Skip to main content

Polycystic Ovary Syndrome (PCOS): The Possible Roles of Apoptosis in Human Granulosa Cells

  • Chapter
Polycystic Ovary Syndrome

Part of the book series: Serono Symposia USA ((SERONOSYMP))

Abstract

Polycystic ovary syndrome (PCOS) was described by Stein and Leventhal (1) as a syndrome consisting of amenorrhea, hirsutism, and obesity in association with enlarged polycystic ovaries. In this syndrome, folliculogenesis is altered, which leads to the accumulation of many cysts rather than the selection of a single dominant follicle. In PCOS, developing follicles undergo atresia, presumably promoted by elevated androgen levels. The elimination of atretic follicles occur in the absence of tissue damage or inflammation, suggesting that programmed cell death may be the mechanism for this elimination process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stein IF, Leventhal ML. Amenorrhea associated with bilateral polycystic ovaries. Am J Obstet Gynecol 1935; 29: 181–91.

    Google Scholar 

  2. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26: 239–57.

    Article  PubMed  CAS  Google Scholar 

  3. Kerr JF. Shrinkage necrosis: a distinct mode of cellular death. J Pathol 1971; 105: 13–20.

    Article  PubMed  CAS  Google Scholar 

  4. Wyllie AH. Apoptosis (The 1992 Frank Rose Memorial Lecture). Br J Cancer 1993; 67: 205–8.

    Article  PubMed  CAS  Google Scholar 

  5. Palumbo A, Yeh J. Apoptosis as a basic mechanism in the ovarian cycle: follicular atresia and luteal regression. J Soc Gynecol Invest 1995; 2: 565–73.

    Article  CAS  Google Scholar 

  6. Wyllie AH, Kerr JF, Currie AR. Cell death: the significance of apoptosis. Int Rev Cytol 1980; 68: 251–306.

    Article  PubMed  CAS  Google Scholar 

  7. Schwartzman RA, Cidlowski JA. Apoptosis: the biochemistry and molecular biology of programmed cell death. Endocr Rev 1993; 14: 133–51.

    PubMed  CAS  Google Scholar 

  8. Potten CS. The significance of spontaneous and induced apoptosis in the gastrointestinal tract of mice. Cancer Metastasis Rev 1992; 11: 179–95.

    Article  PubMed  CAS  Google Scholar 

  9. Tenniswood MP, Guenette RS, Lakin J, Mooibroek M, Wong P, Welsh JE. Active cell death in hormone-dependent tissues. Cancer Metastasis Rev 1992; 11: 197–220.

    Article  PubMed  CAS  Google Scholar 

  10. Gobe GC, Axelsen RA. Genesis of renal tubular atrophy in experimental hydronephrosis in the rat: role of apoptosis. Lab Invest 1987; 56: 273–81.

    PubMed  CAS  Google Scholar 

  11. Barr PJ, Tornei LD. Apoptosis and its role in human disease. Biotechnology 1994; 12: 487–93.

    Article  PubMed  CAS  Google Scholar 

  12. Bright J, Khar J, Khar A. Apoptosis: programmed cell death in health and disease. Biosci Rep 1994; 14: 67–81.

    Article  PubMed  CAS  Google Scholar 

  13. Bursch W, Oberhammer F, Schulte-Hermann R. Cell death by apoptosis and its protective role against disease. Trends Pharmacol Sci 1992; 13: 245–51.

    Article  PubMed  CAS  Google Scholar 

  14. Steller H. Mechanisms and genes of cellular suicide. Science 1995; 267: 1445–9.

    Article  PubMed  CAS  Google Scholar 

  15. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995; 267: 1456–62.

    Article  PubMed  CAS  Google Scholar 

  16. Bursch W, Paffe S, Putz B, Barthel G, Schulte-Hermann R. Determination of the length of the histological stages of apoptosis in normal liver and in altered hepatic foci of rats. Carcinogenesis 1990; 11: 847–53.

    Article  PubMed  CAS  Google Scholar 

  17. Wyllie AH. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 1980; 284: 555–6.

    Article  PubMed  CAS  Google Scholar 

  18. Kerr JF, Harmon BV. Definition and incidence of apoptosis: an historical perspective. In: Tomei LD, Cope FO, editors. Apoptosis. the molecular basis of cell death. Plainview, NY: Cold Spring Harbor Laboratory Press, 1991: 5–29.

    Google Scholar 

  19. Arends MJ, Morris RG, Wyllie AH. Apoptosis: the role of the endonuclease. Am J Pathol 1990; 136: 593–608.

    PubMed  CAS  Google Scholar 

  20. Hengartner MO, Ellis RE, Horvitz HR. Caenorhabditis elegansgene ced-9 protects cells from programmed cell death. Nature 1992; 356: 494–9.

    Article  PubMed  CAS  Google Scholar 

  21. Ellis RE, Yuan JY, Horvitz HR. Mechanisms and functions of cell death. Annu Rev Cell Biol 1991; 7: 663–98.

    Article  PubMed  CAS  Google Scholar 

  22. Majno G, Joris I. Apoptosis, oncosis, and necrosis: an overview of cell death. Am J Pathol 1995; 146: 3–15.

    PubMed  CAS  Google Scholar 

  23. O’Shea JD, Hay MF, Cran DG. Ultrastructural changes in the theca interna during follicular atresia in sheep. J Reprod Fertil 1978; 54: 183–7.

    Article  PubMed  Google Scholar 

  24. O’Shea JD, Nightingale MG, Chamley WA. Changes in small blood vessels during cyclical luteal regression in sheep. Biol Reprod 1977; 17: 162–77.

    Article  PubMed  Google Scholar 

  25. Hurwitz A, Adashi EY. Ovarian follicular atresia as an apoptotic process: a paradigm for programmed cell death in endocrine tissues. Mol Cell Endocrinol 1992; 84: C19–23.

    Article  PubMed  CAS  Google Scholar 

  26. Zeleznik AJ, Ihrig LL, Bassett SG. Developmental expression of Ca++/Mg++dependent endonuclease activity in rat granulosa and luteal cells. Endocrinology 1989; 125: 2218–20.

    Article  PubMed  CAS  Google Scholar 

  27. Tilly JL, Kowalski KI, Johnson AL, Hsueh AJ. Involvement of apoptosis in ovarian follicular atresia and postovulatory regression. Endocrinology 1991; 129: 2799–801.

    Article  PubMed  CAS  Google Scholar 

  28. Palumbo A, Yeh J. In situ localization of apoptosis in the rat ovary during follicular atresia. Biol Reprod 1994; 51: 888–95.

    Article  PubMed  CAS  Google Scholar 

  29. Tsujimoto Y, Finger LR, Yunis J, Nowell PC, Croce CM. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 1984; 226: 1097–9.

    Article  PubMed  CAS  Google Scholar 

  30. Pezzella F, Turley H, Kuzu I, Tungekar MF, Dunnill MS, Pierce CB, Harris A, Gatter KC, Mason DY. bd-2 protein in non-small-cell lung carcinoma. N Engl J Med 1993; 329: 690–4.

    Article  PubMed  CAS  Google Scholar 

  31. Vaux DL, Weissman IL, Kim SK. Prevention of programmed cell death in Caenorhabditis elegansby human bd-2. Science 1992; 258: 1955–6.

    Article  PubMed  CAS  Google Scholar 

  32. Kane DJ, Sarafian TA, Anton R, Hahn H, Gralla EB, Valentine JS, Ord T, Bredesen DE. Bd-2 inhibition of neural death: decreased generation of reactive oxygen species. Science 1993; 262: 1274–7.

    Article  PubMed  CAS  Google Scholar 

  33. Itoh N, Tsujimoto Y, Nagata S. Effect of bcl-2 on Fas antigen-mediated cell death. J Immunol 1993; 151: 621–7.

    PubMed  CAS  Google Scholar 

  34. Bissonnette RP, Echeverri F, Mahboubi A, Green DR. Apoptotic cell death induced by c-mycis inhibited by bc1–2. Nature 1992; 359: 552–4.

    Article  PubMed  CAS  Google Scholar 

  35. Veis DJ, Sorenson CM, Shutter JR, Korsmeyer SJ. Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 1993; 75: 229–40.

    Article  PubMed  CAS  Google Scholar 

  36. Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Korsmeyer SJ. Bc1–2 functions in an antioxidant pathway to prevent apoptosis. Cell 1993; 75: 241–51.

    Article  PubMed  CAS  Google Scholar 

  37. Joensuu H, Pylkkanen L, Toikkanen S. Bcl-2 protein expression and long-term survival in breast cancer. Am J Pathol 1994; 145: 1191–8.

    PubMed  CAS  Google Scholar 

  38. Oltvai ZN, Milliman CL, Korsmeyer SJ. Bc1–2 heterodimerizes in vivo with a conserved homolog, bax, that accelerates programmed cell death. Cell 1993; 74: 609–19.

    Article  PubMed  CAS  Google Scholar 

  39. Yin X, Oltvai ZN, Korsmeyer SJ. BH1 and BH2 domains of bcl-2 are required for inhibition of apoptosis and heterodimerization with bax. Nature 1994; 369: 321–3.

    Article  PubMed  CAS  Google Scholar 

  40. Boise L, Gonzalez-Garcia M, Postema M, Ding L, Lindsten T, Turka LA, Mao X, Nunez G, Thompson CB. Bel-x, a bcl-2 related gene that functions as a dominant regulator of apoptotic cell death. Cell 1993; 74: 597–608.

    Article  PubMed  CAS  Google Scholar 

  41. Yeh J, Lin MC, Hasselblatt K. Concurrent expression of fas and bc1–2 mRNA in hyperandrogenized rat granulosa cells. Mol Biol Cell 1994; 5: 95a.

    Google Scholar 

  42. Tilly JL, Tilly KI, Kenton ML, Johnson AL. Expression of members of the bcl2 gene family in the immature rat ovary: equine chorionic gonadotropionmediated inhibition of granulosa cell apoptosis is associated with decreased bax and constitutive bcl-2 and bcl-xiong messenger ribonucleic acid levels. Endocrinology 1995; 136: 232–41.

    Article  PubMed  CAS  Google Scholar 

  43. Nagata S. Apoptosis regulated by a death factor and its receptor: Fas ligand and Fas. Philos Trans R Soc Lond B Biol Sci 1994; 345: 281–7.

    Article  PubMed  CAS  Google Scholar 

  44. Yonehara S, Ishii A, Yonehara M. A cell-killing monoclonal antibody (anti-FAS) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J Exp Med 1989; 169: 1747–56.

    Article  PubMed  CAS  Google Scholar 

  45. Trauth BC, Klas C, Peters AM, Matzku S, Moller P, Falk W, Debatin KM, Krammer PH. Monoclonal antibody-mediated tumor regression by induction of apotosis. Science 1989; 245: 301–5.

    Article  PubMed  CAS  Google Scholar 

  46. Suda T, Takahashi T, Goldstein P, Nagata S. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 1993; 75: 1169–78.

    Article  PubMed  CAS  Google Scholar 

  47. Suda T, Nagata S. Purification and characterization of the Fas-ligand that induces apoptosis. J Exp Med 1994; 179: 873–8.

    Article  PubMed  CAS  Google Scholar 

  48. Itoh N, Yonehara S, Ishii A, Yonehara M, Mizushima S, Sameshima M, Hase A, Seto Y, Nagata S. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 1991; 66: 233–43.

    Article  PubMed  CAS  Google Scholar 

  49. Itoh N, Nagata S. A novel protein domain required for apoptosis: mutational analysis of human Fas antigen. J Biol Chem 1993; 268: 10932–7.

    PubMed  CAS  Google Scholar 

  50. Mountz JD, Zhou T, Wu J, Wang W, Su X, Cheng J. Regulation of apoptosis in immune cells. J Clin Immunol 1995; 15: 1–16.

    Article  PubMed  CAS  Google Scholar 

  51. Cifone MG, De Maria R, Roncaioli P, Rippo MR, Azuma M, Lanier LL, Santoni A, Testi R. Apoptotic signalling through CD95 (Fas/Apo-1) activates an acidic sphingomyelinase. J Exp Med 1994; 177: 1547–52.

    Article  Google Scholar 

  52. Guo MW, Mori E, Xu JP, Mori T. Identification of Fas antigen associated apoptotic cell death in murine ovary. Biochem Biophys Res Commun 1994; 203: 1438–46.

    Article  PubMed  CAS  Google Scholar 

  53. Quirk SM, Cowan RG, Joshi SG, Henrikson KP. Fas antigen-mediated apoptosis in human granulosa/luteal cells. Biol Reprod 1995; 52: 279–87.

    Article  PubMed  CAS  Google Scholar 

  54. Montpetit ML, Lawless KR, Tenniswood M. Androgen-repressed messages in the rat ventral prostate. Prostate 1986; 8: 25–36.

    Article  PubMed  CAS  Google Scholar 

  55. Buttyan R, Olsson CA, Pintar J, Chang C, Bandyk M, Ng PY, Sawczuk IS. Induction of the TRPM-2 gene in cells undergoing programmed death. Mol Cell Biol 1989; 9: 3473–81.

    PubMed  CAS  Google Scholar 

  56. Kyprianou N, English HF, Issacs JT. Programmed cell death during regression of PC-82 human prostate cancer following androgen ablation. Cancer Res 1990; 50: 3748–53.

    PubMed  CAS  Google Scholar 

  57. Kyprianou N, English HF, Davidson NE, Issacs JT. Programmed cell death during regression of the MCF-7 human breast cancer following estrogen ablation. Cancer Res 1991; 51: 162–6.

    PubMed  CAS  Google Scholar 

  58. Rennie PS, Mawji NR, Coldman AJ, Godolphini W, Jones EC, Vielkind, JR, Bruchovsky N. Relationship between variant forms of estrogen receptor RNA and an apoptosis-related RNA, TRPM-2, with survival in patients with breast cancer. Cancer 1993; 72: 3648–54.

    Article  PubMed  CAS  Google Scholar 

  59. Bettuzzi S, Hiipakka RA, Gilna P, Liao ST. Identification of an androgen-repressed mRNA in rat ventral prostate as coding for sulphated glycoprotein 2 by cDNA cloning and sequence analysis. Biochem J 1989; 257: 293–6.

    PubMed  CAS  Google Scholar 

  60. Jenne DE, Tschopp J. Molecular structure and functional characterization of a human complement cytolysis inhibitor found in blood and seminal plasma: identity to sulfated glycoprotein 2, constituent of rat testis fluid. Proc Natl Acad Sci USA 1989; 86: 7123–7.

    Article  PubMed  CAS  Google Scholar 

  61. Sanders SL, Kaynard AH, Meiner MH. Localization and expression of sulfated glycoprotein-2 (SGP-2) mRNA in the rat ovary. Proceedings of the 75th Meeting of The Endocrine Society 1993; abstr 1632.

    Google Scholar 

  62. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 1992; 356: 215–21.

    Article  PubMed  CAS  Google Scholar 

  63. Clarke AR, Purdie CA, Harrison DJ, Morris RG, Bird CC, Hooper ML, Wyllie AH. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 1993; 362: 849–52.

    Article  PubMed  CAS  Google Scholar 

  64. Lowe SW, Schmitt EM, Smith SW, Osborne, BA, Jacks T. p53 is required for radiation induced apoptosis in mouse thymocytes. Nature 1993; 362: 847–9.

    Article  PubMed  CAS  Google Scholar 

  65. Lane DP. A death in the life of p53. Nature 1993; 362: 786–7.

    Article  PubMed  CAS  Google Scholar 

  66. Tilly KI, Banerjee S, Banerjee PP, Tilly JL. Expression of the p53 and Wilms’ tumor suppressor genes in the rat ovary: gonadotropin repression in vivo and immunohistochemical localization of nuclear p53 protein to apoptotic granulosa cells of atretic follicles. Endocrinology 1995; 136: 1394–402.

    Article  PubMed  CAS  Google Scholar 

  67. Evan GI, Wyllie AH, Gilbert CS, Littlewood TD, Land H, Brooks M, Waters CM, Penn LZ, Hancock DC. Induction of apoptosis in fibroblasts by c-mycprotein. Cell 1992; 69: 119–28.

    Article  PubMed  CAS  Google Scholar 

  68. Strasser A, Harris AW, Bath ML, Cory S. Novel primitive lymphoid tumors induced in transgenic mice by cooperation between mycand bc1–2. Nature 1990; 348: 331–3.

    Article  PubMed  CAS  Google Scholar 

  69. Hermeking H, Eick D. Mediation of c-myc-induced apoptosis by p53. Science 1994; 265: 2091–3.

    Article  PubMed  CAS  Google Scholar 

  70. Sasano H, Nagura H, Silverberg SG Immunolocalization of c-myc oncoprotein in mucinous and serous adenocarcinomas of the ovary. Hum Pathol 1992; 23: 491–5.

    Article  PubMed  CAS  Google Scholar 

  71. Lee BS, Robinson RD, Best CL, Hill JA, Yeh J. Expression of apoptosis related genes, bc1–2 and trpm-2 in human luteinized granulosa cells [abstract]. J Soc Gynecol Invest 1995; 2: 389.

    Google Scholar 

  72. Li S, Maruo T, Ladine-Llave CA, Kondo H, Mochizuki M. Stage-limited expression of myconcoprotein in the human ovary during follicular growth, regression and atresia. Endocr J 1994; 41: 83–92.

    Article  PubMed  CAS  Google Scholar 

  73. Palumbo A, Yeh J. In situ identification of apoptosis in a rat model of polycystic ovarian disease. Proceedings of the 41st Meeting of The Society for Gynecologic Investigation 1994; abstr 073.

    Google Scholar 

  74. Yeh J, Lee GY, Anderson E. Presence of transforming growth factor-alpha messenger ribonucleic acid (mRNA) and absence of epidermal growth factor mRNA in rat ovarian granulosa cells, and the effects of these factors on steroidogenesis in vitro. Biol Reprod 1993; 48: 1071–81.

    Article  PubMed  CAS  Google Scholar 

  75. Tilly JL, Billig H, Kowalski KI, Hsueh AJ. Epidermal growth factor and basic fibroblast growth factor suppress the spontaneous onset of apoptosis in cultured rat ovarian granulosa cells and follicles by a tyrosine kinase-depenent mechanism. Mol Endocrinol 1992; 6: 1942–50.

    Article  PubMed  CAS  Google Scholar 

  76. Ma YJ, Dissen GA, Merlino G, Coquelin A, Ojeda SR. Overexpression of a human transforming growth factor alpha (TGF a) transgene reveals a dual antagonistic role of TGF alpha in female sexual development. Endocrinology 1994; 135: 1392–400.

    Article  PubMed  CAS  Google Scholar 

  77. Korsmeyer SJ. Regulators of cell death. Trends Genet 1995; 11: 101–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Yeh, J., Kim, H.H. (1996). Polycystic Ovary Syndrome (PCOS): The Possible Roles of Apoptosis in Human Granulosa Cells. In: Chang, R.J. (eds) Polycystic Ovary Syndrome. Serono Symposia USA. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8483-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8483-0_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8485-4

  • Online ISBN: 978-1-4613-8483-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics