

J. Barry Maynard

## Geochemistry of Sedimentary Ore Deposits

With 149 Figures

Springer-Verlag New York Heidelberg Berlin J. BARRY MAYNARD Department of Geology H.N. Fisk Laboratory of Sedimentology University of Cincinnati Cincinnati, Ohio 45221 U.S.A.

Production: Richard Ruzycka

On the front cover: Pyrite-cemented breccia in shale-hosted barite deposit of Arkansas.

Library of Congress Cataloging in Publication Data
Maynard, James B.
Geochemistry of sedimentary ore deposits.
1. Ore-deposits.
2. Rocks, Sedimentary.
3. Geochemistry.
I. Title.
TN263.M39 1983 553.4 82-19462

© 1983 by Springer-Verlag New York Inc. Softcover reprint of the hardcover lst edition 1983

All rights reserved. No part of this book may be translated or reproduced in any form without written permission from Springer-Verlag, 175 Fifth Avenue, New York, New York 10010, U.S.A.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Typeset by WorldComp, Inc., New York, New York.

987654321

ISBN-13:978-1-4613-9495-2 e-ISBN-13:978-1-4613-9493-8 DOI: 10.1007/978-1-4613-9493-8 For my parents, in thanks for their support and encouragement

## Preface

This book is an outgrowth of my interest in the chemistry of sedimentary rocks. In teaching geochemistry, I realized that the best examples for many chemical processes are drawn from the study of ore deposits. Consequently, we initiated a course at The University of Cincinnati entitled "Sedimentary Ore Deposits," which serves as the final quarter course for both our sedimentary petrology and our ore deposits sequence, and this book is based on that teaching experience. Because of my orientation, the treatment given is perhaps more sedimentological than is usually found in books on ore deposits, but I hope that this proves to be an advantage. It will also be obvious that I have drawn heavily on the ideas and techniques of Robert Garrels.

A number of people have helped with the creation of this book. I am especially grateful to my students and colleagues at Cincinnati and The Memorial University of Newfoundland for suffering through preliminary versions in my courses. I particularly thank Bill Jenks, Malcolm Annis, and Dave Strong.

For help with field work I thank A. Hallam, R. Hiscott, J. Hudson, R. Kepferle, P. O'Kita, A. Robertson, C. Stone, and R. Stevens. I am also deeply indebted to Bob Stevens for many hours of insightful discussion.

Many people have read and commented on portions of the book. These comments have sharpened the presentation considerably, especially where the reviewer and I disagreed. In addition to those mentioned above, I thank S. Awramik, A. Brown, M. Coleman, K. Eriksson, W. Galloway, M. Gole, D. Holland, K. Klein, J. Leventhal, B. Price, B. Simonsen, F. van Houten, J. Veizer, A. Walton.

The text was composed using WYLBUR, a program developed at Stanford University. The University of Cincinnati computer center provided invaluable financial and technical support, and I thank the editors at Springer-Verlag and the staff at WorldComp for their patience in dealing with this form of manuscript.

Cincinnati, Ohio January 1983 J. Barry Maynard

## Contents

| Chapter | 1. | Introdu | uction |
|---------|----|---------|--------|
|---------|----|---------|--------|

| Chapter 2. Iron         | 9  |
|-------------------------|----|
| Part I. Iron-Formations | 11 |
| Mineralogy              | 11 |
| Oxides                  | 11 |
| Carbonates and sulfides | 14 |
| Silicates               | 14 |
| Metamorphism            | 15 |
| Supergene Enrichment    | 16 |
| Geochemistry            | 16 |
| Petrography             | 27 |
| Vertical Sequence       | 31 |
| Theories of Origin      | 34 |
| Part II. Ironstones     | 38 |
| Mineralogy              | 38 |
| Oxides                  | 39 |
| Carbonates              | 39 |
| Sulfides                | 39 |
| Silicates               | 40 |
| Geochemistry            | 42 |
| Pyrite-siderite         | 42 |
| Chamosite-glauconite    | 44 |
| Oxides and hyroxides    | 48 |
| Stable isotopes         | 48 |
| Petrography             | 50 |
| Vertical Sequence       | 51 |
| Theories of Origin      | 57 |

1

89

| Chapter 3. Copper and Silver | 63 |
|------------------------------|----|
| Mineralogy                   | 63 |
| Geochemistry                 | 66 |
| Supergene Enrichment         | 68 |
| Examples                     | 70 |
| White Pine, Michigan         | 70 |
| Creta, Oklahoma              | 73 |
| The Kupferschiefer           | 76 |
| Central African Copperbelt   | 80 |
| Summary                      | 87 |

## Chapter 4. Aluminum and Nickel

| Part I. Aluminum   | 89  |
|--------------------|-----|
| Mineralogy         | 92  |
| Geochemistry       | 94  |
| Petrography        | 98  |
| Vertical Sequence  | 100 |
| Theories of Origin | 103 |
| Summary            | 106 |
| Part II. Nickel    | 108 |
| Mineralogy         | 109 |
| Geochemistry       | 112 |
| Petrography        | 116 |
| Vertical Sequence  | 117 |
| Theories of Origin | 117 |
| Summary            | 118 |

| Chapter 5. Manganese                     | 121 |
|------------------------------------------|-----|
| Mineralogy                               | 125 |
| Geochemistry                             | 127 |
| Petrography                              | 132 |
| Vertical Sequence                        | 135 |
| Nikopol                                  | 136 |
| Morocco                                  | 138 |
| Deposits associated with iron-formations | 141 |
| Manganese in Modern Sediments            | 141 |
| Mn nodules in modern sediments           | 141 |
| Mn carbonates in modern sediments        | 143 |
| Summary                                  | 144 |

| Mineralogy                                  | 148<br>151 |
|---------------------------------------------|------------|
|                                             | 151        |
| Geochemistry                                |            |
| Examples of Types of Deposits               | 155        |
| Early Proterozoic Au-U deposits             | 155        |
| Late Proterozoic unconformity-vein deposits | 159        |
| Black shale deposits                        | 164        |
| Sandstone-hosted deposits                   | 168        |
| Calcrete deposits of Australia              | 178        |
| Summary                                     | 180        |

| Chapter 7. Lead and Zinc          | 181 |
|-----------------------------------|-----|
| Part I. Carbonate-Hosted Deposits | 181 |
| Mississippi Valley-type Deposits  | 183 |
| Alpine Deposits                   | 188 |
| Irish Base-Metal Deposits         | 190 |
| Discussion                        | 195 |
| Part II. Clastic-Hosted Deposits  | 196 |
| Sullivan                          | 196 |
| McArthur River                    | 199 |
| Discussion                        | 203 |

| Chapter 8. Volcanic-Sedimentary Ores             | 205 |  |
|--------------------------------------------------|-----|--|
| Part I. Deposits of Divergent Plate Boundaries   | 208 |  |
| Divergent Boundaries: Modern Examples            | 208 |  |
| Divergent Boundaries: Ancient Examples           | 213 |  |
| The Red Sea                                      | 217 |  |
| Part II. Deposits of Convergent Plate Boundaries | 225 |  |
| Convergent Boundaries: Modern Examples           | 225 |  |
| Convergent Boundaries: Ancient Examples          | 228 |  |
| Appendix                                         | 237 |  |
| References                                       | 241 |  |
| Author Index                                     | 285 |  |
| Subject Index                                    | 297 |  |
| Index of Deposits and Localities                 | 303 |  |