Skip to main content

Reductive Chemistry of Aromatic Hydrocarbon Molecules

  • Chapter
Chemistry of Engine Combustion Deposits

Abstract

In approaching the chemistry of engine combustion deposits, one is faced with several difficult problems. First of all, for any given specimen, there is a limited amount of material, with typical six cylinder engine runs giving less than 20 grams of deposit. Despite their small size, these samples are quite heterogeneous. As scraped from the walls of the combustion volume, they contain refractory polymeric carbon, physisorbed aromatic hydrocarbons from the fuel, inorganic material from the lubricant, as well as bits of metal from the engine. Different areas of the combustion volume can give rise to deposits of different properties. From the chemical point of view, the deposits are somewhat of an enigma; although arising in a combustion environment, the deposits are about 65 wgt % carbon. Even though one might expect such carbon to resemble kinetically inactive species as graphite or glassy carbon, it most resembles bituminous coals in its thermogravimetric behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Schlenk, J. Appenrodt, A. Michael, and A. Thal, Uber Metalladditionen an mehrfache Bindungen, Chem. Ber. 47:473 (1914).

    Article  CAS  Google Scholar 

  2. N. D. Scott, J. F. Walker, and V. L. Hansley, Sodium Naphthalene. I. A New Method for the Preparation of Addition Compounds of Alkali Metals and Polycyclic Aromatic Hydrocarbons, J. Am. Chem. Soc. 58:2442 (1936).

    Article  CAS  Google Scholar 

  3. V. D. Parker, Energetics of Electrodes Reactions. II. The Relationship Potentials, Electron Affinities, and Solvation Energies of Aromatic Hydrocarbons, J. Am. Chem. Soc. 98:98 (1976).

    Article  CAS  Google Scholar 

  4. A. Streitwieser, “Molecular Orbital Theory for Organic Chemists”, Wiley, New York (1961).

    Google Scholar 

  5. M. Rabinovitz and I. Willner, Novel Aromatic Cations and Anions:Aromaticity-Structure Relationships, Pure and Appl. Chem. 52:1575 (1980).

    Article  CAS  Google Scholar 

  6. M. Randic, Relative Stability of Cations and Anions of Conjugated Polycyclic Hydrocarbons, J. Phys. Chem. 86:3970 (1982).

    Article  CAS  Google Scholar 

  7. A. Minsky, J. Klein, and M. Rabinovitz, Aromatic Polycyclic Benzenoid Tetranions:Pyrene and Perylene Anions Revisited, J. Am. Chem. Soc. 103:4586 (1981)

    Article  CAS  Google Scholar 

  8. A. Minsky, A. Y. Meyer, and M. Rabinovitz, Super-Charged Polycyclic π Systems:Pyrene and Perylene Tetraanions, J. Am. Chem. Soc. 104:2475 (1982).

    Article  CAS  Google Scholar 

  9. A. Minsky, A. Y. Meyer, R. Poupko, and M. Rabinovitz, Paramagnetism and Antiaromaticity:Singlet-Triplet Equilibrium in Doubly Charged Benzenoid Polycyclic Systems, J. Am. Chem. Soc. 105:2164 (1983).

    Article  CAS  Google Scholar 

  10. B. Eliasson, T. Lejon, and U. Edlund, A1H and13C N.M.R. Study of Pyrene Dianion and Proposed Tetra-anion, Chem. Commun. 591 (1984).

    Google Scholar 

  11. A. Rainis and M. Szwarc, Disproportionate of the Lithium, Sodium, and Potassium Salts of Anthracenide and Perylenide Radical Anions in DME and THF, J. Am. Chem. Soc. 96:3008 (1974).

    Article  CAS  Google Scholar 

  12. B. S. Jensen and V. D. Parker, Reactions of Aromatic Anion Radicals and Dianions. II. Reversible Reduction of Anion Radicals to Dianions, J. Am. Chem. Soc. 97:5211 (1975).

    Article  CAS  Google Scholar 

  13. D. J. Williams, J. M. Pearson, and M. Levy, Anion Radicals of a Series of [2.2] Paracyclophanes and a,1 Diarylalkanes. II. An Electron Spin Resonance Investigation, J. Am. Chem. Soc. 93:5483 (1971).

    Article  CAS  Google Scholar 

  14. R. G. Lawler and C. V. Ristagno, Nuclear Mangetic Resonance Spectra of the Dianions of Anthracene and Other Polynuclear Aromatic Hydrocarbons, J. Am. Chem. Soc. 91:1534 (1969).

    Article  CAS  Google Scholar 

  15. R. H. Cox, H. W. Terry, and L. W. Harrison, A. 7Li NMR Investigation of the Structure and Ring Currents in Some Aromatic Dianion Systems, Tet. Lett. 4815 (1971).

    Google Scholar 

  16. L. M. Tolbert and M. Z. Ali, 1-Phenyl-3,4:5,6-dibenzocycloheptatrienyl Anion. A Stable Antiaromatic Carbanion, J. Org. Chem. 47:4793 (1982).

    Article  CAS  Google Scholar 

  17. M. Szwarc, Chemistry of Radical-Ions, Prog. Phys. Org. Chem. 6:323 (1968).

    Article  CAS  Google Scholar 

  18. M. Szwarc, Radical Anions and Carbonions as Donors in Electron-Transfer Processes, Acc. Chem. Res. 5:169 (1972).

    Article  CAS  Google Scholar 

  19. J. F. Garst, Electron Reactions of Organic Anions, in:“Free Radicals,” J. K. Kochi, ed., Wiley, New York (1973).

    Google Scholar 

  20. N. L. Holy, Reactions of the Radical Anions and Dianions of Aromatic Hydrocarbons, Chem. Rev. 74:243 (1974).

    Article  CAS  Google Scholar 

  21. R. B. Bates, “Comprehensive Carbanian Chemistry” Elsevier, New York (1980).

    Google Scholar 

  22. L. M. Stock, The Reductive Alkylation Reaction, in:“Coal Science”, Vol. 1, M. L. Gorbaty, J. W. Larsen, I. Wender, eds., Academic, New York (1982).

    Google Scholar 

  23. D. E. Paul, D. Lipkin, and S. I. Weissman, Reactions of Sodium Metal with Aromatic Hydrocarbons, J. Am. Chem. Soc. 78:116 (1956).

    Article  CAS  Google Scholar 

  24. H. W. Sternberg, C. L. Delle Donne, P. Pantages, E. C. Moroni, and R. E. Markby, Solubilization of an Ivb coal by reductive alkylation, Fuel 50:432 (1971).

    Article  CAS  Google Scholar 

  25. H. W. Sternberg and C. L. Delle Donne, Solubilization of Coal by Reductive Alkylation, Fuel 53:172 (1974).

    Article  CAS  Google Scholar 

  26. T. R. Tuttle, R. L. Ward, and S. I. Weissman, Spin Density in Naphthalene Negative Ion, J. Chem. Phys. 25:189 (1956).

    Google Scholar 

  27. B. M. P. Hendriks, G. W. Canters, C. Corvaja, J. W. M. de Boer, and E. de Boer, NMR Investigations on the Alkali Naphthalene Ion Pairs, Mol. Phys. 20:193 (1971).

    Article  CAS  Google Scholar 

  28. G. Henrici-Olive and S. Olive, Uber Monoand Dianiones des Naphthalins IV. Stabilitatsverhalten der Dianiones in Tetrahydrofuran, Zeit. Phys. Chem. 43:340 (1964).

    CAS  Google Scholar 

  29. J. Smid, A Stable Dianion of Naphthalene, J. Am. Chem. Soc. 87:655 (1965).

    Article  CAS  Google Scholar 

  30. J. C. Carnahan and W. D. Closson, Reaction of Naphthalene Dianions with Tetrahydrofuran and Ethylene, J. Org. Chem. 34:4469 (1972).

    Article  Google Scholar 

  31. H. B. Gia, R. Jerome, and Ph. Teyssie, New Observations on the Metalation of Naphthalene and β-ethylnaphthalene by Potassium, J. Organomet. Chem. 190:107 (1980).

    Article  Google Scholar 

  32. S. Bank and B. Bockrath, Reactions of Aromatic Radical Anions. VI. Kinetic Study of the Reaction of Sodium Naphthalene with Water, J. Am. Chem. Soc. 93:430 (1971).

    Article  CAS  Google Scholar 

  33. G. Levin, C. Sutphen, and M. Szwarc, Protonation of Perylene Radical Anions by Alcohols and Water in Tetrahydrofuran, J. Am. Chem. Soc., 94:2652 (1972).

    Article  CAS  Google Scholar 

  34. C. Amatore, J. Pinson, and J. M. Saveant, The Role of Water in Organic Electroreductive Dimerization in Aprotic Solvents, J. Electroanal. Chem. 139:193 (1982).

    Article  CAS  Google Scholar 

  35. P. W. Rabideau and E. G. Burkholder, Metal-Ammonia Reduction and Reductive Alkylation of Polycyclic Aromatic Compounds, J. org. Chem. 43:4283 (1978).

    Article  CAS  Google Scholar 

  36. G. D. Sargent, J. N. Cron, and S. Bank, Reactions of Aromatic Radical Anions. I. Coupling of Alkyl Free Radicals Generated by Electron Transfer to Alkyl iodides, J. Am. Chem. Soc. 88:5363 (1966).

    Article  CAS  Google Scholar 

  37. G. D. Sargent and G. A. Lux, Reactions of Aromatic Radical Anions. III. Evidence for an Alkyl Radical-Radical Anion Combination Mechanism for Alkylation of Sodium Naphthalenide with Alkyl Halides, J. Am. Chem. Soc. 90:7160 (1968).

    Article  CAS  Google Scholar 

  38. J. F. Garst, R. D. Roberts, and B. N. Abels, Solvents Effects on Reactions of Sodium Naphthalene with Hexyl Fluoride, J. Am. Chem. Soc. 97:4925 (1975).

    Article  CAS  Google Scholar 

  39. H. Gusten and L. Horner, Wurtz Syntheses with Naphthalenesodium, Angew, Chemie, Int. Ed. 1:455 (1962).

    Article  Google Scholar 

  40. H. A. Dirkse, P. W. Lednor, and P. C. Versloot, Alkali Metal-Naphthalene Adducts as Reagents for Neutralizing Oxide Surfaces, Chem. Commun. 814 (1982).

    Google Scholar 

  41. L. H. Klemm and A. J. Kohlik, Polarographic Reduction of Some Alkyl-, Alkylene-, and Polymethylnaphthalenes, J. Org. Chem. 28:2044 (1963).

    Article  CAS  Google Scholar 

  42. S. Suganan, Steric Effect of Alkyl Groups, Current Science 52:124 (1983).

    Google Scholar 

  43. K. D. Bartle, C. Gibson, D. Mills, M. J. Mulligan, N. Taylor, T. G. Martin, and C. E. Snape, Differential-Pulse Voltammetry at the Hanging-Mercury-Drop Electrode for Identification of Aromatic Structures in Coal, Anal. Chem. 54:1730 (1982).

    CAS  Google Scholar 

  44. K. J. Borhani and M. D. Hawley, Electrochemical Studies of Weak Carbon and Nitrogen Acids:Fluorene and pCyanoaniline in Dimethylformamide, J. Electroanal. Chem. 101:407 (1979).

    Article  CAS  Google Scholar 

  45. G. W. Canters and E. de Boer, Alkali N.M.R. experiments on the radical ion pairs of biphenyl and fluorene. Part I. Analysis of NMR shifts, Mol. Phys. 26:1185 (1973).

    Article  CAS  Google Scholar 

  46. R. L. Kugel, W. G. Hodgson, and H. R. Allcock, The Formation of Radical Anions in Fluorene Metallation, Chem. and Ind. p. 1649 (1962).

    Google Scholar 

  47. T. L. Chu and S. C. Yu, The magnetic Susceptibilities of Some Aromatic Hydrocarbon Anions, J. Am. Chem. Soc. 76:3367 (1954).

    Article  CAS  Google Scholar 

  48. C. Takahashi and S. Maeda, Raman Spectra of Biphenyl Negative Ion in Tetrahydrofuran Solution, Chem. Phys. Lett. 24:584 (1974).

    Article  CAS  Google Scholar 

  49. E. G. Janzen and J. L. Gerlock, On the metalation of Fluorene, J. Organomet. Chem. 8:354 (1967).

    Article  CAS  Google Scholar 

  50. H. Pines, J. A. Vesely, and V. N. Ipatieff, Sodium Catalyzed Reactions. II. Side-chain Ethylation of Alkyl Aromatic Hydrocarbons Catalyzed by Sodium, J. Am. Chem. Soc. 77:554 (1955).

    Article  CAS  Google Scholar 

  51. H. Hart and R. E. Crocker, A. Quantitative Study of the Acidity of Certain Hydrocarbons, J. A.. Chem. Soc. 82:418 (1960).

    Article  CAS  Google Scholar 

  52. G. B. Trimitsis, A. Tuncay, R. D. Beyer, and K. J. Ketterman, α,α’-Dimetalations of Dimethylarenes with Organosodium Reagents. The Catalytic Effect of Certain Tertiary Amines, J. Org. Chem. 38:1491 (1973).

    Article  CAS  Google Scholar 

  53. P. V. R. Schleyer, Dimerization and Intramolecular Association in Li Synthetic Reagents, Pure and Appl. Chem. 55:355 (1983).

    Article  CAS  Google Scholar 

  54. G. Fraenkel and J. M. Geckle, Influence of Substituents on NMR and Barriers to Rotation in the Tert-Benzyllithium Compounds, J. Am. Chem. Soc. 102:2869 (1980).

    Article  CAS  Google Scholar 

  55. B. J. Tabner and T. Walker, Radical-anion Intermediates. Part V. Electron Spin Resonance Spectra of Radical Anions and Dianion Radicals of Some 9-Substituted Fluorenes. J. C. S., Perkin Trans. II 2:2010 (1972).

    Article  Google Scholar 

  56. J. J. Eisch, Chemistry of Alkali Metal-unsaturated Hydrocarbon Adducts. III. Cleavage Reactions by Lithium Biphenyl Solutions in Tetrahydrofuran, J. Org. Chem. 28:707 (1963).

    Article  CAS  Google Scholar 

  57. D. F. Lindow, C. N. Cortez, and R. G. Harvey, Metal Ammonia Reduction. XII. Mechanism of Reduction and Reductive Alkylation of Aromatic Hydrocarbons, J. Am. Chem. Soc. 94:5406 (1972).

    Article  CAS  Google Scholar 

  58. P. J. Grisdale, T. H. Regan, J. C. Doty, J. Figueras, and J. L. R. Williams, Phenylcyclohexadienes, J. Org. Chem. 33:1116 (1968).

    Article  CAS  Google Scholar 

  59. L. B. Ebert, unpublished results.

    Google Scholar 

  60. A. G. Evans, P. B. Roberts, and B. J. Tabnor, The Reactions of Radical Anions. Part I. The Cleavage of the Radical Anion of Dibenzofuran, J. Chem. Soc. B, p. 269 (1966).

    Google Scholar 

  61. D. H. Eargle and E. T. Kaiser, The Effect of Changes in the Oxidation State upon the e.p.r. Spectra of Dibenzothiophene Anion-radicals, Proc. Chem. Soc. p. 22 (1964).

    Google Scholar 

  62. D. H. Eargle, The Cleavage of Aryl Ethers by Alkali Metals in Aliphatic Ether Solvents. Detection by Electron Spin Resonance, J. Org. Chem. 28:1703 (1963).

    Article  CAS  Google Scholar 

  63. R. Leardini and G. Placucci, Dibenz [b.f.] oxepin and Thiepin Radical Anions. Conjugative Properties of Sulfur in its Different Oxidation States, J. Heterocycle Chem. 13:277 (1976).

    Article  CAS  Google Scholar 

  64. H. W. Sternberg, C. L. Delle Donne, R. E. Markby, and S. Friedman, Reaction of Sodium with Dibenzothiophene. A Method for Desulfurization of Residua, Ind. Eng. Chem., Process Res. Dev. 13:433 (1974).

    Article  CAS  Google Scholar 

  65. T. Ignasiak, A. V. Kemp-Jones, and O. P. Strausz, The Molecular Structure of Athobosca Asphaltenes. Cleavage of the Carbon-Sulfur Bonds by Radical Ion Transfer Reactions, J. Org. Chem. 43:312 (1977).

    Article  Google Scholar 

  66. H. Gilman and J. J. Dietrich, Lithium Cleavages of Some Heterocycles in Tetrahydrofuran, J. Org. Chem. 22:851 (1957).

    Article  CAS  Google Scholar 

  67. L. Brandsma and J. F. Arens, The Chemistry of Thioethers; Differences and Analogies with Ethers, in:“The Chemistry of the Ether Linkage,” S. Patai, ed., Interscience, New York (1967).

    Google Scholar 

  68. C. G. Screttas, Metallation of Aryl Ethers by Lithium Arenes, Chem. Commun. p. 869 (1972).

    Google Scholar 

  69. C. G. Screttas, On the Mechanism of Ring Metallation of Aromatic Compounds. Metallation of Thiophene by Lithium and by Lithium Dihydroarylides, Perk. Trans. II. p. 745 (1974).

    Google Scholar 

  70. R. A. Rossi and J. F. Bunnett, The Sense of Cleavage of Substituted Benzenes on Reaction with Solvated Electrons, as Determined by a Product Criterion, J. Am. Chem. Soc. 96:112 (1974).

    Article  CAS  Google Scholar 

  71. M. Itoh, S. Yoshida, T. Ando, and N. Miyaura, Regioselective Cleavage of Aryl Decyl Ethers and Alkali Metals, Chem. Lett. p. 271 (1976).

    Google Scholar 

  72. H. Gilman, H. A. McNinch, and D. Wittenberg, Direct Preparation of Benzyl lithium by Cleavage Reactions, J. Org. Chem. 23:2044 (1958).

    Article  CAS  Google Scholar 

  73. H. W. Sternberg, C. L. Delle Donne, and I Wender, Similarity between the Electrochemical Elimination of Sulphur for Coal and from Dibenzothiophene, Fuel 47:219 (1968).

    CAS  Google Scholar 

  74. M. Miyake, Y. Nakayama, M. Nomura, and S. Kikkawa, Reduction of Some Sulfides and Ethers with Aromatic Rings by Electrochemically Generated Solvated Electrons, Bull. Chem. Soc. Jpn. 52:559 (1979).

    Article  CAS  Google Scholar 

  75. F. M’Halla, J. Pinson, and J. M. Saveant, The Solvent as H-atom Donor in Organic Electrochemical Reactions. Reduction of Aromatic Hal ides, J. Am. Chem. Soc. 102:4120 (1980).

    Article  Google Scholar 

  76. C. G. Screttas and M. Micha-Screttas, Carbon-13 Contact Solvent Shifts in Radical Anion Solutions. Mechanism of Spin Density Transfer to Solvent, Chem. Commun. p. 1168 (1982).

    Google Scholar 

  77. C. G. Screttas and M. Micha-Screttas, Paramagnetic Solvent Nuclear Magnetic Resonance Shifts in Radical Anion Solutions, J. Org. Chem. 48:252 (1983).

    Article  CAS  Google Scholar 

  78. R. B. Bates, L. M. Kroposki, and D. F. Potter, Cycloreversions of Anions from Tetrahydrofurans, A. Convenient Synthesis of Lithium Enolates of Aldehydes, J. Org. Chem. 37:560 (1972).

    Article  CAS  Google Scholar 

  79. T. Fujita, K. Suga, and S. Watanabe, The Reaction of Lithium Naphthalenide with Tetrahydrofuran, Synthesis, 11:630 (1972).

    Article  Google Scholar 

  80. L. B. Ebert, J. C. Scanlon, D. R. Mills, and L. Matty, The Interrelationship of Graphite Intercalation Compounds, Ions of Aromatic Hydrocarbons, and Coal Conversion II, in:“New Approaches in Coal Chemistry,” ed. B. D. Blaustein, B. D. Bockrath, and S. Friedman, ACS Symposium Series 169, American Chemical Society, Washington (1981).

    Google Scholar 

  81. R. T. Morrison and R. N. Boyd, “Organic Chemistry” 2nd ed., Allyn and Bacon, Boston (1966).

    Google Scholar 

  82. T. J. Lynch, M. Banah, H. D. Kaesz, and C. R. Porter, Iron Carbonyl Catalyzed Reductions of Model Coal Constituents Under Water Gas Shift Conditions, Fuel Division Preprints, American Chemical Society, 28:172 (1983).

    CAS  Google Scholar 

  83. M. T. Jones and T. C. Kuechler, An Electron Spin Resonance Study of the Benzene Anion Radical. A Model of Its Ion Pair with Alkal:Metal Ions, J. Phys. Chem. 81:360 (1977).

    Article  CAS  Google Scholar 

  84. O. R. Brown, R. J. Butterfield, and J. P. Millington, Cathodic Reduction of Pyridine in Liquid Ammonia, Electro chim. Acta 27:1655 (1982).

    Article  CAS  Google Scholar 

  85. J. C. M. Henning, 14N Hyperfine Structure in ESR Spectra of Heterocyclic Anions, J. Chem, Phys. 44:2139 (1966).

    Article  CAS  Google Scholar 

  86. I. N. Jung and P. R. Jones, Bonding Studies in Group 4 Substitued Anilines, J. Am. Chem. Soc. 97:6102 (1975).

    Article  CAS  Google Scholar 

  87. M. Branca and A. Gamba, An Advanced Laboratory Experiment Involving the Hammett Equation and Electron Spin Resonance Spectroscopy, Chim. Ind. (Milan) 65:174 (1983).

    CAS  Google Scholar 

  88. E. T. Strom and G. A. Russell, T.e Electron Spin Resonance Spectra of 2,1,3-Benzoxadiazole, —Benzothiadiazole, and —Benzoselenadiazole Radical Anions. Electron Withdrawal by Group VI Elements, J. Am. Chem. Soc. 87:3326 (1965).

    Article  CAS  Google Scholar 

  89. H. C. Heller, Utilization of (n,π*) Excitation Bands in the Formation of Radicals. II. Thiobenzophenone Anion Radical-, J. Am. Chem. Soc. 89:4288 (1967).

    Article  CAS  Google Scholar 

  90. L. J. Aarons and F. C. Adam, Electron Spin Resonance Studies of Thiocarbonyl Anion Radicals, Can. J. Chem. 50; 1390 (1972).

    Article  CAS  Google Scholar 

  91. J. Boersma, A. Mackor, and J. G. Noltes, ESR Study of Monoalkylazi nc-2,21-Bi pyridine Complexes, J. Organomet. Chem. 99:337 (1975).

    Article  CAS  Google Scholar 

  92. G. J. Hoijtink, E. de Boer, P. H. van der Meij, and W. P. Weijland, Reduction Potentials of Various Aromatic Hydrocarbons and Their Univalent Anions, Recuiel 75:485 (1956).

    Google Scholar 

  93. M. Maissard, J. P. Mazaleyrat, and Z. Welvart, On the Stereochemistry of the Reductive Alkylation of Anthracene, J. to. Chem. Soc. 99:6933 (1977).

    Article  Google Scholar 

  94. D. E. Bergbrieter and J. M. Killough, Polymer-Bound Alkali Metal Aromatic Radical Anions, Chem. Commun. p. 319 (1980).

    Google Scholar 

  95. A. H. Reddoch, Systematic Perturbations of the EPR Spectra of Anthracene and Azulene Anions in Solution, J. Chem. Phys. 43:225 (1965).

    Article  CAS  Google Scholar 

  96. K. Mullen, The Dianions of Phenanthrene and 1,2,3,4-Dibenzocyclooctatetraene, Mel v. Chim. Acta. 61:1296 (1978).

    Google Scholar 

  97. K. Mullen, The Dianions of Pyrene and Pyrene Isomers as (4n)*rr Perimeters, Mel v. Chim. Acta 61:2307 (1978).

    Google Scholar 

  98. L. B. Ebert, D. R. Mills, and J. C. Scanlon, The Interaction of Potassium with Graphite and Other Benzenois Systems, Mat. Res. Bull. 17:1318 (1982).

    Article  Google Scholar 

  99. A. Rainis, R. Tung, and M. Szarc, Kinetics of Protonation of Li+, Na+, and K+ Salts of Anthracenide Radical Ions in DME and THF by Methanol and Tert-Butanol, Proc. Roy. Soc. A 339:417 (1974).

    Article  CAS  Google Scholar 

  100. B. S. Jensen and V. D. Parker, Reactions of Aromatic Anion Radicals and Dianions, Acta. Chem. Scand. B, 30:749 (1976).

    Article  Google Scholar 

  101. B. C. Becker, W. Huber, and K. Mullen, Acepleiadylene Dianion and Tetraanion, J. Am. Chem. Soc. 102:7803 (1980).

    Article  CAS  Google Scholar 

  102. J. Tsunetsugu, The Synthesis and Electrochemistry of Aceplei adylene-5,6-di one and Aceplei dylene-5,8-di one, Chem. Commun. p. 28 (1983).

    Google Scholar 

  103. W. Huber and K. Mullen, Tetra-anion of 9,9’-Bianthryl, Chem. Commun. p. 698 (1980).

    Google Scholar 

  104. O. Hammerich and J. M. Saveant, Electrochemical Reductive Cleavage of Biaryls. The Formation of Anthracene and 9,10-Dihydroanthracene from 9,9’-Bianthryl, Chem. Commun., p. 938 (1979).

    Google Scholar 

  105. J. Heinz, 9,9’-Bianthryl-10,10’dicarbonitrile, An Aromatic ir-System with Six One-electron Redox Steps, Anew. Chem. Int. Ed. 20:202 (1981).

    Article  Google Scholar 

  106. J. Fried, N. A. Abraham, and T. S. Santhanakrishnan, Birch Reduction of Phenols, J. Am. Chem. Soc 89:1044 (1967).

    Article  CAS  Google Scholar 

  107. K. Yoshida and S. Nagase, Anodic Cyanation. Aromatic Nucleophilic Substitution of Monomethyland Dimethyl naphthalenes, J. Am. Chem. Soc. 101:4268 (1979).

    Article  CAS  Google Scholar 

  108. A. Ledwith and P.J. Russell, Factors Governing the Direct Reaction between Aromatic Cation Radicals and Chloride Ion, Chem. Commun. p. 959 (1974).

    Google Scholar 

  109. I. H. Klemm, A. J. Kohlik, and K. B. Desai, Polarographic Reduction of Some Alkyland Polymethylanthracenes, J. Org. Chem. 28:625 (1963).

    Article  CAS  Google Scholar 

  110. O. W. Howarth and G. K. Fraenkel, Electron Spin Resonance Spectra of Monomeric and Dimeric Cation Radicals, J. Chem. Phys. 52:6258 (1970).

    Article  Google Scholar 

  111. H. Bock and G. Brahler, Oxidation and Reduction of Methylthio-Substituted π-Systems Radical Ions, Angew. Chem. Int. Ed., 16:855 (1977).

    Article  Google Scholar 

  112. H. Bock, G. Brahler, D. Dauplaise, and J. Meinwald, One Electron Oxidation of 1,8-Chalcogen-Bridged Naphthalenes, Chem. Ber. 114:2622 (1981).

    Article  CAS  Google Scholar 

  113. D. G. Farnum, Charge Densiy-NMR Shift Correlations in Organic Ions, Adv. Phys. Org. Chem. 11:123 (1975).

    Article  CAS  Google Scholar 

  114. A. J. Bard, A. Ledwith, and H. J. Shine, Formation, Properties, and Reactions of Cation Radicals in Solution, Adv. Phys. Org. Chem. 13:155 (1976).

    Article  CAS  Google Scholar 

  115. D. A. Forsyth and G. A. Olah, Oxidation of Polycyclic Arenes in SbF5/S03ClF, J. Am. Chem. Soc. 98:4086 (1976).

    Article  CAS  Google Scholar 

  116. K. Lammertsma, G. A. Olah, C. M. Berke, and A. Streitwieser, 1,4,5,8-Tetramethyl-Naphthalene Dicction and Related Radical Cations, J. Am. Chem. Soc. 101:6658 (1979).

    Article  CAS  Google Scholar 

  117. A. Pross and L. Random, Does a Methyl Substituent Stabilize or Destabilize Anions ? J. Am. Chem. Soc. 100:6572 (1978).

    Article  CAS  Google Scholar 

  118. K. A. Bilerich and O. Yu. Okhlobystin, Electron Transfer as an Elementary Act of Organic Reactions, Russ. Chem. Rev. (Eng. trans.) 37:954 (1968).

    Article  Google Scholar 

  119. L. Eberson, Z. Blum, B. Helgee, and K. Hyberg, Radical Ion React!vity-I. Application of the Dewar-Zimmerman Rules to Certain Reactions of Radical Anions and Cations, Tetrahedron 34:731 (1978).

    Article  CAS  Google Scholar 

  120. V. D. Parker, Properties of Aromatic Ions Generated at Electrodes, Pure and Appl. Chem. 51:1021 (1979).

    Article  CAS  Google Scholar 

  121. P. Kovacic and W. B. England, Novel Pathway for Homopolymerization by Nuclear Coupling via Aromatic Radical Cation Initiation, J. Polymer Sci., Poly. Lett. 10:359 (1981).

    Article  Google Scholar 

  122. V. Svanholm and V. D. Parker, Kinetics and Mechanisms of the Reactions of Organic Cation Radicals and Dications. III. Arylation of Aromatic Hydrocarbon Cation Radicals, J. Am. Chem. Soc. 98:2942 (1976).

    Article  CAS  Google Scholar 

  123. J. Rochlitz, Neue Reaktionen der Carcinogenen Kohlenwasserstoffe-II, Tetrahedron 23:3043 (1967).

    Article  CAS  Google Scholar 

  124. M. Farcasiu and D. Farcasiu, ESR and UV Evidence of a Donor-Acceptor Complex Present in the Pyridine Solution of Triphenylpyrylium Perchlorate, Tet. Lett., p. 4833 (1967).

    Google Scholar 

  125. M. Farcasiu and D. Farcasiu, Untersuchung des Elektrontransfers von Pyridin auf arylsubstituierte Pyrylium salze durch ESR Spektroscopie, Chem. Ber. 102:2294 (1969).

    Article  CAS  Google Scholar 

  126. V. D. Parker, Qualitative Mechanism Analysis by Linear Sweep Voltammetry, Acta Chem. Scan. B 34:359 (1980).

    Article  Google Scholar 

  127. E. Ota and S. Otani, Carbonization of Aromatic Compounds in Molten Salt, Chem. Lett., p. 241 (1975).

    Google Scholar 

  128. M. Morita, K. Hirosawa, and T. Sato, Interaction between Aromatics and Zinc Chloride in the Molten State, The Formation of 6-Complexes and Radicals, Bull. Chem. Soc. Jpn. 50:1256 (1977).

    Article  CAS  Google Scholar 

  129. M. Morita, K. Hirosawa, T. Sato, and K. Ouchi, Interaction between Aromatics and Zinc Chloride. II. The Formation of 6-Complexes and Cation Radicals on Supported Zinc Chloride, Bull. Chem. Soc. Jpn. 53:3013 (1980).

    Article  CAS  Google Scholar 

  130. J. F. Rey Boero and J. A. Wargon, Study of the A1C13 Catalytic Activity on Aromatic Hydrocarbons-I. Low Temperature Range, Carbon 19:333 (1980).

    Article  Google Scholar 

  131. J. F. Rey Boero and J. A. Wargon, Study of the AICI3 Catalytic Activity on Aromatic Hydrocarbons-II. Mesophase Formation, Carbon 19:341 (1980).

    Article  Google Scholar 

  132. M. Miyake, H. Sakashita, M. Nomura, and S. Kikkawa, Catalytic activities of binary molten salts composed of ZnC1 and metal chlorides for hydrocracking of phenanthrene, Fuel 61:124 (1982).

    Article  CAS  Google Scholar 

  133. B. D. Flockhart, I. M. Sesay, and R. C. Pink, Perylene Cation-radicals on the Surface of Catalytic Aluminas, Chem. Commun., p. 439 (1980).

    Google Scholar 

  134. J. L. Garnett and A. Rainis, EPR and Chemical Studies of the Heterogeneous Reaction Between Polycyclic Aromatic Hydrocarbons and Platinum Chlorides, J. Catal. 26:141 (1972).

    Article  CAS  Google Scholar 

  135. N. M. D. Brown and D. J. Cowley, Interactions of Aromatic Hydrocarbons with Heavy-metal Hal ides in the Solid State Studied by Electron Spin Resonance, Chem. Commun., p. 74 (1974).

    Google Scholar 

  136. H. H. Perkampus and E. Schonberger, Investigations about the Interaction of Aromatic Compounds with Antimony Trichloride, Zeit. Naturforschung B 31:73 (1976).

    Google Scholar 

  137. G. M. Muha, On the Electron Donor and Electron Acceptor Properties of the γ-Alumina Surface, J. Catal. 58:470 (1979).

    Article  CAS  Google Scholar 

  138. G. M. Muha, On the Redox Properties of Certain Oxide Surfaces, J. Catal. 58:478 (1979).

    Article  CAS  Google Scholar 

  139. L. B. Ebert and L. Matty, Intercalation Compounds of Graphite:Chemical Identity and Reactivity, Synth. Metals 4:345 (1982).

    CAS  Google Scholar 

  140. G. F. Endres, A. S. Hay, J. W. Eustance, Polymerization by Oxidative Coupling. V. Catalytic Specificity in the Copper Amine-catalyzed Oxidation of 2,6 Dimethyl phenol, J. Org. Chem. 28:1300 (1963).

    Article  CAS  Google Scholar 

  141. W. F. Taylor, Mechanism of Deposit Formation in Wing Tanks, SAE paper no. 680733 (1968).

    Google Scholar 

  142. A. S. Hay, Oxidation of Phenols, U.S. Patent 3,306, 874 (1967).

    Google Scholar 

  143. A. S. Hay, Oxidation of Phenols and Resulting Products, U.S. Patent 3,306, 875 (1967).

    Google Scholar 

  144. A. S. Hay, Process for Preparing Polyphenylene Ethers, U.S. Patent 3,382, 212 (1968).

    Google Scholar 

  145. M. D. Ryan, A. Yueh, and W.-Y.Chen, The Electrochemical Oxidation of Substituted Catechols, J. Electrochem. Soc. 127:1489 (1980).

    Article  CAS  Google Scholar 

  146. M. K. Eberhardt, Reaction of Benzene Radical Cation with Water Evidence for the Reversibility of OH Radical Addition to Benzene, J. Am. Chem. Soc. 103:3876 (1981).

    Article  CAS  Google Scholar 

  147. D. G. H. Ballard, A. Courtis, I. M. Shirley, and S. G. Taylor, A Biotech Route to Polyphenylene, Chem. Common., p. 954 (1983).

    Google Scholar 

  148. L. Roullier and E. Laviron, Etude Electrochimique de Radicaux Libres-III. Etude des Radicaux Derives des Naphthyridines -1.5, -1.6, -1.7, -1.8, -2.6 et -2.7 et du Bipyridyl -4, 4’, Electrochimica Acta 23:773 (1978).

    Article  CAS  Google Scholar 

  149. V. S. F. Chew and J. R. Bolton, The Analysis of the EPR Spectrum of the 10-Hydro-5-methyl-phenazinium Cation Radical, J. Magn. Res. 37:231 (1980).

    CAS  Google Scholar 

  150. M. Shlotani, Y. Nagata, M. Tasaki, J. Sohma, and T. Shida, Electron Spin Resonance Studies on Radical Cations of Five-Membered Heteraromatics. Furan, Thiophene, Pyrrole, and Related Compounds, J. Phys. Chem. 87:1170 (1983).

    Article  Google Scholar 

  151. D. N. Ramakrishna Rao and M. C. R. Symons, Unstable Intermediates. Part 205. Radical Cations of Pyrrole, Furan, and Thiophene Derivatives:an Electron Spin Resonance Study. J. Chem. Soc., Perkin Trans. II, p. 135 (1983).

    Google Scholar 

  152. H. Chandra and M. C. R. Symons, The Radical-cation of pBenzoquinone, Chem. Commun., p. 29 (1983).

    Google Scholar 

  153. H. Wachowska, Chemical structure of coals as indicated by reductive alkylation, Fuel 58:99 (1979).

    Article  CAS  Google Scholar 

  154. N. Berkowitz, On some inconsistencies in current concepts of coal chemistry, Technol. Use Lignite 1:414 (1981) (CA 97:112278f).

    Google Scholar 

  155. E. Kuhlmann, E. Boerwinkle, and M. Orchin, Solubilization of Illinois bituminous coal:the critical importance of methylene group cleavage, Fuel 60:1002 (1981).

    Article  CAS  Google Scholar 

  156. J. A. Franz and W. E. Skiens, Side Reactions in the Reductive Alkylation of Low-rank Coal, Fuel 57:502 (1978).

    Article  CAS  Google Scholar 

  157. L. B. Alemany, C. I. Handy, and L. M. Stock, The Alkylation of Coal, in:“Coal Structure,” M. L. Gorbaty and K. Ouchi, eds., Adv. Chem. 192, Amer. Chem. Soc., Washington (1981).

    Google Scholar 

  158. L. B. Ebert, D. R. Mills, L. Matty, R. J. Pancirov, and T. R. Ashe, Complications in the Reductive Alkylation of Coal, in:“Coal Structure,” M. L. Gorbaty and K. Ouchi, eds., Adv. Chem. 192, Amer. Chem. Soc., Washington (1981).

    Google Scholar 

  159. L. B. Alemany and L. M. Stock, The Reductive Alkylation of Illinois No. 6 Coal. Factors Governing the Reductive Alkylation Reaction in Ethereal Solvents, Fuel 61:250 (1982).

    Article  CAS  Google Scholar 

  160. L. Reggel, R. A. Friedel, and I. Wender, Lithium in Ethyl enediamine:A New Reducing System for Organic Compounds, J. Org. Chem. 22:891 (1957).

    Article  CAS  Google Scholar 

  161. L. Reggel, R. Raymond, S. Friedman, R. A. Friedel, and I. Wender, Reduction of Coal by Lithium-Ethylenediamine, Fuel 37:126 (1958).

    CAS  Google Scholar 

  162. S. Ergun and I. Wender, X-ray Scattering Intensities of Coals Treated with lithium in Ethylenediamine, J. Appl. Chem. 10:189 (1960).

    Article  CAS  Google Scholar 

  163. L. Reggel, R. Raymond, W. A. Steiner, R. A. Friedel, and I. Wender, Reduction of Coal by Lithium-Ethylenediamine. Studies on a Series of Vitrains, Fuel 40:339 (1961).

    CAS  Google Scholar 

  164. H. W. Sternberg, C. L. Delle Donne, L. Reggel, and I. Wender, Reduction of Coal by Lithium-Ethylenediamine at Room Temperature, Fuel 43:143 (1964).

    CAS  Google Scholar 

  165. L. Reggel, I. Wender, and R. Raymond, Reduction of Coal by Lithium-Ethylenediamine. A Reevaluation of Previous Data, Fuel 43:75 (1974).

    Google Scholar 

  166. P. H. Given, V. Lupton, and M. E. Peover, Ease of Reduction of a Series of Coals and its Relation to their Structure, Nature 181:1059 (1958).

    Article  CAS  Google Scholar 

  167. H. W. Sternberg, C. L. Delle Donne, R. E. Markby, and I. Wender, The Electrochemical Reduction of a Low Volatile Bituminous Coal—Nature of the Reduced Material, Fuel 45:469 (1966).

    CAS  Google Scholar 

  168. R. A. Benkeser and E. M. Kaiser, An Electrochemical Method of Reducing Aromatic Compounds Selectively to Dihydro or Tetrahydro Products, J. Am. Chem. Soc. 85:2858 (1963).

    Article  CAS  Google Scholar 

  169. J. C. Thompson, “Electrons in Liquid Ammonia,” Clarendon, Oxford (1976).

    Google Scholar 

  170. R. L. Harris and J. J. Lagowski, Metal Ammonia Solutions. 10. Electron Spin Resonance. A Blue Solid Containing a Crown Ether Complexing Agent, J. Phys. Chem. 82:729 (1978).

    Article  CAS  Google Scholar 

  171. T. A. Beckman and K. S. Pitzer, The Infrared spectra of Marginally Metallic Systems:Sodium-Ammonia Solutions, J. Phys. Chem. 65:1527 (1961).

    Article  CAS  Google Scholar 

  172. J. Van Schooten, J. Knotnerus, H. Boer, and Ph. M. Duinker, Selective Reduction by Calcium Hexammine. II., Rec. Trav. Chim. 77:346 (1958).

    Google Scholar 

  173. W. Kotlarek and R. Pacut, Novel C-C Reductive Cleavage of Terphenyls with Alkali Mtal-Hexamethylphosphoric Triamide, Chem. Commun., p. 153 (1978).

    Google Scholar 

  174. L. Schanne and M. W. Haenel, Cleavage of Carbon-Carbon Bonds by Solvated Electrons, Tet. Lett., p. 4245 (1979).

    Google Scholar 

  175. L. Lazarov and G. Angelova, Treatment of Coals with Sodium in Liquid Ammonia Solution, Fuel 47:333 (1968).

    CAS  Google Scholar 

  176. B. S. Ignasiak, J. F. Fryer, and P. Jadernik, Polymeric Structure of Coal. 2. Structure and Thermoplasticity of Sulphur-rich Rasa Lignite, Fuel 57:378 (1978).

    Article  Google Scholar 

  177. C. I. Handy and L. M. Stock, Reductive Alkylation of Illinois No. 6 Coal in Liquid Ammonia, Fuel 61:700 (1982).

    Article  CAS  Google Scholar 

  178. P. W. Rabideau, The Metal-Ammonia Reduction and Reductive Alkylation of Coal Tar Hydrocarbons and the 13p NMR. Characterization and Conformational Analysis OT the Reduced Products, Department of Energy Report ER 10339-1 (1979). (See also Energy Res. Abstracts 5:6038 (1980)).

    Google Scholar 

  179. P. W. Rabideau, D. W. Jessup, J. W. Ponder, and G. F. Beekman, Metal-Ammonia Reduction of Triptycene and Related Benzobarrelene Derivatives, J. Org. Chem. 44:4594 (1979).

    Article  CAS  Google Scholar 

  180. P. W. Rabideau and E. G. Burkholder, Concerning the Stereochemistry of Reductive Alkylation of Anthracene and Naphthalene, J. Org. Chem. 44:2354 (1979).

    Article  CAS  Google Scholar 

  181. F. Cafasso and B. R. Sundheim, Solutions of Alkali Metals in Polyethers. I., J. Chem. Phys. 31:809 (1959).

    Article  CAS  Google Scholar 

  182. J. M. Pearson, D. J. Williams, and M. Levy, Anion Radicals of a Series of [2.2] Paracyclophanes and α,ω) Diarylalkanes. I. Formation and Chemistry, J. Am. Chem. Soc. 93:5478 (1971).

    CAS  Google Scholar 

  183. A. Lagendijk and M. Szwarc, Mechanism of Carbon-Carbon Bond Fission by Electron Transfer Leading to Dianions, J. Am. Chem. Soc. 93:5359 (1971).

    Article  CAS  Google Scholar 

  184. K. Niemann and U. B. Richter, Studies in the Chemical Characterization of Coal:Reduction, Fuel 58:838 (1979).

    Article  CAS  Google Scholar 

  185. K. Niemann and H. P. Hombach, Studies in the Chemical Characterization of Coal:Reduction via Solvated Electrons, Fuel 58:853 (1979).

    Article  CAS  Google Scholar 

  186. C. J. Collins, H. P. Hombach, B. Maxwell, M. C. Woody, and B. M. Benjamin, Carbon-Carbon Cleavage during BirchHuckel-Type Reductions, J. Am. Chem. Soc. 102:852 (1980).

    Google Scholar 

  187. E. W. Hagaman and M. C. Woody, Structure Analysis of Coals by Resolution Enhanced Solid State 13C n.m.r. Spectroscopy, Fuel 61:53 (1982).

    Article  CAS  Google Scholar 

  188. B. Ignasiak, D. Carson, and M. Gawlak, Non-destructive Solubilization of Coal, Fuel 58:833 (1979).

    Article  CAS  Google Scholar 

  189. N. Cyr, M. Gawlak, D. W. Carson, and B. S. Ignasiak, Structural Characterization of Non-reductively Ethylated Coal by 13C and lH n.m.r., Fuel 62:412 (1983).

    Article  CAS  Google Scholar 

  190. D. Seyferth, D. P. Duncan, and H. W. Sternberg, Silylation:a Method for Benzene Solubilization of Benzeneinsoluble, Pyridine-soluble Coal-derived Products, Fuel 58:74 (1979).

    Article  CAS  Google Scholar 

  191. E. Grovenstein and A. B. Cottingham, Carbanions. 17. Rearrangements of 2,2-Diphenyl-4-pentenyl Alkali Metal Compounds, J. Am. Chem. Soc. 99:1881 (1977).

    Article  CAS  Google Scholar 

  192. D. E. Bergbreiter and J. M. Killough, Reactions of Potassium-Graphite, J. Am. Chem. Soc. 100:2126 (1978).

    Article  CAS  Google Scholar 

  193. W. F. Bailey and E. A. Cioffi, Reductive Rearrangements of 4-Phenyl-l,3-dioxans to 2-Phenylbutane-l,3-diols upon Treatment with Sodium-Potassium Alloy, Chem. Commun. p. 155 (1981).

    Google Scholar 

  194. A. Oku, K. Harada, T. Uagi, and Y. Shirahase, Cyclopropylidene Rearrangement in the Reduction of 1,2:3,4-Bis(dihalomethano)-1,2,3,4-tetra hydropolymethylenophthalenes by Naphthalenides, J. Am. Chem. Soc. 105:4400 (1983).

    Article  CAS  Google Scholar 

  195. H. Gilman and J. W. Morton, The Metalation Reaction with Organolithium Compounds, in “Organic Reactions”, Vol. VIII, Wiley, New york (1954).

    Google Scholar 

  196. J. J. Brooks, W. Rhine, and G. D. Stucky, TT Groups in Ion Pair Bonding. Stabilization of the Dianion of Naphthalene by Lithium Tetramethylethylenediamine, J. Am. Chem. Soc. 94:7346 (1972).

    Article  CAS  Google Scholar 

  197. A. Essel, B. Graveron, G. Merle, and C. Pillot, Stabilite du dianion du naphtalene dans le dioxane et le 2.5 dimethyl-tetrahydrofuranne, C.R. Acad. Sci. Paris 275:925 (1972).

    CAS  Google Scholar 

  198. Yu. N. Novikov and M. E. Vollpin, Lamellar Compounds of Graphite with Alkali Metals, Russ. Chem. Rev. (Eng. Trans.) 40:733 (1971).

    Article  Google Scholar 

  199. L. B. Ebert, Intercalation Compounds of Graphite, Ann. Rev. Mater. Sci. 6:181 (1976).

    Article  CAS  Google Scholar 

  200. H. Selig and L. B. Ebert, Intercalation Compounds of Graphite, Adv. Inorg. Chem. Radiochem. 23:281 (1980).

    CAS  Google Scholar 

  201. L. B. Ebert, Catalysis by Graphite Intercalation Compunds, J. Molec. Catal. 15:275 (1982).

    Article  CAS  Google Scholar 

  202. P. Belser, G. Desbiolles, U. Ochsenbein, and A. Zelewsky, Aromatic Radical Anions in Neat Aromatic Hydrocarbons as Solvents. Direct Evidence of Through Space Spin-Density Transfer to the Ligand of the Counter Ion, Helv. Chim. Acta 63:523 (1980).

    Article  CAS  Google Scholar 

  203. W. A. Holmes-Walker and A. R. Ubbelohde, Electron Transfer in Alkali Metal-Hydrocarbon Complexes, J. Chem. Soc., p. 720 (1954).

    Google Scholar 

  204. G. R. Stevenson and E. Williams, Solvation Enthalpies of Organic Anion Radicals, J. Am. Chem. Soc. 101:5910 (1979).

    Article  CAS  Google Scholar 

  205. G. R. Stevenson, C. R. Siedrich, and G. Clark, Crystal Lattice Energies of Solid Anion Radical Salts, J. Phys. Chem. 85:374 (1981).

    Article  CAS  Google Scholar 

  206. L. Lazarov, I. Rashkov, and S. Angelov, Direct Preparation of Ionic Potassium-Coal Adducts, Fuel 57:637 (1978).

    Article  CAS  Google Scholar 

  207. L. Lazarov, M. Stafanova, and K. Petrov, Structural Study of Coals by Means of Directly-Prepared Potassium-Coal Adducts, Fuel 61:58 (1982).

    Article  CAS  Google Scholar 

  208. H. Podall, W. E. Foster, and A. P. Giraitis, Catalytic Graphite Inclusion Compounds. I. Potassium Graphite as a Polymerization Catalyst, J. Org. Chem. 23:82 (1958).

    CAS  Google Scholar 

  209. J. M. Lalancette, G. Roll in, and P. Dumas, Metals Intercalated in Graphite. I. Reduction and Oxidation, Can. J. Chem. 50:3058 (1972).

    CAS  Google Scholar 

  210. P. B. Hirsch, X-ray Scattering from Coals, Proc. Roy. Soc. A, 226:143 (1954).

    Article  CAS  Google Scholar 

  211. S. Ergun and I. Wender, X-ray Scattering Intensities of Anthraxylons Reduced with Lithium Ethylenediamine, Fuel 37:503 (1958).

    CAS  Google Scholar 

  212. M. Miyake, M. Sukigara, M. Nomura, and S. Kikkawa, Improved Method to Alkylate Yubari Coal of Japan Using Molten Potassium Under Refluxing THF, Fuel 59:637 (1980).

    Article  CAS  Google Scholar 

  213. J. M. Austin, T. Groenewald, and M. Spiro, Heterogeneous Catalysis in Solution. Part 18, The Catalysis by Carbons of Oxidation-Reduction Reactions, J.C.S., Dalton Trans., p. 854 (1980).

    Google Scholar 

  214. L. B. Ebert, L. Matty, D. R. Mills, and J. C. Scanlon, The Interrelationship of Graphite Intercalation Compounds, Ions of Aromatic Hydrocarbons, and Coal Conversion, Mater. Res. Bull. 15:251 (1980).

    Article  CAS  Google Scholar 

  215. B. S. Ignasiak and M. Gawlak, Polymeric Structure of Coal. I. Role of Ether Bonds in Constitution of High-Rank Vitrinite, Fuel 56:216 (1977).

    Article  CAS  Google Scholar 

  216. B. S. Ignasiak, S. K. Chakrabartty, and N. Berkowitz, Molecular Weights of Solubilized Coal Products, Fuel 57:507 (1978).

    Article  CAS  Google Scholar 

  217. L. B. Alemany, S. R. King, and L. M. Stock, Proton and Carbon N.M.R. Spectra of Butylated Coal, Fuel 57:738 (1978).

    Article  CAS  Google Scholar 

  218. E. H. Burk and J. Y. Sun, Coal Molecular Weight Distributions by GPC, in The Fundamental Organic Chemistry of Coal:Proceedings of a Workshop Sponsored by the National Science Foundation, Knoxville, TN (1975).

    Google Scholar 

  219. L. B. Alemany and L. M. Stock, Reductive Alkylation of Illinois No. 6 Coal. and 13C N.M.R. Spectra of the 13C-enriched Alkylation Products, Fuel 61:1088 (1982).

    Article  CAS  Google Scholar 

  220. R. Dogru, G. Erbatur, A. F. Gaines, Y. Yuram, S. Icli, and T. Wirthlin, Nuclear Magnetic Resonance Spectra of Two Reductively Ethylated Fuels, Fuel 57:399 (1978).

    Article  CAS  Google Scholar 

  221. R. Dogru, A. Gaines, A. Olcay, and T. Tugrul, Mild Oxidation of Reductively Ethylated Solid Fuels, Fuel 58:823 (1979).

    Article  CAS  Google Scholar 

  222. H. M. Wachowska, B. N. Nandi, and D. S. Montgomery, Oxidation Studies on Coking Coal Related to Weathering. 4. Oxygen Linkages Influencing the Dilatometric Properties and the Effect of Cleavage of Ether Linkages, Fuel 53:212 (1974).

    Article  CAS  Google Scholar 

  223. H. Wachowska and W. Pawlak, Effect of Cleavage of Ether Linkages on Physicochemical Properties of Coals, Fuel 56:522 (1977).

    Google Scholar 

  224. L. B. Ebert, J. C. Scanlon, and D. R. Mills, X-Ray Diffraction of n-Paraffins and Stacked Aromatic Molecules:Problems in Using Diffraction to Determine the Average Structure of Asphaltenes, Preprints, Petroleum Div., Amer. Chem. Soc. 28:1353 (1983). Also Liq. Fuels Tech., 2:257 (1984).

    CAS  Google Scholar 

  225. H. E. Blayden, J. Gibson, and H. L. Riley, An X-Ray Study of the Structure of Coals, Cokes and Chars, Proceedings Conf. Ultra-fine Structure of Coals and Carbons, p. 176 (1944).

    Google Scholar 

  226. B. G. Silbernagel, L. B. Ebert, R. H. Schlosberg, and R. B. Long, Magnetic Resonance Study of Labeled Guest Molecules in Coal, in:“Coal Structure,” M. L. Gorbaty and K. Ouchi, eds., Adv. Chem. 192, Amer. Chem. Soc., Washington (1981).

    Google Scholar 

  227. N. J. Russell, M. A. Wilson, R. J. Pugmire, and D. M. Grant, Preliminary Studies on the Aromaticity of Australian Coals:Solid State N.M.R. Techniques, Fuel 62:601 (1983).

    Article  CAS  Google Scholar 

  228. J. K. Brown and P. B. Hirsch, Recent Infrared and X-Ray Studies of Coal, Nature 175:229 (1955).

    Article  CAS  Google Scholar 

  229. L. Cartz and P. B. Hirsch, A Contribution to the Structure of Coals From X-Ray Diffraction Studies, Phil. Trans. Roy. Soc. A 252:557 (1960).

    Article  CAS  Google Scholar 

  230. A. Carrington and A. D. McLachlan, “Introduction to Magnetic Resonance,” Chapman and Hall, London (1979).

    Google Scholar 

  231. L. T. Calcaterra, G. L. Closs, and J. R. Miller, Fast Intramolecular Electron Transfer in Radical Ions Over Long Distances Across Rigid Saturated Hydrocarbon Spacers, J. Am. Chem. Soc. 105:1505 (1983).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Ebert, L.B. (1985). Reductive Chemistry of Aromatic Hydrocarbon Molecules. In: Ebert, L.B. (eds) Chemistry of Engine Combustion Deposits. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2469-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2469-0_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9498-6

  • Online ISBN: 978-1-4613-2469-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics