Skip to main content

Reactions Controlling Heavy Metal Solubility in Soils

  • Chapter
Advances in Soil Science

Part of the book series: Advances in Soil Science ((SOIL,volume 10))

Abstract

Soil chemists have long-recognized that knowledge of the elemental composition of soils is generally of little use in assessing the availability of these elements to plants. An obvious illustration of this principle is the common occurrence of Fe and Mn deficiency in plants despite the relatively high levels of Fe and Mn in many soils. For this reason, chemical soil tests have relied on measurement of extractable or “labile” fractions of elements. Such tests are empirical and provide little basis to relate metal extractability to the chemical forms of the metal in the soil. As soils are increasingly used in our society for purposes other than agriculture, the frequency and extent of soil contamination by toxic metals will increase. Empirical relationships may have to be replaced by a more fundamental understanding of the soil processes controlling metal solubility to prevent practices that could have deleterious effects on soil productivity and environmental quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamson, A.W. 1976. Physical chemistry of surfaces, 3d ed. Wiley, NY.

    Google Scholar 

  • Alberts, J.J., J.E. Schindler, R.W. Miller, and D.E. Nutter. 1974. Elemental mercury evolution mediated by humic acid. Science 184:895–897.

    PubMed  CAS  Google Scholar 

  • Alberts, J.J., J.E. Schindler, D.E. Nutter, and E. Davis. 1976. Elemental infrared spectrophotometric and electron spin resonance investigations of non-chemically isolated humic material. Geochim. Cosmochim. Acta 40:369–372.

    CAS  Google Scholar 

  • Baes, A.U. 1983. Exchange of divalent cations in an acid-washed peat and a polycarboxylate resin. M.S. thesis, Univ. of Minnesota.

    Google Scholar 

  • Bartlett, R., and B. James. 1979. Behavior of chromium in soils. III. Oxidation. J. Environ. Qual 8:31–35.

    CAS  Google Scholar 

  • Benjamin, M.M. 1983. Adsorption and surface precipitation of metals on amorphous iron oxyhydroxide. Environ. Sci. Technol. 17:686–692.

    CAS  Google Scholar 

  • Benjamin, M.M., and J.O. Leckie. 1982. Effects of complexation by C1, SO4, and S2O3 on adsorption behavior of Cd on oxide surfaces. Environ. Sci. Technol. 16:162–170.

    CAS  Google Scholar 

  • Bleam, W.F., and M.B. McBride. 1985. Cluster formation versus isolated-site adsorption. A study of Mn(II) and Mg(II) adsorption on boehmite and goethite. J. Colloid Interfac. Sci. 103:124–132.

    CAS  Google Scholar 

  • Bleam, W.F., and M.B. McBride. 1986. The chemistry of adsorbed Cu(II) and Mn(II) in aqueous titanium dioxide suspensions. J. Colloid Interfile. Sci. 110:335–346.

    CAS  Google Scholar 

  • Bloom, P.R. 1978. Exchange of hydrogen, aluminum and other metal ions in soil organic matter and acid soils. Ph.D. diss., Cornell Univ.

    Google Scholar 

  • Bloom, P.R., and M.B. McBride. 1979. Metal ion binding and exchange with hydrogen ions in acid-washed peat. Soil Sci. Soc. Am. J. 43:687–692.

    CAS  Google Scholar 

  • Bloom, P.R., M.B. McBride, and B. Chadbourne. 1977. Adsorption of aluminum by a smectite: I. Surface hydrolysis during Ca2+-Al3+ exchange. Soil Sci. Soc. Am. J. 41:1068–1073.

    CAS  Google Scholar 

  • Bolland, M.D.A., A.M. Posner, and J.P. Quirk. 1977. Zinc adsorption by goethite in the absence and presence of phosphate. Aust. J. Soil Res. 15:279–286.

    CAS  Google Scholar 

  • Bourg, A.C.M., S. Joss, and P.W. Schindler. 1979. Ternary surface complexes. 2. Complex formation in the system silica-Cu(II)-2,2′-bipyridyl. Chimia 33:19–21.

    CAS  Google Scholar 

  • Bourg, A.C.M., and P.W. Schindler. 1979. Effect of ethylenediaminetetraacetic acid on the adsorption of copper(II) at amorphous silica. Inorg. Nucl. Chem. Lett. 15:225–229.

    CAS  Google Scholar 

  • Bowden, J.W., A.M. Posner, and J.P. Quirk. 1977. Ionic adsorption on variable charge mineral surfaces. Theoretical-charge development and titration curves. Aust. J. Soil Res. 15:121–136.

    CAS  Google Scholar 

  • Boyd, S.A., L.E. Sommers, and D.W. Nelson. 1981a. Copper(II) and iron(III) complexation by the carboxylate group of humic acid. Soil Sci. Soc Am. J. 45:1241–1242.

    CAS  Google Scholar 

  • Boyd, S.A., L.E. Sommers, D.W. Nelson, and D.K. West. 1981b. The mechanism of copper(II) binding by humic acid: An electron spin resonance study of a copper(II)-humic acid complex and some adducts with nitrogen donors. Soil Sci. Soc. Am. J. 45:745–749.

    CAS  Google Scholar 

  • Bricker, O. 1965. Some stability relations in the system Mn-O2-H2O at 25° and one atmosphere total pressure. Am. Mineral. 50:1296–1354.

    CAS  Google Scholar 

  • Brummer, G., K.G. Tiller, U. Herms, and P.M. Clayton. 1983. Adsorption-desorption and/or precipitation—dissolution processes of zinc in soils. Geoderma 31:337–354.

    Google Scholar 

  • Bunzl, K., W. Schmidt, and B. Sansoni. 1976. Kinetics of ion exchange in soil organic matter. IV. Adsorption and desorption of Pb2+, Cu2+, Cd2+, Zn2+, and Ca2+ by peat. J. Soil Sci. 27:32–41.

    CAS  Google Scholar 

  • Cabaniss, S.E. 1987. Titrator: An interactive program for aquatic equilibrium calculations. Environ. Sci. Technol. 21:209–210.

    CAS  Google Scholar 

  • Carrington, A., and A.D. McLachlan. 1967. Introduction to magnetic resonance. Harper & Row, NY.

    Google Scholar 

  • Cavallaro, N., and M.B. McBride. 1978. Copper and cadmium adsorption characteristics of selected acid and calcareous soils. Soil Sci. Soc. Am. J. 42:550–556.

    CAS  Google Scholar 

  • Chesworth, W., and J. Dejou. 1980. Are considerations of mineralogical equilibrium relevant to pedology? Evidence from a weathered granite in central France. Soil Sci. 130:290–292.

    CAS  Google Scholar 

  • Clark, C.J., and M.B. McBride. 1984. Chemisorption of Cu(II) and Co(II) on allophane and imogolite. Clays Clay Miner. 32:300–310.

    CAS  Google Scholar 

  • Clark, C.J., and M.B. McBride. 1985. Adsorption of Cu(II) by allophane as affected by phosphate. Soil Sci. 139:412–421.

    CAS  Google Scholar 

  • Clementz, D.M., T.J. Pinnavaia, and M.M. Mortland. 1973. Stereochemistry of hydrated copper(II) ions on the interlamellar surfaces of layer silicates. An electron spin resonance study. J. Phys. Chem. 77:196–200.

    CAS  Google Scholar 

  • Cornell, R.M., and R. Giovanoli. 1987. Effect of manganese on the transformation of ferrihydrite into goethite and jacobsite in alkaline media. Clays Clay Miner. 35:11–20.

    CAS  Google Scholar 

  • Cotton, F.A., and G. Wilkinson. 1980. Advanced inorganic chemistry, 4th ed. Wiley, NY.

    Google Scholar 

  • Davies, S.H.R. 1986. Mn(II) oxidation in the presence of lepidocrocite: The influence of other ions. pp. 487–502 In: Geochemical-processes at mineral surfaces, J. A. Davis and K.F. Hayes (eds.). ACS Symposium Series no. 323, ACS, Washington, DC.

    Google Scholar 

  • Davis, J. A., C.C. Fuller, and A.D. Cook. 1987. A model for trace metal sorption processes at the calcite surface: Adsorption of Cd2+ and subsequent solid solution formation. Geochim. Cosmochim. Acta 51:1477–1490.

    CAS  Google Scholar 

  • Davis, J.A., and J.O. Leckie. 1978. Effect of adsorbed complexing ligands on trace metal uptake by hydrous oxides. Environ. Sci. Technol. 12:1309–1315.

    CAS  Google Scholar 

  • Deczky, K., and C.H. Langford. 1978. Application of water nuclear magnetic relaxation times to study of metal complexes of the soluble soil organic fraction fulvic acid. Can. J. Chem. 56:1947–1951.

    CAS  Google Scholar 

  • Deiana, S., L. Erre, G. Micera, R. Piu, and C. Gessa. 1980. Coordination of transitionmetal ions by polygalacturonic acid: A spectroscopic study. Inorg. Chim. Acta 46:249–253.

    CAS  Google Scholar 

  • Dillard, J.G., and C.V. Schenck. 1986. Interaction of Co(II) and Co(III) complexes on synthetic birnessite: surface characterization, pp. 503–522. In: Geochemical processes at mineral surfaces, J.A. Davis and K.F. Hayes (eds.). ACS Symposium Series no. 323, ACS, Washington, DC.

    Google Scholar 

  • DiToro, D.M., J.D. Mahony, P.R. Kirchgraber, A.L. O’Byrne, L.R. Pasquale, and D.C. Piccirilli. 1986. Effects of nonreversibility, particle concentration and ionic strength on heavy metal sorption. Environ. Sci. Technol. 20:55–61.

    CAS  Google Scholar 

  • Driessens, F.C.M. 1986. Ionic solid solutions in contact with aqueous solutions, pp. 524–560. In: Geochemical processes at mineral surfaces, J.A. Davis and K.F. Hayes (eds.). ACS Symposium Series no. 323, ACS, Washington, DC.

    Google Scholar 

  • Dugger, D.L., J.H. Stanton, B.N. Irby, B.L. McConnell, W.W. Cummings, and R.W Maatman. 1964. The exchange of twenty metal ions with the weakly acidic silanol group of silica gel. J. Phys. Chem. 68:757–760.

    CAS  Google Scholar 

  • Ebinger, M.H., and D.G. Schulze. 1986. Properties of Mn-substituted magnetic iron oxides. Agron. Abstr., Am. Soc. Agron., Madison, WI, p. 274.

    Google Scholar 

  • Elliot, H.A., and C.P. Huang. 1979. The effect of complex formation on the adsorption characteristics of heavy metals. Environ. Int. 2:145–155.

    Google Scholar 

  • Elliot, H. A., and C.P. Huang. 1981. Adsorption characteristics of some Cu(II) complexes on aluminosilicates. Water Res. 15:849–855.

    Google Scholar 

  • el-Sayed, M.H., R.G. Burau, and K.L. Babcock. 1970. Thermodynamics of copperscalcium exchange on bentonite clay. Soil Sci. Soc. Am. Proc. 34:397–400.

    CAS  Google Scholar 

  • Farley, K.J., D.A. Dzombak, and F.M.M. Morel. 1985. A surface precipitation model for the sorption of cations on metal oxide. J. Colloid Interfac. Sci. 106:226–242.

    CAS  Google Scholar 

  • Farrah, H., and W.F. Pickering. 1976. The sorption of copper species by clays. II. Illite and montmorillonite. Aust. J. Chem. 29:1177–1184.

    CAS  Google Scholar 

  • Farrah, H., and W.F. Pickering. 1977. The sorption of lead and cadmium species by clay minerals. Aust. J. Chem. 30:1417–1422.

    CAS  Google Scholar 

  • Fernandez, I.J., and P.A. Kosian. 1987. Soil air carbon dioxide concentrations in a New England spruce-fir forest. Soil Sci. Soc. Am. J. 51:261–263.

    CAS  Google Scholar 

  • Forbes, E.A., A.M. Posner, and J.P. Quirk. 1976. The specific adsorption of divalent Cd, Co, Cu, Pb, and Zn on goethite. J. Soil Sci. 27:154–166.

    CAS  Google Scholar 

  • Gadde, R.R., and H. A. Laitinen. 1974. Studies of heavy metal adsorption by hydrous iron and manganese oxides. Anal. Chem. 46:2022–2026.

    CAS  Google Scholar 

  • Gamble, D.S., C.P. Langford, and J.P.K. Tong. 1976. The structure and equilibria of a manganese(II) complex of fulvic acid studied by ion exchange and nuclear magnetic resonance. Can. J. Chem. 54:1239–1245.

    CAS  Google Scholar 

  • Garcia-Miragaya, J., and A.L. Page. 1976. Influence of ionic strength and inorganic complex formation on the sorption of trace amounts of Cd by montmorillonite. Soil Sci. Soc. Am. J. 40:658–663.

    CAS  Google Scholar 

  • Garcia-Miragaya, J., and A.L. Page. 1977. Influence of exchangeable cation on the sorption of trace amounts of cadmium by montmorillonite. Soil Sci. Soc. Am. J. 41:718–721.

    CAS  Google Scholar 

  • Gerth, J., and G. Brummer. 1981. Effect of temperature and reaction time on the adsorption of nickel, zinc, and cadmium by goethite. Mitteilgn. Dtsch. Bodenkundl. Gesellsch. 32:229–238.

    Google Scholar 

  • Gerth, J., and G. Brummer. 1983. Adsorption und Festlegung von Nickel, Zink und Cadmium durch Goethit (α-FeOOH). Fresenius Z. Anal. Chem. 316:616–620.

    CAS  Google Scholar 

  • Gilmour, J.T., and J. A. Kittrick. 1979. Solubility and equilibria of zinc in a flooded soil. Soil Sci. Soc. Am. J. 43:890–892.

    CAS  Google Scholar 

  • Goldberg, S. 1985. Chemical modelling of anion competition on goethite using the constant capacitance model. Soil Sci. Soc. Am. J. 49:851–856.

    CAS  Google Scholar 

  • Golden, D.C., J.B. Dixon, and C.C. Chen. 1986. Ion exchange, thermal transformations, and oxidizing properties of birnessite. Clays Clay Miner. 34:511–520.

    CAS  Google Scholar 

  • Goodman, B.A., and M.V. Cheshire. 1973. Electron paramagnetic resonance evidence that copper is complexed in humic acid by the nitrogen of porphyrin groups. Nature New Biol. 244:58–159.

    Google Scholar 

  • Goodman, B.A., and M.V. Cheshire. 1982. Reduction of molybdate by soil organic matter: EPR evidence for formation of both Mo(V) and Mo(III). Nature 299:618–620.

    CAS  Google Scholar 

  • Goodman, B.A., and M.V. Cheshire. 1987. Characterization of iron-fulvic acid complexes using Mössbauer and EPR spectroscopy. Sci. Total Environ. 62:229–240.

    CAS  Google Scholar 

  • Hathaway, B.J., and C.E. Lewis. 1969a. Electronic properties of transition-metal complex ions adsorbed on silica gel. Part I. Nickel(II) complexes. J. Chem. Soc., A 1176–1183.

    Google Scholar 

  • Hathaway, B.J., and C.E. Lewis. 1969b. Electronic properties of transition-metal complex ions adsorbed on silica gel. Part II. Cobalt(II) and Cobalt(III). J. Chem. Soc., A 1183–1188.

    Google Scholar 

  • Hayes, K.F., and J.O. Leckie. 1986. Mechanism of lead ion adsorption at the goethite-water interface, pp. 114–141. In: Geochemical-processes at mineral surfaces, J. A. Davis and K.F. Hayes (eds.). ACS Symposium Series no. 323, ACS, Washington, DC.

    Google Scholar 

  • Healy, T.W, R.O. James, and R. Cooper. 1968. The adsorption of aqueous Co(II) at the silica-water interface, pp. 62–73. In: Adsorption from aqueous solution, W.J. Weber and E. Matijevic (eds.). Advan. in Chem. Ser. no. 79, ACS, Washington, DC.

    Google Scholar 

  • Helyar, K.R., D.N. Munns, and R.G. Burau. 1976. Adsorption of phosphate by gibbsite. II. Formation of a surface complex involving divalent cations. J. Soil Sci. 27:315–323.

    CAS  Google Scholar 

  • Hem, J.D. 1978. Redox processes at surfaces of manganese oxide and their effects on aqueous metal ions. Chem. Geol. 21:199–218.

    CAS  Google Scholar 

  • Hendrickson, L.L., and R.B. Corey. 1981. Effect of equilibrium metal concentrations on apparent selectivity coefficients of soil complexes. Soil Sci. 131:163–171.

    CAS  Google Scholar 

  • Herms, U., and G. Brummer. 1984. Einflussgrossen der Schwermetattöslichkeit undbindung in Böden. Z. Pflanzenernaehr. Bodenk. 147:400–424.

    CAS  Google Scholar 

  • Hider, R.C., A.R. Mohd-Nor, J. Silver, I.E.G. Morrison, and L.V.C. Rees. 1981. Model compounds for microbial iron-transport compounds. Part 1. Solution chemistry and Mössbauer study of iron(II) and iron(III) complexes from phenolic and catecholic systems. J. Chem. Soc., Dalton 609–622.

    Google Scholar 

  • Hodges, S.C., and L.W. Zelazny. 1983. Interactions of dilute, hydrolyzed aluminum solutions with clays, peat, and resin. Soil Sci. Soc. Am. J. 47:206–212.

    CAS  Google Scholar 

  • Hodgson, J.F. 1960. Cobalt reactions with montmorillonite. Soil Sci. Soc. Am. Proc. 24:165–168.

    CAS  Google Scholar 

  • Hodgson, I.F., H.R. Geering, and W.A. Norvell. 1965. Micronutrient cation complexes in soil solution: Partition between complexed and uncomplexed forms by solvent extraction. Soil Sci. Soc. Am. Proc. 29:665–669.

    CAS  Google Scholar 

  • Hodgson, J.F., K.G. Tiller, and M. Fellows. 1964. The role of hydrolysis in the reaction of heavy metals with soil-forming materials. Soil Sci. Soc. Am. Proc. 28:42–46.

    CAS  Google Scholar 

  • Hsu, P.H. 1977. Aluminum hydroxides and oxyhydroxides, pp. 99–143. In “Minerals in soil environments,” J.B. Dixon and S.B. Weed (eds.). Soil Sci. Soc. Am., Madison, WI.

    Google Scholar 

  • Huheey, J.E. 1972. Inorganic chemistry: Principles of structure and reactivity. Harper & Row, NY.

    Google Scholar 

  • Hutcheon, A.T. 1966. Thermodynamics of cation exchange on clay: Ca-K-montmorillonite. J. Soil Sci. 17:339–355.

    Google Scholar 

  • Inskeep, W.P., and J. Baham. 1983. Adsorption of Cd(II) and Cu(II) by Na-montmorillonite at low surface coverage. Soil Sci. Soc. Am. J. 47:660–665.

    CAS  Google Scholar 

  • Iu, K.L., I.D. Pulford, and H.J. Duncan. 1981a. Influence of waterlogging and lime or organic matter additions on the distribution of trace metals in an acid soil. I. Manganese and iron. Plant and Soil 59:317–326.

    CAS  Google Scholar 

  • Iu, K.L., I.D. Pulford, and H.J. Duncan. 1981b. Influence of waterlogging and lime or organic matter additions on the distribution of trace metals in an acid soil. II. Zinc and copper. Plant and Soil 59:327–333.

    CAS  Google Scholar 

  • Jahiruddin, M., B.J. Chambers, N.T. Livesey, and M.S. Cresser. 1986. Effect of liming on extractable Zn, Cu, Fe, and Mn in selected Scottish soils. J. Soil Sci. 37:603–615.

    CAS  Google Scholar 

  • James, B.R. and D.R. Bouldin. 1986. A cathodic stripping voltammetric method for nanomolar concentrations of labile and total iron and zinc in soil solutions. Comm. Soil Sci. Plant Anal. 17(11): 1185–1201.

    CAS  Google Scholar 

  • James, B.R., C.J. Clark, and S.J. Riha. 1983. An 8-hydroxyquinoline method for labile and total aluminum in soil extracts. Soil Sci. Soc. Am. J. 47:893–897.

    CAS  Google Scholar 

  • James B.R., and S.J. Riha. 1984. Soluble aluminum in acidified organic horizons of forest soils. Can. J. Soil Sci. 64:637–646.

    CAS  Google Scholar 

  • James B.R., and S.J. Riha. 1986. pH buffering in forest soil organic horizons: Relevance to acid precipitation. J. Environ. Qual. 15:229–234.

    CAS  Google Scholar 

  • James, R.O., and T.W. Healy. 1972a. Adsorption of hydrolyzable metal ions at the oxide-water interface. I. Co(II) adsorption on SiO2 and TiO2 as model systems. J. Colloid Interfac. Sci. 40:42–52.

    CAS  Google Scholar 

  • James, R.O., and T.W. Healy. 1972b. Adsorption of hydrolyzable metal ions at the oxide-water interface. III. A thermodynamic model of adsorption. J. Colloid Interfac. Sci. 40:65–81.

    CAS  Google Scholar 

  • Jauregui, M. A., and H.M. Reisenauer. 1982. Dissolution of oxides of manganese and iron by root exudate components. Soil Sci. Soc. Am. J. 46:314–317.

    CAS  Google Scholar 

  • Jenne, E.A. 1968. Controls on Mn, Fe, Co, Ni, Cu, and Zn concentrations in soils and water: the significant role of hydrous Mn and Fe oxides, pp. 337–387. In Trace inorganics in water. Advanc. in Chem. Ser. no. 73. ACS, Washington, DC.

    Google Scholar 

  • Johnson, L.J. and C.H. Chu. 1983. Mineralogical characterization of selected soils from northeastern United States. Bulletin 847, Ag. Expt. Sta., Pennsylvania State Univ.

    Google Scholar 

  • Johnson, M.G. 1986. Clay mineralogy and chemistry of selected Adirondack spodosols. Ph.D. diss., Cornell Univ.

    Google Scholar 

  • Jorgensen, S.S. 1976. Dissolution kinetics of silicate minerals in aqueous catechol solutions. J. Soil Sci. 27:183–195.

    Google Scholar 

  • Jurinak, J.J., and N. Bauer. 1956. Thermodynamics of zinc adsorption on calcite, dolomite and magnesite-type minerals. Soil Sci. Soc. Am. Proc. 20:466–471.

    CAS  Google Scholar 

  • Keizer, P., and M.G.M. Bruggenwert. 1986. Sorption of heavy metals by clay-aluminum hydroxide-complexes. Proc. NATO symposium on Soil Colloid-Soil Solution Interface, Ghent, Belgium.

    Google Scholar 

  • Kinniburgh, D.G., M.L. Jackson, and J.K. Syers. 1976. Adsorption of alkaline earth, transition, and heavy metal cations by hydrous oxide gels of iron and aluminum. Soil Sci. Soc. Am. J. 40:796–799.

    CAS  Google Scholar 

  • Kivelson, D., and R. Neiman. 1961. ESR studies on the bonding in copper complexes. J. Chem. Phys. 35:149–155.

    CAS  Google Scholar 

  • Lakatos, B., L. Korecz, and J. Meisel. 1977a. Comparative study on the Mössbauer parameters of iron humates and polyuronates. Geoderma 19:149–157.

    CAS  Google Scholar 

  • Lakatos, B., T. Tibai, and J. Meisel. 1977b. EPR spectra of humic acids and their metal complexes. Geoderma 19:319–338.

    CAS  Google Scholar 

  • Lehmann, R.G., H.H. Cheng, and J.B. Harsh. 1987. Oxidation of phenolic acids by soil iron and manganese oxides. Soil Sci. Soc. Am. J. 51:352–356.

    CAS  Google Scholar 

  • Lindsay, W.L. 1979. Chemical equilibria in soils. Wiley, NY.

    Google Scholar 

  • Maes, A., and A. Cremers. 1975. Cation-exchange hysteresis in montmorillonite: A pH-dependent effect. Soil Sci. 119:198–202.

    CAS  Google Scholar 

  • Manley, E.P., and L.J. Evans. 1986. Dissolution of feldspars by low-molecular-weight aliphatic and aromatic acids. Soil Sci. 141:106–112.

    CAS  Google Scholar 

  • Marinsky, J.A., A. Wolf, and K. Bunzl. 1980. The binding of trace amounts of lead(II), copper(II), cadmium(II), zinc(II) and calcium(II) to soil organic matter. Talanta 27:461–468.

    PubMed  CAS  Google Scholar 

  • Martini, G., V. Bassetti, and M.F. Ottaviani. 1980. Mobility and adsorption of copper complexes on aluminas: An ESR study. J. Chim. Phys. 77:311–317.

    CAS  Google Scholar 

  • McBride, M.B. 1976. Exchange and hydration properties of Cu2+ on mixed-ion Na± Cu2+ smectites. Soil Sci. Soc. Am. J. 40:452–456.

    CAS  Google Scholar 

  • McBride, M.B. 1978a. Retention of Cu2+, Ca2+, Mg2+, and Mn2+ by amorphous alumina. Soil Sci. Soc. Am. J. 42:27–31.

    CAS  Google Scholar 

  • McBride, M.B. 1978b. Transition metal bonding in humic acid. Soil Sci. 126:200–209.

    CAS  Google Scholar 

  • McBride, M.B. 1979a. Chemisorption and precipitation of Mn2+ at CaCO3 surfaces. Soil Sci. Soc. Am. J. 43:693–698.

    CAS  Google Scholar 

  • McBride, M.B. 1979b. Mobility and reactions of VO2+ on hydrated smectite surfaces. Clays Clay Miner. 27:91–96.

    CAS  Google Scholar 

  • McBride, M.B. 1980a. Chemisorption of Cd2+ on calcite surfaces. Soil Sci. Soc. Am. J. 44:26–28.

    CAS  Google Scholar 

  • McBride, M.B. 1980b. A comparative electron spin resonance study of VO2+ complexation in synthetic molecules and soil organics. Soil Sci. Soc. Am. J. 44:495–499.

    CAS  Google Scholar 

  • McBride, M.B. 1980c. Interpretation of the variability of selectivity coefficients for exchange between ions of unequal charge on smectites. Clays Clay Miner. 28:255–261.

    CAS  Google Scholar 

  • McBride, M.B. 1982a. Cu2+ adsorption characteristics of aluminum hydroxide and oxyhydroxides. Clays Clay Miner. 30:21–28.

    CAS  Google Scholar 

  • McBride, M.B. 1982b. Electron spin resonance investigation of Mn2+ complexation in natural and synthetic organics. Soil Sci. Soc. Am. J. 46:1137–1143.

    CAS  Google Scholar 

  • McBride, M.B. 1982c. Hydrolysis and dehydration reactions of exchangeable Cu2+ on hectorite. Clays Clay Miner. 30:200–206.

    CAS  Google Scholar 

  • McBride, M.B. 1985a. Influence of glycine on Cu2+ adsorption by microcrystalline gibbsite and boehmite. Clays Clay Miner. 33:397–402.

    CAS  Google Scholar 

  • McBride, M.B. 1985b. Sorption of copper(II) on aluminum hydroxide as affected by phosphate. Soil Sci. Soc. Am. J. 49:843–846.

    CAS  Google Scholar 

  • McBride, M.B. 1987. Ternary VO ligand-surface complexes on boehmite and noncrystalline aluminosilicates. J. Colloid Interfac. Sci., 120:419–429.

    Google Scholar 

  • McBride, M.B., and J.J. Blasiak. 1979. Zinc and copper solubility as a function of pH in an acid soil. Soil Sci. Soc. Am. J. 43:866–870.

    CAS  Google Scholar 

  • McBride, M.B., and R.R. Bloom. 1977. Adsorption of aluminum by a smectite: II. An AlCa2+ exchange model. Soil Sci. Soc. Am. J. 41:1073–1077.

    CAS  Google Scholar 

  • McBride, M.B., and D.R. Bouldin. 1984. Long-term reactions of copper(II) in a contaminated calcareous soil. Soil Sci. Soc. Am. J. 48:56–59.

    CAS  Google Scholar 

  • McBride, M.B., A.R. Fraser, and W.J. McHardy. 1984. Cu2+ interaction with microcrystalline gibbsite. Evidence for oriented chemisorbed copper ions. Clays Clay Miner. 32:12–18.

    CAS  Google Scholar 

  • McBride, M.B., B.A. Goodman, J.D. Russell, A.R. Fraser, V.C. Farmer, and D.P.E. Dickson. 1983. Characterization of iron in alkaline EDTA and NH4OH extracts of podzols. J. Soil Sci. 34:825–840.

    CAS  Google Scholar 

  • McBride, M.B., T.J. Pinnavaia, and M.M. Mortland. 1975. Electron spin relaxation and the mobility of manganese(II) exchange ions in smectites. Am. Mineral. 60:66–72.

    CAS  Google Scholar 

  • McKenzie, R.M. 1970. The reaction of cobalt with manganese dioxide minerals. Aust. J. Soil Res. 8:97–106.

    CAS  Google Scholar 

  • McKenzie, R.M. 1980. The adsorption of lead and other heavy metals on oxides of manganese and iron. Aust. J. Soil Res. 18:61–73.

    CAS  Google Scholar 

  • McLaren, R.G., and D.V. Crawford. 1974. Studies on soil copper. III. Isotopically exchangeable copper in soils. J. Soil Sci. 25:111–119.

    CAS  Google Scholar 

  • McLaren, R.G., D.M. Lawson, and R.S. Swift. 1986. Sorption and desorption of cobalt by soils and soil components. J. Soil Sci. 37:413–426.

    CAS  Google Scholar 

  • McLaren, R.G., R.S. Swift, and J.G. Williams. 1981. The adsorption of copper by soil materials at low equilibrium solution concentrations. J. Soil Sci. 32:247–256.

    CAS  Google Scholar 

  • Minnich, M.M., M.B. McBride, and R.L. Chaney. 1987. Copper activity in soil solution: II. Relation to copper accumulation in young snapbeans. Soil Sci. Soc. Am. J. 51:573–578.

    CAS  Google Scholar 

  • Miyata, S. 1975. The syntheses of hydrotalcite-like compounds and their structure and physico-chemical properties-I: The systems Mg2+-AL3+-NO -3 , Mg2+-AL3+-Cl-, Mg2+-AL3+-ClO -4 , Ni2+-AL3+-Cl-, and Zn2+-Al3+-Cl-. Clays and Clay Miner. 23:369–375.

    CAS  Google Scholar 

  • Miyata, S. 1983. Anion-exchange properties of hydrotalcite-like compounds. Clays Clay Miner. 31:305–311.

    CAS  Google Scholar 

  • Moraes, J.F.V. 1982. Effect of phosphate on zinc adsorption on aluminum and iron hydrous oxides and in soils. Ph.D. diss., Univ. of California, Riverside.

    Google Scholar 

  • Mortland, M.M., and M-C. Gastuche. 1962. Cristallisation d’hydroxydes mixtes de magnésium et d’aluminium en milieu dialysé. Comptes Rend. 255:2131–2133.

    CAS  Google Scholar 

  • Murad, E., and Schwertmann, U. 1983. The influence of aluminium substitution and crystallinity on the Mössbauer spectrum of goethite. Clay Miner. 18:301–312.

    CAS  Google Scholar 

  • Murray, D.J., T.W. Healy, and D.W. Fuerstenau. 1968. The adsorption of aqueous metal on colloidal hydrous manganese oxide, pp. 74–81. In: Adsorption from aqueous solutions, W.J. Weber and E. Matijevic (eds.). Advan. in Chem. Ser. no. 79, ACS, Washington, DC.

    Google Scholar 

  • Murray, J.W. 1975. The interaction of metal ions at the manganese dioxide-solution interface. Geochim. Cosmochim. Acta 39:505–519.

    CAS  Google Scholar 

  • Murray, J.W, J.G. Dillard, R. Giovanoli, H. Moers, and W. Stumm. 1985. Oxidation of Mn(II): Initial mineralogy, oxidation state and ageing. Geochim. Cosmochim. Acta 49:463–470.

    CAS  Google Scholar 

  • Nalovic, Lj., G. Pedro, and C. Janot. 1975. Demonstration by Mössbauer spectroscopy of the role played by transitional trace elements in the crystallogenesis of iron hydroxides(III). pp. 601–610. In: Proc. Int. Clay Conf., Mexico City.

    Google Scholar 

  • Newton, D.W. 1971. The influence of pH, phosphate, and silicate on zinc adsorption by clays and soils. Ph.D. diss., Univ. of Illinois, Urbana-Champaign.

    Google Scholar 

  • Osaki, S., T. Osaki, K. Nishino, and Y. Takashima. 1980. Oxidation and reduction of chromium in natural water. I. Oxidation rate of chromium(III) by oxygen in the presence of manganese(II). Nippon Kagaku Kaishi 711–716.

    Google Scholar 

  • Parks, G.A. 1967. Aqueous surface chemistry of oxides and complex oxide minerals, pp. 121–160. In: Equilibrium concepts in natural water systems, W. Stumm (ed.), Advan. in Chem. Ser. no. 67, ACS, Washington, DC.

    Google Scholar 

  • Perona, M.J., and J.O. Leckie. 1985. Proton stoichiometry for the adsorption of cations on oxide surfaces. J. Colloid Interfac. Sci. 106:64–69.

    CAS  Google Scholar 

  • Pingitore, N.E. 1986. Modes of coprecipitation of Ba2+ and Sr2+ with calcite. pp. 574–586. In: Geochemical processes at mineral surfaces, J. A. Davis and K.F. Hayes (eds.). ACS Symposium Series no. 323, ACS, Washington, DC.

    Google Scholar 

  • Pohlman, A.A., and J.G. McColl. 1986. Kinetics of metal dissolution from forest soils by soluble organic acids. J. Environ. Qual. 15:86–92.

    CAS  Google Scholar 

  • Pulford, I.D. 1986. Mechanisms controlling zinc solubility in soils. J. Soil Sci. 37:427–438.

    CAS  Google Scholar 

  • Ragland, J.L., and N.T. Coleman. 1960. The hydrolysis of aluminum salts in clay and soil systems. Soil Sci. Soc. Am. Proc. 24:457–460.

    CAS  Google Scholar 

  • Rengasamy, P., and J.M. Oades. 1978. Interaction of monomeric and polymeric species of metal ions with clay surfaces. III. Aluminum and chromium. Aust. J. Soil Res. 16:53–66.

    CAS  Google Scholar 

  • Russell, J.D., R.L. Parfitt, A.R. Fraser, and V.C. Farmer. 1974. Surface structures of gibbsite, goethite and phosphated goethite. Nature (London) 248:220–221.

    CAS  Google Scholar 

  • Sajwan, K.S., and W.L. Lindsay. 1986. Effects of redox on zinc deficiency in paddy rice. Soil Sci. Soc. Am. J. 50:1264–1269.

    CAS  Google Scholar 

  • Sanders, J.R. 1982. The effect of pH upon the copper and cupric ion concentrations in soil solutions. J. Soil Sci. 33:679–689.

    CAS  Google Scholar 

  • Schindler, P.W., B. Furst, R. Dick, and P.U Wolf. 1976. Ligand properties of surface silanol groups: I. Surface complex formation with Fe3+, Cu2+, Cd2+, and Pb2+. J. Colloid Interfac. Sci. 55:469–475.

    CAS  Google Scholar 

  • Schnitzer, M., and S.I.M. Skinner. 1966. Organo-metallic interactions in soils: 5. Stability constants of Cu2+, Fe2+, and Zn2+-fulvic acid. Soil Sci. 102:361–365.

    CAS  Google Scholar 

  • Schnitzer, M., and S.I.M. Skinner. 1967. Organo-metallic interactions in soils: 7. Stability constants of Pb, Ni, Mn, Co, Ca, and Mg fulvic acid complexes. Soil Sci. 103:247–252.

    CAS  Google Scholar 

  • Schoonheydt, R.A. 1982. Ultraviolet and visible light spectroscopy, pp. 163–189. In: Developments in sedimentology, vol. 34. Advanced techniques for clay mineral analysis. J.J. Fripiat (ed.). Elsevier, NY.

    Google Scholar 

  • Schwertmann, U., R.W. Fitzpatrick, and J. LeRoux. 1977. Al substitution and differential disorder in soil hematites. Clays Clay Miner., 25:373–374.

    CAS  Google Scholar 

  • Sedlacek, J., E. Gjessing, and J.R Rambaek. 1987. Isotope exchange between inorganic iron and iron naturally complexed by aquatic humus. Sci. Total Environ. 62:275–279.

    CAS  Google Scholar 

  • Senesi, N., G. Sposito, and J.R Martin. 1986. Copper(II) and iron(III) complexation by soil humic acids: An IR and ESR study. Sci. Total Environ. 55:351–362.

    CAS  Google Scholar 

  • Senesi, N., G. Sposito, and J.R Martin. 1987. Copper(II) and iron(III) complexation by humic acid-like polymers (melanins) from soil fungi. Sci. Total Environ. 62:241–252.

    CAS  Google Scholar 

  • Shuman, L.M. 1979. Zinc, manganese, and copper in soil fractions. Soil Sci. 127:10–17.

    CAS  Google Scholar 

  • Shuman, L.M. 1986. Effect of ionic strength and anions on zinc adsorption by two soils. Soil Sci. Soc. Am. J. 50:1438–1442.

    CAS  Google Scholar 

  • Sidhu, P.S., R.J. Gilkes, and A.M. Posner. 1980. The behavior of Co, Ni, Zn, Cu, Mn and Cr in magnetite during alteration to maghemite and hematite. Soil Sci. Soc. Am. J. 44:135–138.

    CAS  Google Scholar 

  • Sposito, G. 1981. The thermodynamics of soil solutions. Clarendon Press, Oxford, UK.

    Google Scholar 

  • Sposito, G. 1986. Distinguishing adsorption from surface precipitation, pp. 217–228. In: Geochemical processes at mineral surfaces, J.A. Davis and K.F. Hayes (eds.). ACS Symposium Series no. 323, ACS, Washington, DC.

    Google Scholar 

  • Stanton, D.A., and R. DuT. Burger. 1970. Studies of zinc in selected Orange Free State soils: 5. Mechanisms for the reaction of zinc with iron and aluminum oxides. Agrochemophysica 2:65–76.

    Google Scholar 

  • Stevenson, F.J., and M.S. Ardakani. 1972. Organic matter reactions involving micronutrients in soils, pp. 79–114. In: Micronutrients in agriculture, J.J. Mortvedt et al. (eds.) Soil Sci. Soc. Am., Madison, WI.

    Google Scholar 

  • Stiers, W, and U. Schwertmann. 1985. Evidence for manganese substitution in synthetic goethite. Geochim. Cosmochim. Acta 49:1909–1911.

    CAS  Google Scholar 

  • Stone, A.T. 1986. Adsorption of organic reductants and subsequent electron transfer on metal oxide surfaces, pp. 446–461. In: Geochemical processes at mineral surfaces, J.A. Davis and K.F. Hayes (eds.). ACS Symposium Ser. no. 323, ACS, Washington, DC.

    Google Scholar 

  • Stone, A.T., and J.J. Morgan. 1984a. Reduction and dissolution of manganese(III) and manganese(IV) oxides by organics. 1. Reaction with hydroquinone. Environ. Sci. Technol. 18:450–456.

    CAS  Google Scholar 

  • Stone, A.T., and J.J. Morgan. 1984b. Reduction and dissolution of manganese(III) and manganese(IV) oxides by organics. 2. Survey of the reactivity of organics. Environ. Sci. Technol. 18:617–624.

    CAS  Google Scholar 

  • Stumm, W, H. Hohl, and F. Dalang. 1976. Interaction of metal ions with hydrous oxide surfaces. Croat. Chim. Acta 48:491–504.

    CAS  Google Scholar 

  • Stumm, W, and J.J. Morgan. 1981. Aquatic chemistry, 2d ed. Wiley, NY.

    Google Scholar 

  • Taylor, R.M. 1968. The association of manganese and cobalt in soils-further observations. J. Soil Sci. 19:77–80.

    CAS  Google Scholar 

  • Tiller, K.G., J. Gerth, and G. Brummer. 1984. The relative affinities of Cd, Ni and Zn for different soil clay fractions and goethite. Geoderma 34:17–35.

    CAS  Google Scholar 

  • Tiller, K.G., and J.F. Hodgson. 1962. The specific adsorption of Co and Zn by layer silicates. Clays Clay Miner., Proc. 9th Natl. Conf 11:393–403.

    Google Scholar 

  • Tiller, K.G., V.K. Nayyar, and P.M. Clayton. 1979. Specific and nonspecific sorption of cadmium by soil clays as influenced by zinc and calcium. Aust. J. Soil. Res. 17:17–28.

    CAS  Google Scholar 

  • Traina, S.J., and H.E. Doner. 1985a. Copper-manganese(II) exchange on a chemically reduced birnessite. Soil Sci. Soc. Am. J. 49:307–313.

    CAS  Google Scholar 

  • Traina, S.J., and H.E. Doner. 1985b. Heavy metal induced releases of manganese(II) from a hydrous manganese dioxide. Soil Sci. Soc. Am. J. 49:317–321.

    CAS  Google Scholar 

  • Turner, R.C., and J.E. Brydon. 1965. Factors affecting the solubility of Al(OH)3 precipitated in the presence of montmorillonite. Soil Sci. 100:176–181.

    CAS  Google Scholar 

  • Turner, R.C., and J.E. Brydon. 1967. Removal of interlayer aluminum hydroxide from montmorillonite by seeding the suspension with gibbsite. Soil Sci. 104:332–335.

    CAS  Google Scholar 

  • Tyler, L.D., and M.B. McBride. 1982. Influence of Cd, pH and humic acid on Cd uptake. Plant and Soil 64:259–262.

    CAS  Google Scholar 

  • van Bladel, R., and H. Laudelout. 1967. Apparent irreversibility of ion-exchange reactions in clay suspensions. Soil Sci. 104:134–137.

    Google Scholar 

  • von Zelewsky, A., and J. Bemtgen. 1982. Formation of ternary copper(II) complexes at the surface of silica gel as studied by ESR spectroscopy. Inorg. Chem. 21:1771–1777.

    Google Scholar 

  • Waite, T.D. 1986. Photoredox chemistry of colloidal metal oxides, pp. 426–445. In: Geochemical processes at mineral surfaces, J.A. Davis and K.F. Hayes (eds.). ACS Symposium Series no. 323, ACS, Washington, DC.

    Google Scholar 

  • Waite, T.D., and F.M.M. Morel. 1984. Photoreductive dissolution of colloidal iron oxides in natural waters. Environ. Sci. Technol. 18:860–868.

    CAS  Google Scholar 

  • Westall, J.C., and H. Hohl. 1980. A comparison of electrostatic models for the oxide/solution interface. Adv. Colloid Interfac. Sci. 12:265–294.

    CAS  Google Scholar 

  • Zinder, B., G. Furrer, and W. Stumm. 1986. The coordination chemistry of weathering: II. Dissolution of Fe(III) oxides. Geochim. Cosmochim. Acta 50:1861–1869.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

McBride, M.B. (1989). Reactions Controlling Heavy Metal Solubility in Soils. In: Stewart, B.A. (eds) Advances in Soil Science. Advances in Soil Science, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8847-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8847-0_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8849-4

  • Online ISBN: 978-1-4613-8847-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics