Skip to main content

The Origin of Plasmid DNA Transfer During Bacterial Conjugation

  • Chapter
Book cover Plasmids in Bacteria

Abstract

Bacterial conjugation is the process of gene transfer requiring cell-to-cell contact. Such mating systems are widespread in bacteria and have been described in many gram-positive and gram-negative organisms (1–3). However, detailed studies on the mechanism of DNA transfer during conjugation have been carried out only in gram-negative bacteria (4). The conjugation systems studied in gram-negatives are encoded by plasmids, and mediate the transfer of plasmid and, occasionally, chromosomal DNA from the donor to the recipient cell. Although transformation and transduction of plasmids occur, conjugation appears to be the major mechanism of plasmid DNA transfer in nature. In addition, conjugation is the only means of gene-tic exchange between different groups of bacteria, since transformation and transduction are generally limited to exchange between closely related members of the same genus or species. The promiscuous gene transfer mediated by broad host-range plasmids means that the gene pool available to bacteria is immensely larger than if genetic exchange was restricted by species barriers. Therefore, broad host-range conjugation enables bacteria to draw upon a very large genetic reservoir when subjected to evolutionary pressures. The most dramatic clinical example of this exceptional adaptability is the development and spread of antibiotic resistance in pathogenic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clark, A., and G. Warren (1979) Ann. Rev. Genet. 13: 99–125.

    Article  PubMed  CAS  Google Scholar 

  2. Willetts, N., and R. Skurray (1980) Ann. Rev. Genet. 14: 41–76.

    Article  Google Scholar 

  3. Clewell, D.B. (1981) Microbiol. Rev. 45: 409–436.

    PubMed  CAS  Google Scholar 

  4. Willetts, N., and B. Wilkins (1984). Microbiol. Rev. 48: 24–41.

    PubMed  CAS  Google Scholar 

  5. Achtman, M., and R. Skurray (1977) In Microbial Interactions, Receptors and Recognition, Ser. B. V3, J.L. Reissig, ed. Chapman and Hall, London, pp. 233–279.

    Google Scholar 

  6. Achtman, M., S. Schwuchow, R. Helmuth, G. Morelli, and P.A. Manning (1978) Molec. Gen. Genet. 164: 171–183.

    Article  Google Scholar 

  7. Rupp, W., and G. Ihler (1968) Cold Spring Harbor Symp. Quant. Biol. 33: 647–650.

    PubMed  CAS  Google Scholar 

  8. Ohki, M., and J. Timizawa (1968) Cold Spring Harbor Symp. Quant. Biol. 33: 651–657.

    PubMed  CAS  Google Scholar 

  9. Clewell, D.B., and D.R. Helinski (1969) Proc. Natl. Acad. Sci., USA 62: 1159–1166.

    Article  PubMed  CAS  Google Scholar 

  10. Kupersztoch-Portnoy, Y.M., G. Miklos, and D.R. Helinski (1974). J. Bacteriol. 120: 545–548.

    PubMed  CAS  Google Scholar 

  11. Blair, D.G., and D.R. Helinski (1975) J. Biol. Chem. 250: 8785–8789.

    PubMed  CAS  Google Scholar 

  12. Guiney, D.G., and D.R. Helinski (1975) J. Biol. Chem. 250: 8796–8803.

    PubMed  CAS  Google Scholar 

  13. Guiney, DG, and DR Hellinski (1975) J. Biol. Chem. 250: 8796–8803

    PubMed  CAS  Google Scholar 

  14. Warren, G.J., A.J. Twigg, and D.J. Sherratt (1978) Nature 274: 259–261.

    Article  PubMed  CAS  Google Scholar 

  15. Dougan, G., and D.J. Sherratt (1977) Mol. Gen. Genet. 151: 151–160.

    Article  PubMed  CAS  Google Scholar 

  16. Helinski, D.R., and D.B. Clewell (1971) Ann. Rev. Biochem. 40: 899–942.

    Article  PubMed  CAS  Google Scholar 

  17. Everett, R., and Willetts (1980) J. Mol. Biol. 136: 129–150.

    Article  PubMed  CAS  Google Scholar 

  18. Collins, J., S. Yanofsky, and D.R. Helinski (1978) Mol. Gen. Genet. 167: 21–28.

    PubMed  CAS  Google Scholar 

  19. Hershfield, V., H.W. Boyer, L. Chow, and D.R. Helinski (1976) J. Bacteriol. 126: 447–453.

    PubMed  CAS  Google Scholar 

  20. Guiney, D.G. (1984) J. Infect. Dis. 149: 320–329.

    Article  PubMed  CAS  Google Scholar 

  21. Bradley, D. (1980) Plasmid 4: 155–169.

    Article  PubMed  CAS  Google Scholar 

  22. Bradley, D., D. Taylor, and D. Cohen (1980) J. Bacteriol. 143: 1466–1470.

    PubMed  CAS  Google Scholar 

  23. Guiney, D.G. (1982) J. Mol. Biol. 162: 699–703.

    Article  PubMed  CAS  Google Scholar 

  24. Willetts, N. (1980) In Molecular Biology, Pathogenicity, and Ecology and Bacterial Plasmids, S. Levy, R. Clowes, and E. Koenig, eds. Plenum Press, New York, pp. 207–216.

    Google Scholar 

  25. Guiney, D.G., and J. Ito (1982) J. Bacteriol. 150: 298–302.

    PubMed  CAS  Google Scholar 

  26. Guiney, D.G., and D.R. Helinski (1979) Mol. Gen. Genet. 176: 183–189.

    PubMed  CAS  Google Scholar 

  27. Guiney, D.G., and E. Yakobson (1983) Proc. Natl. Acad. Sci., USA 80: 3595–3598.

    Article  PubMed  CAS  Google Scholar 

  28. Burkardt, J., G. Riess, and A. Puhler (1979) J. Gen. Microbiol. 114: 341–348.

    PubMed  CAS  Google Scholar 

  29. Ingram, L., M.H. Richmond, and R.B. Sykes (1973) Antimicrob. Ag. Chemother. 3: 279–288.

    CAS  Google Scholar 

  30. Yakobson, E., and D.G. Guiney (1983) Mol. Gen. Genet. 192: 436–438.

    Article  PubMed  CAS  Google Scholar 

  31. Chikami, G., D.G. Guiney, T. Schmidthauser, and D.R. Helinski (submitted for publication).

    Google Scholar 

  32. Villarroel, R., R.W. Hedges, R. Maenhaut, J. Leemans, G. Engler, M. Van Montagu, and J. Schell (1983) Mol. Gen. Genet. 189: 390–399.

    Article  PubMed  CAS  Google Scholar 

  33. Guiney, D.G., P. Hasegawa, and C.E. Davis (submitted for publication).

    Google Scholar 

  34. Barth, P.T., N. Grinter, and D.E. Bradley (1978) J. Bacteriol. 133: 43–52.

    PubMed  CAS  Google Scholar 

  35. Barth, P.T. (1978) In Plasmids of Medical, Environmental, and Commercial Importance, K. Timmis and A. Puhler, eds. Elsevier/ North-Holland, Amsterdam, pp. 399–410.

    Google Scholar 

  36. Tinoco, I., O. Uhlenbeck, and H. Levine (1971) Nature 230: 362–367.

    Article  PubMed  CAS  Google Scholar 

  37. Guiney, D.G., P. Hasegawa, and C.E. Davis. Plasmid (in press).

    Google Scholar 

  38. Wolk, C., A. Vonshak, P. Kehoe, J. Elhai (1984) Proc. Natl. Acad. Sci., USA 81: 1561–1656.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Guiney, D.G., Chikami, G., Deiss, C., Yakobson, E. (1985). The Origin of Plasmid DNA Transfer During Bacterial Conjugation. In: Helinski, D.R., Cohen, S.N., Clewell, D.B., Jackson, D.A., Hollaender, A. (eds) Plasmids in Bacteria. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2447-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2447-8_37

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9487-0

  • Online ISBN: 978-1-4613-2447-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics