuvant for the induction of cytotoxic T lymphocytes against recombinant p55 gag from HIV-1. J Control Release 67:347–356

    Article  PubMed  CAS  Google Scholar 

  116. Mandal B, Kempf M, Merkle HP, Walter E (2004) Immobilisation of GM-CSF onto particulate vaccine carrier systems. Int J Pharm 269:259–265

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane J. Burgess .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Controlled Release Society

About this chapter

Cite this chapter

Shen, J., Burgess, D.J. (2012). Drugs for Long Acting Injections and Implants. In: Wright, J., Burgess, D. (eds) Long Acting Injections and Implants. Advances in Delivery Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0554-2_5

Download citation

Publish with us

Policies and ethics