Skip to main content

Energy Rich Phosphagens in Dynamic and Static Work

  • Chapter
Muscle Metabolism During Exercise

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 11))

Abstract

The understanding of muscle metabolism and its regulation in situ has been greatly advanced in recent years by the analysis of the levels of metabolic intermediates under differing conditions. Only recently has it been possible to perform similar studies in mail. In the present studies muscle samples have been obtained using the needle biopsy technique (1, 10, 11) and the levels of a number of metabolites in these have been determined by enzymatic micro-methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BERGSTRÖM J. Musc1e electrolytes in man. Detex by neutron activation analysis on needle biopsy specimens. A study on normal subjects, kidney patients, end patients with chronic diarrhoea. Scand J.Clin.Lab.Invest 14: Suppl. 68, 1962.

    Google Scholar 

  2. BUEDING, E. and J.M. MANSOUR. The relationship between inhibition of phosphofructokinase activity and the mode of action of trivalent organic antinionials on schistosoma mansoni. Brit.J.Pharm 12: 159–165, 1957.

    CAS  Google Scholar 

  3. CORSI, A., M. MIDRIO, and A.L. GRANATA. In situ utilization of glycogen and blood glucose by skeletal muscle during tetanus. Am. J. Physiol. 216: 1534–1541, 1969.

    PubMed  CAS  Google Scholar 

  4. DANFORTH, W.H. and J.B. LYON Jr. Glycogenolysis during tetanic contraction of isolated mouse muscles in the presence and absence of phosphorylase a. J. Biol. Chem. 239: 4047–4050, 1964.

    PubMed  CAS  Google Scholar 

  5. DI PRAMPERO, P.R. and R. MARGARIA. Mechanical efficiency of phosphagen (ATP + CP) splitting and its speed of resynthesis. Pfluegers Arch. Ges. Physiol. 308: 197–202, 1969.

    Article  Google Scholar 

  6. FAWAZ, E.N., G. FAWAZ, and K. VON DAIIL. Enzymatic estimation of phosphocreatine. Proc. Soc. Exp. Biol. Med. 109: 38–41, 1962.

    PubMed  CAS  Google Scholar 

  7. GARLAND, P.B., P.J. RANDLE, and E.A. NEWSHOLME. Citrate as an intermediary in the inhibition of phosphofructokinase in rat heart muscle by fatty acids, ketone bodies, pyruvate, diabetes and starvation. Nature 200: 169–170, 1963.

    Article  PubMed  CAS  Google Scholar 

  8. HOFER, H.V. and D. PETTE. Wirkungen und Wechselwirkungen von Substraten und Effektoren an der Phosphofructokinase des Kaninchen-Skeletmuskels. Z. Physici. Chem. 349: 1378–1392, 1968.

    Article  CAS  Google Scholar 

  9. HOHORST, H. J., M. REIM, and H. BARTELS. Studies on the creatine kinase equilibrium in muscle and the significance of ATP and ADP levels. Biochem. Biophys. Res. Commun. 7: 142–146, 1962.

    Article  PubMed  CAS  Google Scholar 

  10. HULTMAN, E. Studies on muscle metabolism and active phosphate in man with special reference to exercise and diet. Scand. J. Clin. Lab. Invest. 19: Suppl. 94, 1967.

    Google Scholar 

  11. HULTMAN, E., J. BERGSTRÖM and N. MC LENNAN ANDERSON. Break down and resynthesis of phosphorylcreatine and adenosine triphosphate in connection with muscular work in man. Scand. J. Clin. Lab. Invest. 19: 56–66, 1967.

    Article  PubMed  CAS  Google Scholar 

  12. KREBS, E.G. and E.H. FISCHER. Phosphorylase activity of skeletal muscle extracts. J. Biol. Chem. 216: 113–120, 1955.

    PubMed  CAS  Google Scholar 

  13. KRZANOWSKI, I. and F.M. MATSCHINSKY. Regulation of phospho fructokinase by phosphocreatine and phosphorylated glycolytic intemediates. Biochem. Biophys. Res. Commun. 34: 816–823, 1969.

    Article  PubMed  CAS  Google Scholar 

  14. LARDY, H.A. and E. PARKS Jr. in: GAEBLER, O.H. ed. Enzymes: biological structure and function New York: Academic Press, 1956, p. 584.

    Google Scholar 

  15. MANSOU T. E. Studies on heart phosphofructokinase: purification, inhibition and activation. J. Biol. Chem. 238: 2285–2292, 1963.

    Google Scholar 

  16. MORGAN, H.E. and A. PARMEGGIANI. Regulation of glycogenolysis in muscle. II Control of glycogen phosphorylase reaction in isolated perfused heart. III. Control of muscle glycogen phosphorylase activity. J. Biol. Chem. 239: 2435–2439, 1964.

    PubMed  CAS  Google Scholar 

  17. PARMEGGIANI, A. and R.H. BOWMAN. Regulation of phosphofructo kinase activity by citrate in normal and diabetic muscle. Biochem. Biophys. Res. Commun. 12: 268–273, 1963.

    Article  PubMed  CAS  Google Scholar 

  18. PASSOMNEAU, J.V. and O.H. LOWRY. P-fructokinase and the control of the citric acid cycle. Biochem. Biophys. Res. Commun. 13: 372–379, 1963.

    Article  Google Scholar 

  19. POSNER, J.B., R. STERN, and E.G. KREBS. Effects of electrical stimulation and epinephrine on muscle phosphorylase, phosphorylase b kinase and adenosine 3′ 5′ phosphate. J. Biol. Chem. 240: 982–985, 1965.

    PubMed  CAS  Google Scholar 

  20. SCHULZ, D.W., J.V. PASSONNEAU, and O.H. LOWRY. An enzymic method for the measurement of inorganic phosphate. Anal. Biochem 19: 300–314, 1967.

    Article  PubMed  CAS  Google Scholar 

  21. TORNVALL, G. Assessment of physical capabilities with special reference to the evaluation of maximal voluntary isometric muscle strength and maximal working capacity. Acta Physiol. Scand. 50: Suppl. 201, 1963.

    Google Scholar 

  22. TRIVEDI, B. and W.H. DANFORTH. Effect of pH-dependent on the kinetics of frog muscle phosphofructokinase. J. Biol. Chem. 241: 4110–4114, 1966.

    PubMed  CAS  Google Scholar 

  23. UI, M. A role of phosphofructokinase in pH-dependent regulation of glycolysis. Biochim. Biophys. Acta 124: 310–322, 1966.

    Article  PubMed  CAS  Google Scholar 

  24. WILSON, J.E., B. SACKTOR, and C.G. TIEKERT. In situ regulation of glycolysis in tetanized cat skeletal muscle. Arch. Biochem. Biophys. 120: 542–546, 1967.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Plenum Press, New York

About this chapter

Cite this chapter

Bergström, J., Harris, R.C., Hultman, E., Nordesjö, LO. (1971). Energy Rich Phosphagens in Dynamic and Static Work. In: Pernow, B., Saltin, B. (eds) Muscle Metabolism During Exercise. Advances in Experimental Medicine and Biology, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4609-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4609-8_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4611-1

  • Online ISBN: 978-1-4613-4609-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics