Skip to main content

Abstract

The field of neurobiology has recently witnessed a surge of research aimed at studying and evaluating neural growth following various types of damage in the mammalian central nervous system (CNS). This research has taken on a very intriguing atmosphere since it has been suggested that this growth might serve as a basis for the recovery or restitution of function following damage. Conversely, one possibility must be recognized that aberrant neural circuitry formed as a result of remodeling may be functionally deleterious. Anomalous growth may thus be in part responsible for altered behavioral responses seen within aging. Interest in this area of research is further enhanced when one considers that this reactive growth process takes place not only in the developing nervous system but in the mature adult CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bartus, C. A., and McNaughton, B. L., 1980, Spatial memory and hippocampal synaptic plasticity in senescent and middle-aged rats, in: Psychobiology of Aging: Problems and Perspectives( D. G. Stein, ed.), Elsevier/North-Holland, Amsterdam, pp. 253–272.

    Google Scholar 

  • Bignami, A., and Ralson, J. H., 1969, The cellular reaction to Wallerian degeneration in the central nervous system of the cat, Brain Res. 13:444–461.

    Article  PubMed  CAS  Google Scholar 

  • Birren, J. W., and Shaie, K. W., 1977, Handbook of Psychology of Aging, Van Nostrand, New York.

    Google Scholar 

  • Bondareff, W., and Geinisman, Y. 1976, Loss of synapses in the dentate gyrus of the senescent rat, Am. J. Anat. 145:129–136.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, B. A., Krauter, E. E., and Wallace, J. W., 1980, Animal models of aging: Sensory-motor and cognitive function in aged rats, in: Psychobiology of Aging: Problems and Perspectives( D. G. Stein, ed.), Elsevier/North-Holland, Amsterdam, pp. 201–226.

    Google Scholar 

  • Cotman, C. W., and Lynch, G. S., 1976, Reactive synaptogenesis in the adult nervous system: The effects of partial deafferentation on new synapse formation, in: Neuronal Recognition( S. Barondes, ed.), Plenum Press, New York, pp. 69–108.

    Google Scholar 

  • Cotman, C. W., and Scheff, S. W., 1979, Synaptic growth in aged animals, in: Aging, Physiology and Cell Biology of Aging( A. Cherkin, C. W. Finch, N. Kharasch, T. Makinodan, F. L. Scott, and B. L. Strehler, eds.), Raven Press, New York, pp. 109–120.

    Google Scholar 

  • Cotman, C. W., Nieto-Sampedro, M., and Harris, E. W., 1981, Synapse replacement in the adult nervous system of vertebrates, Physiol. Rev. 61:684–784.

    PubMed  CAS  Google Scholar 

  • Dieringer, N., and Precht, W., 1977, Modification of synaptic input following unilateral labyrinthectomy, Nature (London) 269:431–433.

    Article  CAS  Google Scholar 

  • Doty, B. A., 1966, Age differences in avoidance conditioning as a function of distribution of trials and task difficulty, Gen. Psychol. 109:249–254.

    Google Scholar 

  • Drakontides, A. B., 1978, Delay of denervation-degenerative changes in rat motor nerve terminals following glucocorticoid treatment, Soc. Neurosci Abstr. 4:368.

    Google Scholar 

  • Drakontides, A. B., Baker, T., and Riker, W. F., 1981, Glucocorticoid prevention of delayed organophosphorus neuropathy, Anat. Rec. 199(3):73A.

    Google Scholar 

  • Elias, P. K., and Elias, M. F., 1976, Effects of aging on learning ability: Contributions from the animal literature, Exp. Aging Res. 2:165–186.

    Article  Google Scholar 

  • Field, P. M., Coldham, P. E., and Raisman, G., 1980, Synapse formation after injury in the adult rat brain: Preferential reinnervation of denervated fimbrial sites of axons of the contralateral fimbria, Brain Res. 189:103–113.

    Article  PubMed  CAS  Google Scholar 

  • Geinisman, Y., 1981, Loss of axon terminals contacting neuronal somata in the dentate gyrus of aged rats, Brain Res. 212:136–139.

    Article  PubMed  CAS  Google Scholar 

  • Geinisman, Y., and Bondareff, W., 1976, Decrease in the number of synapses in the senescent brain: A quantitative electron microscopic analysis of the dentate gyrus molecular layer in the rat, Mech. Ageing Dev. 5:11–23.

    Article  Google Scholar 

  • Geinisman, Y., Bondareff, W., and Dodge, J. T., 1977, Partial deafferentation of neurons in the dentate gyrus of the senescent rat, Brain Res. 134:541–545.

    Article  PubMed  CAS  Google Scholar 

  • Gold, P. E., and McGaugh, J. L., 1975, Changes in learning and memory during aging, in: Neurobiology of Aging( J. M. Ordy and K. R. Brizzee, eds.), Plenum Press, New York, pp. 145–158.

    Google Scholar 

  • Goldberger, M. E., and Murray, M., 1974, Restitution of function and collateral sprouting in the cat spinal cord: The deafferented animal, J. Comp. Neurol. 158:37–54.

    Article  PubMed  CAS  Google Scholar 

  • Goldowitz, D. and Cotman, C. W., 1980, Do neurotrophic interactions control synapse formation in the adult rat brain, Brain Res. 181:325–344.

    Article  PubMed  CAS  Google Scholar 

  • Goodrick, C. L., 1972, Learning by mature young and aged Wistar albino rats as a function of task complexity, J. Gerontol. 27:353–357.

    PubMed  CAS  Google Scholar 

  • Gray, J. B., Pratt, W. B., and Aronow, L., 1971, Effects of glucocorticoids on hexose uptake by mouse fibroblasts in vitro, Biochemistry 10:277–284.

    Article  PubMed  CAS  Google Scholar 

  • Hall, E. D., Baker, T., and Riker, W. F., 1977, Glucocorticoid preservation of motor nerve function during early degeneration, Ann. Neurol. 1:263–269.

    Article  PubMed  CAS  Google Scholar 

  • Hasan, M., and Glees, P., 1973, Ultrastructural age changes in hippocampal neurons, synapses and neuroglia, Exp. Gerontol. 8:75–83.

    Article  PubMed  CAS  Google Scholar 

  • Hess, G. D., and Riegle, G. D., 1970, Adrenocortical responsiveness to stress and ACTH in aging rats, J. Gerontol. 25:354–358.

    PubMed  CAS  Google Scholar 

  • Hoff, S. F., Scheff, S. W., Benardo, L. S., and Cotman, C. W., 1981, Lesion-induced synaptogenesis in the dentate gyrus of aged rats: I. Loss and reacquisition of normal synaptic density, J. Comp. Neurol. 205:246–252.

    Article  Google Scholar 

  • Hoff, S. F., Scheff, S. W., and Cotman, C. W., 1982, Lesion-induced synaptogenesis in the dentate gyrus of aged rats: II. Demonstration of an impaired degeneration clearing response, J. Comp. Neurol. 205:253–259.

    Article  PubMed  CAS  Google Scholar 

  • Laatsch, R. H., and Cowan, W. M., 1967, Electron microscopic studies of the dentate gyrus of the rat: II. Degeneration of commissural afferents, J. Comp. Neurol. 130:241–250.

    Article  Google Scholar 

  • Landfield, P. W., Rose, G., Sandles, L., Wohlstadter, T., and Lynch, G., 1977, Patterns of astroglial hypertrophy and neuronal degeneration in the hippocampus of aged memory-deficient rats, J. Gerontol. 32:3–12.

    PubMed  CAS  Google Scholar 

  • Landfield, P. W., Waymire, J. C., and Lynch, G., 1978, Hippocampal aging and adrenocorticoids: Quantitative correlations, Science 202:1098–1102.

    Article  PubMed  CAS  Google Scholar 

  • Landfield, P. W., Wurtz, C., and Lindsey, J. D., 1979, Quantification of synaptic vesicles in hippocampus of aging rats and initial studies of possible relations to neurophysiology, Brain Res. Bull. 4:757–763.

    Article  PubMed  CAS  Google Scholar 

  • Loesche, J., and Steward, O., 1977, Behavioral correlates of denervation and reinnervation of the hippocampal formation of the rat: Recovery of alternation performance following unilateral entorhinal cortex lesions, Brain Res. Bull. 2:31–39.

    Article  PubMed  CAS  Google Scholar 

  • Loy, R., and Moore, R. Y., 1977, Anomalous innervation of the hippocampal formation by peripheral sympathetic axons following mechanical injury, Exp. Neurol. 57:645–651.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, G., Gall, C., Rose, G., and Cotman, C. W., 1976, Changes in the distribution of the dentate gyrus associational system following unilateral or bilateral entorhinal lesion in the adult rat, Brain Res. 11:57–71.

    Article  Google Scholar 

  • Lynch, G., Gall, C., and Cotman, C. W., 1977, Temporal parameters of axon “sprouting” in the brain of adult rats, Exp. Neurol. 54:179–183.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, D. W., Cotman, C. W., and Lynch, G. S., 1976a, An electron microscopic study of lesion-induced synaptogenesis in the dentate gyrus of the adult rat: I. Magnitude and time course of degeneration, Brain Res. 115:1–21.

    Article  CAS  Google Scholar 

  • Matthews, D. W., Cotman, C. W., and Lynch, G. S., 1976b, An electron microscopic study of lesion-induced synaptogenesis in the dentate gyrus of the adult rat: II. Reappearance of morphologically normal contacts, Brain Res. 115:22–41.

    Google Scholar 

  • Moore, R. Y., Bjorklund, A., and Stenevi, U., 1971, Plastic changes in the adrenergic innervation of the rat septal area in response to denervation, Brain Res. 33:13–35.

    Article  PubMed  CAS  Google Scholar 

  • Moore, R. Y., Bjorklund, A., and Stenevi, U., 1974, Growth and plasticity of adrenergic neurons, in: The Neurosciences: Third Study Program( F. O. Schmidt and F. B. Worden, eds.), MIT Press, Cambridge, pp. 961–977.

    Google Scholar 

  • Murray, M., and Goldberger, M. E., 1974, Restitution of function of collateral sprouting in the cat spinal cord: The partially hemisected animal, J. Comp. Neurol. 158:19–36.

    Article  PubMed  CAS  Google Scholar 

  • Raisman, G., 1969a, A comparison of the mode of termination by hippocampal and hypothalamic afferents to the septal nuclei as revealed by electron microscopy of degeneration, Exp. Brain Res. 7:317–343.

    Article  CAS  Google Scholar 

  • Raisman, G., 1969b, Neuronal plasticity in the septal nuclei of the adult rat, Brain Res. 14:25–48.

    Article  CAS  Google Scholar 

  • Raisman,G., and Field, P., 1973, A quantitative investigation of the development of collateral reinnervation after partial deafferentation of the septal nuclei, Brain Res. 50:241–264.

    Article  PubMed  CAS  Google Scholar 

  • Reiss, D. J., Ross, R. A., Gilad, G., and Joh, T. H., 1978, Reaction of central catecholaminergic neurons to injury: Model systems for studying the neurobiology of central regeneration and sprouting, in: Neuronal Plasticity( C. W. Cotman, ed.), Raven Press, New York, pp. 197–226.

    Google Scholar 

  • Riegle, G. D., and Hess, G. D., 1972, Chronic and acute dexamethasone suppression of stress activation of the adrenal cortex in young and aged rats, J. Neuroendocrinal. 9:175–187.

    Article  CAS  Google Scholar 

  • Rigter, H., Martinex, J. L., and Crabbe, J. C., 1980, Forgetting and other behavioral manifestations of aging, in: Psychobiology of Aging: Problems and Perspectives( D. G. Stein, ed.), Plenum Press, New York, pp. 161–176.

    Google Scholar 

  • Rose, G., Lynch, G. S., and Cotman, C. W., 1976, Hypertrophy and redistribution of astrocytes in the deafferented dentate gyrus, Brain Res. Bull. 1:87–92.

    Article  PubMed  CAS  Google Scholar 

  • Scheff, S. W., and Cotman, C. W., 1977, Recovery of spontaneous alternation following lesions of the entorhinal cortex in adult rats: Possible correlation to axon sprouting, Behav. Biol. 21:286–293.

    Article  PubMed  CAS  Google Scholar 

  • Scheff, S. W., Benardo, L. S., and Cotman, C. W., 1977, Progressive brain damage accelerates axon sprouting in the adult rat, Science 197:795–797.

    Article  PubMed  CAS  Google Scholar 

  • Scheff, S. W., Benardo, L. S., and Cotman, C. W., 1978, Effect of serial lesions on sprouting in the dentate gyrus: Onset and decline of the catalytic effect, Brain Res. 150:45–53.

    Article  PubMed  CAS  Google Scholar 

  • Scheff, S. W., Benardo, L. S., and Cotman, C. W., 1980, Decline in reactive fiber growth in the dentate gyrus of aged rats compared to young adult rats following entorhinal cortex removal, Brain Res. 199:21–38.

    Article  PubMed  CAS  Google Scholar 

  • Scheff, S. W., Benardo, L. S., and Cotman, C. W., 1978, Decrease in adrenergic axon sprouting in the senescent rat, Science 202:775–778.

    Article  PubMed  CAS  Google Scholar 

  • Stenevi, U., and Bjorklund, A., 1978, A pitfall in brain lesion studies: Growth of vascular sympathetic axons into the hippocampus after fimbrial lesions, Neurosci. Lett. 7:219–224.

    Article  PubMed  CAS  Google Scholar 

  • Steward, O., Cotman, C. W., and Lynch, G. S., 1974, Growth of a new fiber projection in the brain of adult rats: Re-innervation of the dentate gyrus by the contralateral entorhinal cortex following ipsilateral entorhinal lesions, Exp. Brain Res. 20:45–66.

    Article  PubMed  CAS  Google Scholar 

  • Steward, O., Loesch, J., and Horten, W. C., 1977, Behavioral correlation of denervation and reinnervation of the hippocampal formation of the rat: Open field activity and cue utilization following bilateral entorhinal cortex lesions, Brain Res. Bull. 2:41–48.

    Article  PubMed  CAS  Google Scholar 

  • Steward, O., 1982, Assessing the functional significance of lesion-induced neuronal plasticity, Int. Rev. Neurobiol. 23:197–253.

    Article  PubMed  CAS  Google Scholar 

  • Tang, G., and Phillips, R., 1978, Some age-related changes in pituitary-adrenal function in the male laboratory rat, J. Gerontol. 33:377–382.

    PubMed  CAS  Google Scholar 

  • West, J. R., Deadwyler, S. A., Cotman, C. W., and Lynch, G. S., 1975, Time-dependent changes in commissural field potentials in the dentate gyrus following lesions of the entorhinal cortex in adult rats, Brain Res. 97:215–233.

    Article  PubMed  CAS  Google Scholar 

  • Westrum, L. E., 1973, Early forms of terminal degeneration in the spinal trigeminal nucleus following rhizotomy, J. Comp. Neurol. 2:189–215.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Scheff, S.W., Anderson, K., DeKosky, S.T. (1984). Morphological Aspects of Brain Damage in Aging. In: Scheff, S.W. (eds) Aging and Recovery of Function in the Central Nervous System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2705-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2705-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9680-5

  • Online ISBN: 978-1-4613-2705-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics