Skip to main content

The Biochemical Basis of 5-Bromouracil- and 2-Aminopurine-Induced Mutagenesis

  • Chapter
Genetic Consequences of Nucleotide Pool Imbalance

Part of the book series: Basic Life Sciences ((BLSC,volume 31))

Abstract

We describe in vitro measurements of heteroduplex base mispaired intermediates involving 5-bromouracil and 2-aminopurine in A·T → G·C and G·C → A·T transition mutation pathways. For the case of 2-amino- purine, 2-aminopurine·cytosine mispairs are formed at a much higher frequency than adenine·cytosine mispairs in either transition path­way. For the case of 5-bromouracil, at least a 40-fold increase in 5-bromouracil-guanine mispairs are observed over thymine·guanine mispairs but only in the A·T → G·C pathway. In the A·T → G·C pathway, mispairs involving 5-bromouracil are formed 2.5-fold more frequently to those involving thymine suggesting perhaps that 5-bromouracil may exhibit substantially different base-pairing behavior depending on whether it is present as a template base or as a deoxyribonucleosides triphosphate substrate. The effect of the base analogs on dNTP pool size perturbations is discussed. A measurement of dNTP pools in 2-aminopurine mutagenized bacteriophage T4-infected cells is presented. An approximate eight-fold expansion in common dNTP pools is observed in a ts L141 antimutator genetic background compared to wild type T4 43+ and ts L56 mutator backgrounds. The effects of distorted dNTP pools on mutagenesis will be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. R. Ashman and R. L. Davison, Bromodeoxyuridine Mutagenesis in Mammalian Cells is Related to Deoxynucleotide Pool Imbalance, Mol. Cell. Biol., 1: 254–260 (1981).

    PubMed  CAS  Google Scholar 

  2. S. Benzer, On the Topography of the Genetic Fine Structure, Proc. Natl. Acad. Sci., U.S.A., 45: 1607–1620 (1959).

    Article  PubMed  CAS  Google Scholar 

  3. M. J. Bessman, I. R. Lehman, J. A. Adler, S. B. Zimmerman, E. S. Simms, and A. Kornberg, Enzymatic Synthesis of Deoxy- nucleic Acid. III. The Incorporation of Pyrimidine and Purine Analogs into Deoxynucleic Acid, Proc. Natl. Acad. Sci., 44: 633–640 (1958).

    Article  PubMed  CAS  Google Scholar 

  4. M. J. Bessman, N. Muzyczka, M. F. Goodman, and R. L. Schnaar, Studies on the Biochemical Basis of Spontaneous Mutation. II. The Incorporation of a Base and Its Analog into DNA by Wild- Type, Mutator, and Antimutator DNA Polymerases, J. Mol. Biol., 88: 409–421 (1974).

    Article  PubMed  CAS  Google Scholar 

  5. S. P. Champe and S. Benzer, Reversal of Mutant Phenotypes by Fluorouracil: An Approach to Nucleotide Sequences in Messenger RNA, Proc. Natl. Acad. Sci., U.S.A., 48: 532–546 (1962).

    Article  PubMed  CAS  Google Scholar 

  6. L. M. S. Chang and F. J. Bollum, Deoxynucleotide-Polymerizing Enzymes of Calf Thymus Gland, J. Biol. Chem., 246: 909–916 (1971).

    PubMed  CAS  Google Scholar 

  7. L. K. Clayton, M. F. Goodman, E. W. Branscomb, and D. J. Galas, Error Induction and Correction by Mutant and Wild Type T4 DNA Polymerase, J. Biol. Chem., 254: 1902–1912 (1979).

    PubMed  CAS  Google Scholar 

  8. C. Coulondre, J. H. Miller, P. J. Farabaugh, and W. Gilbert, Molecular Basis of Base Substitution Hotspots, In Escherichia coli, Nature, 274:775–780 (1979).

    Article  Google Scholar 

  9. W. Drake, Comparative Rates of Spontaneous Mutation, Nature, 221: 1132 (1969).

    Article  PubMed  CAS  Google Scholar 

  10. J. W. Drake, The Molecular Basis of Mutation, Holden-Day, San Francisco (1970).

    Google Scholar 

  11. A. R. Fersht, Fidelity of Replication of Phage ⌽X174 DNA by DNA Polymerase III Holoenzyme: Spontaneous Mutation by Mis- incorporation, PNAS U.S.A., 76: 4946–4950 (1979).

    Article  CAS  Google Scholar 

  12. A. Fersht, J. W. Knill-Jones, and W. C. Tsui, Kinetic Basis of Spontaneous Mutations Misertion Frequencies, Proofreading Specificities and Cost of Proofreading by DNA Polymerases of E. coli, J. Mol. Biol., 156: 37–51 (1982).

    Article  PubMed  CAS  Google Scholar 

  13. E. Freese, The Specific Mutagenic Effect of Base Analogs on Phage T4, J. Mol. Biol., 1: 87–105 (1959).

    Article  CAS  Google Scholar 

  14. C. Garret and D. V. Santi, A Rapid and Sensitive High Pressure Liquid Chromatography Assay for Deoxyribonucleoside Triphosphates in Cell Extracts, Analyt. Biochem., 99: 268–273 (1979).

    Article  Google Scholar 

  15. M. F. Goodman and E. W. Branscomb, DNA Replication Fidelity and Base Mispairing Mutagenesis: Relating Experiments to a Km Discrimination DNA Polymerase Model, in: “Accuracy in Molecular Biology” (D. J. Galas, ed.), Marcel Dekker, to be published (1984).

    Google Scholar 

  16. M. F. Goodman, R. Hopkins, and W. C. Gore, 2-Aminopurine-induced Mutagenesis in T4 Bacteriophage: A Model Relating Mutation Frequency to 2-Aminopurine Incorporation in DNA, Proc. Natl. Acad. Sci., U.S.A., 74: 4806–4810 (1977).

    Article  PubMed  CAS  Google Scholar 

  17. M. F. Goodman and R. L. Ratliff, Evidence of 2-Aminopurine* cytosine Base Pairing Involving 2 Hydrogen Bonds: A 2-Amino- purine Tautomer? Submitted for publication (1983).

    Google Scholar 

  18. R. Hopkins and M. F. Goodman, Assymmetry in Forming 2-Amino- purine ’hydroxymethylcy to sine Heteroduplexes; A Model Giving Misincorporation Frequencies and Rounds of DNA Replication from Base-Pair Populations in vivo, J. Mol. Biol., 135: 1–22 (1979).

    Article  PubMed  CAS  Google Scholar 

  19. R. Hopkins and M. F. Goodman, Deoxyribonucleotide Pools, Base Pairing and Sequence Configuration Affecting Bromodeoxyuridine- and 2-Aminopurine-Induced Mutagenesis, Proc. Natl. Acad. Sci., U.S.A., 77: 1801–1805 (1980).

    Article  PubMed  CAS  Google Scholar 

  20. R. B. Innman and R. L. Baldwin, Helix-Random Coil Transitions in DNA Homopolymer Pairs, J. Biol. Chem., 8: 452–469 (1964).

    Google Scholar 

  21. E. R. Kaufman and R. L. Davidson, Bromodeoxyuridine Mutagenesis in Mammalian Cells: Mutagenesis is Independent of the Amount of Bromouracil in DNA, Proc. Natl. Acad. Sci., 75: 4982–4986 (1978).

    Article  PubMed  CAS  Google Scholar 

  22. E. R. Kaufman and R. L. Davidson, Bromodeoxyuridine Mutagenesis in Mammalian Cells: Mutagenesis is Independent of the Amount of Bromouracil in DNA, Proc. Natl. Acad. Sci., 75: 4982–4986 (1978).

    Article  PubMed  CAS  Google Scholar 

  23. C. K. Mathews, Biochemistry of Deoxyribonucleic Acid-Defective Amber Mutants of Bacteriphage T4. (Ill Nucleotide Pools), The J. of Biol. Chem., 247: 7430–7438 (1972).

    CAS  Google Scholar 

  24. M. Meuth and H. Green, Alterations Leading to Increased Ribonucleotide Reductase in Cells Selected for Resistance to Deoxy- nucleosides, Cell, 3: 367–374 (1974).

    Article  PubMed  CAS  Google Scholar 

  25. M. Meuth and H. Green, Alterations Leading to Increased Ribonucleotide Reductase in Cells Selected for Resistance to Deoxy- nucleosides, Cell, 3: 367–374 (1974).

    Article  PubMed  CAS  Google Scholar 

  26. C. F. Morris, H. Hammar-Inaba, D. Mare, N. K. Sinha, and B. Alberts, Purification of the Gene 43, 44, 45, and 62 Proteins of the Bacteriophage T4 DNA Replication Apparatus, J. Biol. Chem., 254: 6787–6796 (1979).

    PubMed  CAS  Google Scholar 

  27. N. Muzyczka, R. L. Poland, and M. J. Bessman, Studies on the Biochemical Basis of Spontaneous Mutation. I. A Comparison of the Deoxyribonucleic Acid Polymerases of Mutator, Antimutator, and Wild Type Strains of Bacteriophage T4, J. Biol. Chem., 247: 7116–7122 (1972).

    PubMed  CAS  Google Scholar 

  28. L. S. Ripley, The Influence of Diverse Gene 43 DNA Polymerases on the Insertion and Replication in vivoof 2-Aminopurine at A-T BaSe Pairs in Bacteriophage T4, J. Mol. Biol., 150: 197–216 (1981).

    Article  PubMed  CAS  Google Scholar 

  29. A. Ronen, 2-Aminopurine, Mutat. Res., 69: 1–47 (1979).

    Google Scholar 

  30. A. Ronen and A. Rahat, Mutagen Specificity and Position Effects on Mutation T4 rji Nonsense Sites, Mutation Rev., 34: 21–34 (1976).

    CAS  Google Scholar 

  31. B. Rydberg, Bromouracil Mutagenesis and Mismatch Repair in Mutator Strains of Escherichia coli, Mutat. Res., 52: 11–24 (1978).

    Article  PubMed  CAS  Google Scholar 

  32. T. R. Skopek and F. Hutchinson, DNA Base Sequence Changes Induced by Bromouracil Mutagenesis of Lambda Phage, J. Mol. Biol., 159: 19–33 (1982).

    Article  PubMed  CAS  Google Scholar 

  33. L. Thelander and P. Reichard, Reduction of Ribonucleotides, Ann. Rev. Biochem., 48: 133 - 158 (1979).

    Article  PubMed  CAS  Google Scholar 

  34. T. A. Trautner, M. N. Swartz, and A. Romberg, Enzymatic Synthesis of Deoxyribonucleic Acid, X. Influence of Bromouracil Substitutions on Replication, Proc. Natl. Acad. Sci. U.S.A., 48: 449–455 (1962).

    Article  PubMed  CAS  Google Scholar 

  35. S. M. Watanabe and M. F. Goodman, On the Molecular Basis of Transition Mutations: The Frequencies of Forming and 2-Amino- purine • cy to sine Adene«cytosine Base Mispairs in vitro, Proc. Natl. Acad. Sci., U.S.A., 78: 2864–2868 (1981).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Goodman, M.F., Hopkins, R.L., Lasken, R., Mhaskar, D.N. (1985). The Biochemical Basis of 5-Bromouracil- and 2-Aminopurine-Induced Mutagenesis. In: de Serres, F.J. (eds) Genetic Consequences of Nucleotide Pool Imbalance. Basic Life Sciences, vol 31. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2449-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2449-2_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9488-7

  • Online ISBN: 978-1-4613-2449-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics