Skip to main content

Riboflavin Deficiency and Congenital Malformations

  • Chapter
Riboflavin

Abstract

Experimental riboflavin deficiency has served as a useful tool of teratologic research in mammals. It had been possible for over 100 years to produce congenital malformations in chicks by various environmental disturbances, and for many years a variety of monstrosities had been produced experimentally in amphibia and fishes. Eggs and embryos of animals of lower classes are easily accessible to modification, but mammalian ova that develop in the mother’s body are well protected against adverse influences of the outside world. It was generally assumed until 35 years ago that environmental insults to pregnant mammals terminate in death of the embryos—or leave them morphologically intact, resulting in the birth of normal young. It was believed, and often dogmatically stated, that in mammals and in man systemic and internal congenital malformations must be genetically determined and hereditary, since, with the exception of rare amputations by mechanical intrauterine disturbances, no exogenous factors were known that could bring about prenatal deformities in embryos and fetuses. It was thought in particular that in mammals symmetrical and serial malformations (that is, defects involving upper and lower extremities) must be hereditary. This belief was expressed not only in the medical literature but also incorporated in the German Law of 1933 for Prevention of Offspring with Heritable Diseases.(59,65)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aksu, O., Mackler, B., Shepard, T. H., and Lemire, R. J. 1968. Studies of the development of congenital anomalies in embryos of riboflavin-deficient, galactoflavin fed rats. II. Role of the terminal electron transport systems, Teratology 1:93–102.

    Article  CAS  Google Scholar 

  2. Bertrand, M., Florio, R., Magat, A., and Delatour, P. 1964. Sur la potentialisations des effets embryotoxiques du thalidomide chez la ratte, C. R. Soc. Biol. (Paris) 158:737.

    CAS  Google Scholar 

  3. Braun, K., Bromberg, Y. M., and Brzezinski, A. 1945. Riboflavin deficiency in pregnancy, J. Obstet. Gynaecol. Brit. Commonw. 52:43.

    Article  CAS  Google Scholar 

  4. Brent, R. L., and Jensh, R. P. 1967. Intra-uterine growth retardation, Adv. Teratol. 2:139–227.

    Google Scholar 

  5. Brzezinski, A., Bromberg, Y. M., and Braun, K. 1947. Riboflavin deficiency in pregnancy. Its relationship to the course of pregnancy and to the condition of the foetus, J. Obstet. Gynaecol. Brit. Commonw. 54:182–186.

    Article  CAS  Google Scholar 

  6. Cheng, D. W., Bairnson, T. A., Rao, A. N., and Subbammal, S. 1960. Effect of variations of rations on the incidence of teratogeny in vitamin E-deficient rats, J. Nutr. 71:54–60.

    CAS  Google Scholar 

  7. Conway, H. 1958. Effect of supplemental vitamin therapy on the limitation of incidence of cleft lip and cleft palate in humans, Plast. Reconstr. Surg. 22:450–453.

    Article  CAS  Google Scholar 

  8. Dawson, A. B. 1926. Note on the staining of the skeleton of cleared specimens with alizarin red S, Stain Technol. 1:123–124.

    Google Scholar 

  9. Dunn, L. C. 1939. Heredity and development of early abnormalities in vertebrates, Harvey Lect. 35:135–165.

    Google Scholar 

  10. Dyban, A. P., and Akimova, I. M. 1966. The significance of vitamin B complex and genetic factors in reaction to thalidomide in rat embryos, Arkh. Anat. 51:3–17.

    CAS  Google Scholar 

  11. Erway, L., Hurley, L. S., and Fraser, A. 1966. Neurological defect: manganese in phenocopy and prevention of a genetic abnormality of inner ear, Science 152:1766–1767.

    Article  CAS  Google Scholar 

  12. Erway, L. C., Fraser, A. S., and Hurley, L. S. 1971. Prevention of congenital otolith defect in pallid mutant mice by manganese supplementation, Genetics 67:97–108.

    CAS  Google Scholar 

  13. Felisati, D.,and Nodari, R. 1963. Effets toxiques et tératogéniques de la thalidomide sur les foetus de lapin, Schweiz. Med. Wochenschr. 93:1559–1562.

    CAS  Google Scholar 

  14. Fraser, F. C., and Warburton, D. 1964. No association of emotional stress or vitamin supplement during pregnancy to cleft lip or palate in man, Plast. Reconstr. Surg. 33:395–399.

    Article  CAS  Google Scholar 

  15. Friedman, L., Shue, G. M., and Hove, E. L. 1965. Response of rats to thalidomide as affected by riboflavin or folic acid deficiency, J. Nutr. 85:309–317.

    CAS  Google Scholar 

  16. Gilman, J. P. W., Berry, F. A., and Hill, D. C. 1952. Some effects of maternal riboflavin deficiency on reproduction in rats, Canad. J. Med. Sci. 30:383–389.

    CAS  Google Scholar 

  17. Giroud, A., and Boisselot, J. 1947. Répercussions de l’avitaminose BZ sur l’embryon du rat, Arch. Fr. Pediatr. 4:317–327.

    Google Scholar 

  18. Giroud, A. 1970, “The Nutrition of the Embryo,” Charles C Thomas Co., Springfield.

    Google Scholar 

  19. Goldschmidt, R. B. 1938. “Physiological Genetics,” McGraw-Hill Book Co., Inc., New York.

    Google Scholar 

  20. Grainger, R. B., O’Dell, B. L., and Hogan, A. G. 1954. Congenital malformations as related to deficiencies of riboflavin and vitamin B 12, source of protein, calcium to phosphorus ratio and skeletal phosphorus metabolism, J. Nutr. 54:33–48.

    CAS  Google Scholar 

  21. Hale, F. 1933. Pigs born without eye balls, J. Hered. 24:105–106.

    Google Scholar 

  22. Hale, F. 1937. The relation of maternal vitamin A deficiency to microphthalmia in pigs, Texas State J. Med. 33:228–332.

    Google Scholar 

  23. Hill, R. M., Holtkamp, D. E., Buchanan, A. R., and Rutledge, E. K. 1950. Manganese deficiency in rats with relation to ataxia and loss of equilibrium, J. Nutr. 41:359–371.

    CAS  Google Scholar 

  24. Hurley, L. S., Everson, G. J., and Geiger, J. F. 1958. Manganese deficiency in rats: Congenital nature of ataxia, J. Nutr. 66:309–320.

    CAS  Google Scholar 

  25. Kalter, H., and Warkany, J. 1957. Congenital malformations in inbred strains of mice induced by riboflavin-deficient, galactoflavin-containing diets, J. Exp. Zool. 136:531–565.

    Article  CAS  Google Scholar 

  26. Kim, Y. S., and Lambooy, J. P. 1971. Induction of a specific enzyme inadequacy in infant rats by the use of a homologue of riboflavin. J. Nutr. 101:819–830.

    CAS  Google Scholar 

  27. Lambooy, J. P. 1966. Riboflavin antagonists, Bibl. Nutr. Diet. 8:139–155.

    CAS  Google Scholar 

  28. Landauer, W.; and Clark, E. M. 1964. On the role of riboflavin in the teratogenic activity of boric acid, J. Exp. Zool. 156:307–312.

    Article  CAS  Google Scholar 

  29. Leck, I. M., and Millar, E. L. M. 1962. Incidence of malformations since the introduction of thalidomide,Brit. Med. J. 2:16–20.

    Article  CAS  Google Scholar 

  30. Lenz, W. 1961. Diskussionsbemerkung zu dem Vortrag von R. A. Pfeiffer and K. Kosenow: Zur Frage der exogenen Entstehung schwerer Extremitätenmissbildungen, Tagung der Rheinisch-Westfälischen Kinderärztevereinigung in Düsseldorf 19:11.

    Google Scholar 

  31. Lenz, W. 1963. Das Thalidomid-Syndrom. Fortschr. Med. 81:148–155.

    Google Scholar 

  32. Mackler, B. 1969. Studies of the molecular basis of congenital malformations, Pediatrics 43:915–926.

    CAS  Google Scholar 

  33. Mackler, B. 1970. Studies on mitochondrial energy systems during embryogenesis in the rat, in: “Metabolic Pathways in Mammalian Embryos during Organogenesis and Its Modification by Drugs,” (R. Bass, F. Beck, H.-J.Merker, D. Neubert, and B. Randhahn, eds.), Freie Universität Berlin.

    Google Scholar 

  34. Maw, A. J. G., 1954. Inherited riboflavin deficiency in chicken eggs. Poult. Sci. 33:216–217.

    Google Scholar 

  35. McBride, W. G., 1961. Thalidomide and congenital abnormalities. Lancet 2:1358.

    Google Scholar 

  36. Meltzer, H. J., 1956. Congenital anomalies due to attempted abortion with 4-aminopteroglutamic acid. JAMA 161:1253.

    Google Scholar 

  37. Miller, Z., Poncet, I., and Takacs, E. 1962. Biochemical studies on experimental congenital malformations: Flavin nucleotides and folic acid in fetuses and livers from normal and riboflavin-deficient rats. J. Biol. Chem. 237:968–973.

    CAS  Google Scholar 

  38. Nelson, M. M., Asling, C. W., and Evans, H. M., 1952. Production of multiple congenital abnormalities in young by maternal pteroylglutamic acid deficiency during gestation. J. Nutr. 48:61–80.

    CAS  Google Scholar 

  39. Nelson, M. M., Baird, C. D. C., Wright, H. V. and Evans, H. M. 1956. Multiple congenital abnormalities in the rat resulting from riboflavin deficiency induced by the antimetabolite galactoflavin. J. Nutr. 58:125–134.

    CAS  Google Scholar 

  40. Noback, C. R., and Kupperman, H. S., 1944. Anomalous offspring and growth of Wistar rats maintained on a deficient diet. Soc. Exp. Biol. Med. 57:183–185.

    CAS  Google Scholar 

  41. Norris, L. C., and Caskey, C. D., 1939. A chronic congenital ataxia and osteodystrophy in chicks due to manganese deficiency. J. Nutr. 17:407–417.

    Google Scholar 

  42. Palludan, B., 1966. A-Avitaminosis in Swine: A Study of the Importance of Vitamin A for Reproduction. Munksgaard, Copenhagen.

    Google Scholar 

  43. Peer, L. A., Strean, L. P., Walker, J. C., Jr., Bernhard, W. G., and Peck, G. C., 1958. Study of 400 pregnancies with birth of cleft lip-palate infants. Protective effect of folic acid and vitamin B6 therapy, Plast. Reconstr. Surg. 22:422–449.

    Article  Google Scholar 

  44. Persaud, T. V. N. 1970. Studies on the mechanism of teratogenic action of hypoglycin, Teratology 3:208 (abstr.).

    Google Scholar 

  45. Potier de Courcy, G., and Terroine, T. 1968a. Influence de la carence en riboflavin sur la fonction phosphatasique alcaline des organes maternels et foetaux à différents stades de la gestation, Ann. Nutr. Alim. 22:95–100.

    Google Scholar 

  46. Potier de Courcy, G., and Terroine, T. 1968b. Conséquences chez le rat de la carence en riboflavine sur la composition globale de certains tissues maternels et foetaux, Arch. Sci. Physiol. 22:329–355.

    Google Scholar 

  47. Potier de Courcy, G., Susbielle, H., and Terroine, T. 1970. Etude du zinc dans l’ariboflavinose tératogène chez le rat,Arch. Sci. Physiol. 24:409–417.

    Google Scholar 

  48. Potier De Cjurcy, G., Desmettre-Miguet, S., Macquart-Moulin, M. R., and Terroine, T. 1974. Evolution enzymatique des tissue foetaux et placantaires de rat en carence teratogene de riboflavine, J. Embryol. Exp. Morph. 31:183–198.

    Google Scholar 

  49. Remington, R. E. 1937. Improved growth in rats on iodine deficient diets, J. Nutr. 13:223–233.

    CAS  Google Scholar 

  50. Ritter, E. J., Scott, W. J., and Wilson, J. G. 1974. Correlation between teratogenicity and ATP synthesis in embryos from riboflavin deficient and 6-aminonicotinamide treated rats (abstr.), Teratology (in press).

    Google Scholar 

  51. Rivlin, R. S., and Langdon, R. G. 1966. Regulation of hepatic FAD levels by thyroid hormone. Adv. Enzyme Regul. 4:45–58.

    Article  CAS  Google Scholar 

  52. Rivlin, R. S. 1969. Perinatal development of enzymes synthesizing FMN and FAD, Amer. J. Physiol. 216:979–982.

    CAS  Google Scholar 

  53. Rivlin, R. S. 1970. Riboflavin metabolism, New Eng. J. Med. 283:463–472.

    Article  CAS  Google Scholar 

  54. Shepard, T. H., Lemire, R. J., Aksu, O., and Mackler, B. 1968. Studies of the development of congenital anomalies in embryos of riboflavin-deficient, galactoflavin fed rats, Teratology 1:75–92.

    Article  Google Scholar 

  55. Shepard, T., and Bass, G. L. 1970. Organ culture of limb buds from riboflavin-deficient and normal rat embryos in normal and riboflavin-deficient media, Teratology 3:163–167.

    Article  CAS  Google Scholar 

  56. Skre, H. 1963. Talidomidpolyneuritt. En form for riboflavinavitaminose? Nord. Med. 15:916–918.

    Google Scholar 

  57. Steenbock, H., and Black, A. 1925. Fat-soluble vitamins. XXIII. The induction of growth promoting and calcifying properties in fats and their unsaponifiable constituents by exposure to light, J. Biol. Chem. 64:263–298.

    CAS  Google Scholar 

  58. Terroine, T. 1967. Anomalies biochimiques et avitaminoses tératogènes, Ann. Biol. 6:329–359.

    CAS  Google Scholar 

  59. Warkany, J., and Nelson R. C. 1941. Skeletal abnormalities in the offspring of rats reared on deficient diets, Anat. Rec. 79:83–100.

    Article  CAS  Google Scholar 

  60. Warkany, J., and Nelson, R. C. 1942a. Congenital malformations induced in rats by maternal nutritional deficiency, J. Nutr. 23:321–333.

    CAS  Google Scholar 

  61. Warkany, J., Nelson, R. C., and Schraffenberger, E. 1942b. Congenital malformations induced in rats by maternal nutritional deficiency. II. Use of varied diets and of different strains of rats, Amer. J. Dis. Child. 64:860–866.

    CAS  Google Scholar 

  62. Warkany, J., and Nelson, R. C. 1942c. Skeletal abnormalities,induced in rats by maternal nutritional deficiency, Arch. Path. 34:375–384.

    CAS  Google Scholar 

  63. Warkany, J., Nelson, R. C., and Schraffenberger, E. 1943. Congenital malformations induced in rats by maternal nutritional deficiency. IV. Cleft palate. Amer. J. Dis. Child. 65:882–894.

    Google Scholar 

  64. Warkany, J., and Schraffenberger, E. 1944. Congenital malformations induced in rats by maternal nutritional deficiency. VI. The preventive factor, J. Nutr. 27:477–484.

    CAS  Google Scholar 

  65. Warkany, J., and Schraffenberger, E. 1947. Congenital malformations induced in rats by roentgen rays, Amer. J. Roentgen. 57:455–463.

    CAS  Google Scholar 

  66. Warkany, J. 1952–1953. Congenital malformations induced by maternal dietary deficiency. Experiments and their interpretation, The Harvey Lectures Series 48:89–109.

    Google Scholar 

  67. Warkany, J., Beaudry, P. H., and Hornstein, S. 1960. Attempted abortion with 4-amino-pteroylglutamic acid (aminopterin). Malformations of the child, Amer. J. Dis. Child. 97:274–281.

    Google Scholar 

  68. Warkany, J., Monroe, B. B., and Sutherland, B. S. 1961. Intrauterine growth retardation, Amer. J. Dis. Child. 102:249–279.

    CAS  Google Scholar 

  69. Warkany, J. 1969. Experimental production of mammalian limb malformations, in: “Limb Development and Deformity,” (C. A. Swinyard, ed.), pp.140–160, Charles C Thomas, Springfield.

    Google Scholar 

  70. Winter, W. P., Buss, E. G., Clagett, C. O., and Boucher, R. V. 1967. The nature of the biochemical lesion in avian renal riboflavinuria. II. The inherited change of a riboflavin-binding protein from blood and eggs, Comp. Biochem. Physiol. 22:897–906.

    Article  CAS  Google Scholar 

  71. Zilva, S. S., Golding, J., Drummond, J. C., and Coward, K. H. 1921. The relation of the fat-soluble factor to rickets and growth in pigs, Biochem. J. 15:427–437.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Warkany, J. (1975). Riboflavin Deficiency and Congenital Malformations. In: Rivlin, R.S. (eds) Riboflavin. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4419-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4419-3_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4421-6

  • Online ISBN: 978-1-4613-4419-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics