Skip to main content

The Organization of Human Arm Trajectory Control

  • Chapter
Multiple Muscle Systems

Abstract

Traditionally, studies of human and animal movements have focused on systems composed of a single muscle, or a single joint. However, most natural human actions such as reaching, walking, writing, etc., require coordination among a large number of muscles and joints. Although the excess degrees of freedom problem, also known as Bernstein’s problem (Bernstein, 1967), arises even in the context of single-joint movements, it becomes especially complicated to resolve in the multi-joint case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abend, W.K., Bizzi, E. and Morasso, P. (1982) Human arm trajectory formation, Brain 105: 331– 348.

    Article  CAS  PubMed  Google Scholar 

  • Adamovitch, S.H. and Feldman, A.G. (1984) Model of the central regulation of the parameters of motor trajectories. Bioflzika 29: 306–309 (English Translation 338–342).

    Google Scholar 

  • Atkeson, C.G. (1989) Learning arm kinematics and dynamics. Ann. Rev. Neurosci. 12: 157–183.

    Article  CAS  PubMed  Google Scholar 

  • Atkeson, C.G. and Hollerbach, J.M. (1985) Kinematic features of unrestrained vertical arm movements. J. Neurosci. 5: 2318–2330.

    CAS  PubMed  Google Scholar 

  • Benecke, R., Rothwell, J.C., Dick, J.P.R., Day, B.L. and Marsden, C.D. (1986) Performance of simultaneous movements in patients with Parkinson’s disease. Brain 109: 739–757.

    Article  PubMed  Google Scholar 

  • Ben-Zvi, I. (1987) Optimal trajectory planning for robotic manipulators: a multi-grid approach. M.Sc. Thesis, Dept. of Appl. Math, and Computer Sci., The Weizmann Institute of Science, Rehovot, Israel.

    Google Scholar 

  • Berkenblit, M.B., Feldman, A.G. and Fukson, O.Z. (1986) Adaptability of innate motor patterns and motor control mechanisms. Behavioral Brain Sci. 9: 585–638.

    Article  Google Scholar 

  • Bernstein, N. (1967) The Coordination and Regulation of Movements. Pergamon Press, Oxford.

    Google Scholar 

  • Bizzi, E., Accornero, N., Chappie, W. and Hogan, N. (1984) Posture control and trajectory formation during arm movement. J. Neurosci. 4: 2738–2744.

    CAS  PubMed  Google Scholar 

  • Bizzi, E., Polit, A. and Morasso, P. (1976) Mechanisms underlying achievement of final head position. J. Neurophysiol. 39: 435–444.

    CAS  PubMed  Google Scholar 

  • Edelman, S. and Flash, T. (1987) A model of handwriting. Biol. Cybern. 57: 25–36.

    Article  CAS  PubMed  Google Scholar 

  • Feldman, A.G. (1986) Once more on the equilibrium- point hypothesis for motor control. J. Motor Behavior 18: 17–54.

    CAS  Google Scholar 

  • Flash, T. (1987) The control of hand equilibrium trajectories in multi-joint aim movements. Biol. Cybern. 57: 257–274.

    Article  CAS  PubMed  Google Scholar 

  • Flash, T. (1988) Models of human arm trajectory control. Proc. IEEE Eng. in Medicine and Biology, 10th Ann. Int. Conf., New Orleans.

    Google Scholar 

  • Hash, T. and Hogan, N. (1985) The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci. 7: 1688–1703.

    Google Scholar 

  • Flash, T. and Mussa-Ivaldi, F.A. (1990) Human arm stiffness characteristics during the maintenance of posture. Exp. Brain Res., In press.

    Google Scholar 

  • Flash, T., Inzelberg, R. and Korczyn, A.D. (1990) Quantitative methods for the assessment of motor performance in Parkinson’s disease. Methodological Problems of Clinical Trials in Parkinson’s Disease. Demos Publ., New York, In press.

    Google Scholar 

  • Flashner, H., Beuter, A. and Arabyan, A. (1988) Fitting mathematical functions to joint kinematics during stepping: implication for motor control. Biol. Cybern. 58: 91–99.

    Article  CAS  PubMed  Google Scholar 

  • Flanagan, J.R. and Ostry, D.J. (1990) Trajectories of human multi-joint arm movements: evidence of joint level planning. Experimental Robotics (Edited by Hayward, V.). Springer-Verlag, New York.

    Google Scholar 

  • Gelfand, L.M., Gurfinkel, V.S., Tsetlin, M.L. and Shik, M.L. (1971) Some problems in the analysis of movements. Models of the Structural-Functional Organization of Certain Biological Systems (Edited by Gurfinkel, L.M., Gurfinkel, V. S., Fomin, S.V. and Tsetlin, M.L.). MIT Press, Cambridge, MA.

    Google Scholar 

  • Georgopoulos, A.P. (1986) On reaching. Ann. Rev. Neurosci. 9: 147–170.

    Article  CAS  PubMed  Google Scholar 

  • Georgopoulos, A.P., Kalaska, J.F. and Massey, J.T. (1981) Spatial trajectories and reaction times of aimed movements: Effects of practice, uncertainty, and change in target location. J. Neurophysiol. 46: 725–743.

    CAS  PubMed  Google Scholar 

  • Gielen, C.C.A.M., Van der Heuvel, P.J.M. and Van der Gon, D.J.J. (1984) Modification of muscle activation patterns in fast goal-directed arm movements. J. Motor Behavior 16: 2–19.

    CAS  Google Scholar 

  • Hasan, Z. and Karst, G.M. (1989) Muscle activity for initiation of planar, two-joint arm movements in different directions. Exp. Brain Res. 3: 651–655.

    Article  Google Scholar 

  • Henis, E. and Flash, T. (1989) Mechanisms subserving arm trajectory modification. Perception 18: 495.

    Google Scholar 

  • Hogan, N. (1984) An organizing principle for a class of voluntary movements. J. Neurosci. 4: 2745–2754.

    CAS  PubMed  Google Scholar 

  • Hogan, N. (1985) The mechanics of multi-joint posture and movement. Biol. Cybern. 52: 315–331.

    Article  CAS  PubMed  Google Scholar 

  • Hogan, N. (1988) Planning and execution of multi- joint movements. Canadian J. Physiol. Pharmacol. 66: 508–517

    Article  CAS  Google Scholar 

  • Hollerbach, J.M. (1982) Computers, brains and the control of movement. Trends Neurosci. 5: 189–192.

    Article  Google Scholar 

  • Hollerbach, J.M. and Atkeson, C.G. (1987) Deducing planning variables from experimental arm trajectories pitfalls and possibilities. Biol. Cybern. 56: 279–292.

    Article  CAS  PubMed  Google Scholar 

  • Hollerbach, J.M. and Flash, T. (1982) Dynamic interactions between limb segments during planar arm movement. Biol. Cybern. 44: 67–77.

    Article  CAS  PubMed  Google Scholar 

  • Houk, J.C. and Rymer, W.Z. (1982) Neural control of muscle length and tension. Handbook of Physiology Vol. 2: Motor Control, Section 1: The Nervous System (Edited by Brooks, V.B.), pp. 257–323, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Jordan, M.L. (1990) Indeterminate motor skill learning problems. Attention and Performance, X III. ( Edited by Jeannerod, M.). Lawrence Erlbaum, Hillsdale, NJ.

    Google Scholar 

  • Jordan, M.L. and Rosenbaum, D.A. (1989) Action. Foundations of Cognitive Science (Edited by Posner, M.I.). MIT Press, Cambridge, MA.

    Google Scholar 

  • Kawato, M., Madea, Y., Uno, Y. and Suzuki, R. (1990) Trajectory formation of arm movement by cascade neural network model based on the minimum torque change criterion. ATR Technical Report, TR-A- 0056.

    Google Scholar 

  • Keele, S.W. (1981) Behavioral analysis of movement. Handbook of Physiology, Vol. 2: Motor Control, Section 1: The Nervous System (Edited by Brooks, V.B.), pp. 225–260. Williams and Wilkins, Baltimore.

    Google Scholar 

  • Kettner, R.E., Schwartz, A.B. and Georgopoulos, A.P. (1988) Primate motor cortex and free arm movements to visual targets in three dimensional space. III. Positional gradients and population coding of movement direction from various movement origins. J. Neurosci. 8: 2938–2947.

    CAS  PubMed  Google Scholar 

  • Lacquaniti, F. (1989) Central representations of human limb movement as revealed by studies of drawing and handwriting. Trends in Neurosci. 12: 287–291.

    Article  CAS  Google Scholar 

  • Lacquaniti, F., Terzuolo, C. and Viviani, P. (1983) The law relating the kinematics and figureal aspects of drawing movements. Acta Psychol. 54: 115–130.

    Article  CAS  Google Scholar 

  • Massey, J.T., Schwartz, A.B. and Georgopoulos, A.P. (1986) On information processing and performance a movement sequence. Exp. Brain Res. Suppl. 15: 242–251.

    Google Scholar 

  • Morasso, P. (1981) Spatial control of arm movements, Exp. Brain Res. 42: 223–227.

    Article  CAS  PubMed  Google Scholar 

  • Morasso, P. and Mussa-Ivaldi, F.A. (1982) Trajectory formation and handwriting: a computational model. Biol. Cybern. 45: 131–142.

    Article  CAS  PubMed  Google Scholar 

  • Munhall, K. and Lofquist, A. (1987) Gestural aggregation in speech. PAW Rev. 2: 13–17.

    Google Scholar 

  • Mussa-Ivaldi, F.A. (1988) Do neurons in the motor cortex encode movement directions? An alternative hypothesis. Neurosci. Lett. 91: 106–111.

    Article  CAS  PubMed  Google Scholar 

  • Mussa-Ivaldi, F.A., Hogan, N. and Bizzi, E. (1985) Neural, mechanical and geometric factors subserving arm posture in humans. J. Neurosci. 5: 2732–2743.

    CAS  PubMed  Google Scholar 

  • Nelson, W.L. (1983) Physical principles of economics of skilled movements. Biol. Cybern. 46: 135–147.

    Article  CAS  PubMed  Google Scholar 

  • Patriarco, A.G., Mann, R.W., Simon, S.R. and Mansom, J.M. (1981) An evaluation of the approaches of optimization models in the prediction of muscle forces during human goal. J. Biomechanics 14: 513–525.

    Article  CAS  Google Scholar 

  • Saltzman, E. (1979) Levels of sensorimotor representation, J. Math. Psychol. 20: 96–1063.

    Article  Google Scholar 

  • Schneider, K. and Zernicke, R.F. (1989) Jerk-cost modulations during the practice of rapid arm movements. Biol Cybern. 60: 221–230.

    Article  CAS  PubMed  Google Scholar 

  • Soechting, J.F. and Lacquaniti, F. (1981) Invariant characteristics of a pointing movement in man. J. Neurosci. 1: 710–720.

    CAS  PubMed  Google Scholar 

  • Soechting, J.F. and Lacquaniti, F. (1989) An assessment of the existence of muscle synergies during load perturbation and intentional movements of the human arm. Exp. Brain Res. 3: 535–548.

    Google Scholar 

  • Soechting, J.F. and Teizuolo, C.A. (1986) An algo-rithm for the generation of curvilinear wrist motion in an arbitrary plane in three dimensional space. Neurosci. 19: 1393–1405.

    Article  CAS  Google Scholar 

  • Stein, R.B., Oguztoreli, M.N. and Capaday, C. (1985) What is optimized in muscular movements? Human Muscle Performance: Factors Underlying Maximal Performance (Edited by Jones, N.L., McCartney, N. and McComas, A.J.). Kinetic Publishers, New York.

    Google Scholar 

  • Tikhonov, A.N. and Arsenin, V.Y. (1977) Solutions of Ill-Posed Problems, W.H. Winstron, Washington, D.C.

    Google Scholar 

  • Uno, Y., Kawato, M. and Suzuki, R. (1989) Formation and control of optimal trajectory in multijoint arm movement: minimum torque-change model. Biol. Cybern. 61: 89–101.

    Article  CAS  PubMed  Google Scholar 

  • Van Sonderen, J.F., Van der Gon, J.J.D. and Gielen, C.C.A.M. (1989) Conditions determining early modifications of motor programs in response to changes in target location. Exp. Brain Res. 71: 320–328.

    Google Scholar 

  • Viviani, P. and Cenzato, M. (1985) Segmentation and coupling in complex movements. J. Exp. Psychol:. Human Perception and performance 11: 828–845.

    Article  CAS  Google Scholar 

  • Viviani, P. and Terzoulo, C. (1980) Space-time in motor skills. In Tutorials in Motor Behavior (Edited by Stelmach, G.E. and Requin, J. ), pp. 525–533. Elsevier North-Holland Publishing Co., Amsterdam.

    Chapter  Google Scholar 

  • Viviani, P. and Terzuolo C. (1982) Trajectory determines movement dynamics. J. Neurosci. 7: 431–437.

    CAS  Google Scholar 

  • Wann, J.P., Nimmo-Smith, I. and Wing, A.M. (1988) Relation between velocity and curvature in movement: equivalence and divergence between a power law and the minimum-jerk model. J. Exp. Psycol.: Human Perception and Performance 14: 622–637.

    Article  CAS  Google Scholar 

  • Wood, J.E., Meeke, S.G. and Jacobson, S.C. (1989) Quantitation of human shoulder anatomy for pros-thesis arm control. Part II. Anatomy matrices. J. Biomechanics 22: 309–326.

    Article  CAS  Google Scholar 

  • Xu, Y., Bennet, D.J., Hollerbach, J.M. and Hunter, I.W. (1989) Wrist-airjet system for identification of joint mechanical properties of the unconstrained human arm. Soc. Neurosci. Abstr. 15: 396.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag, New York

About this chapter

Cite this chapter

Flash, T. (1990). The Organization of Human Arm Trajectory Control. In: Winters, J.M., Woo, S.LY. (eds) Multiple Muscle Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9030-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9030-5_17

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9032-9

  • Online ISBN: 978-1-4613-9030-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics