Skip to main content

The Tracking Cobalt Project

From Moving-Beam Therapy to Three-Dimensional Programmed Irradiation

  • Chapter
Progress in Medical Radiation Physics

Abstract

In radiotherapy, the dose distribution achieved over the tumor volume, whatever its shape and location, and avoiding damage to surrounding tissues are vital components in the success or failure of the treatment. Moreover, by minimizing the volume irradiated, it becomes possible to deliver higher doses, and as first demonstrated by Ralston Paterson in Manchester, the higher doses tolerated lead to higher cure rates. However, adopting smaller volumes and higher dose levels call for higher precision in delivery, since Shukovsky,(1) Stewart and Jackson,(2) and Herring(3) have shown that there is a steep function relating dose with probability of cure and also risk of damage.

“My object all sublime I shall achieve in time, to let the punishment fit the crime, the punishment fit the crime” (“The Mikado” Gilbert and Sullivan, 1885)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. J. Shukovsky, Dose, time, volume relationships in squamous cell carcinoma of the supraglotic-larynx, Am. J. Roentgenol. 108, 27–29 (1970).

    CAS  Google Scholar 

  2. J. G. Stewart and A. W. Jackson, The steepness of the dose-response curve both for tumor cure and normal tissue injury, Laryngoscope 85, 1107–1111 (1975).

    Article  CAS  Google Scholar 

  3. D. F. Herring, The consequences of dose-response curves for tumor control and normal tissue injury on the precision necessary in patient management, Laryngoscope 85, 1112–1118 (1975).

    Article  CAS  Google Scholar 

  4. A. Green, A technical advance in irradiation technique, Proceedings of the Royal Soc. Med. 52, 344–346 (1959).

    CAS  Google Scholar 

  5. A. Green, The directional caliper: its clinical uses in radiation therapy, Br. J. Radiol. 10,95–101 (1937).

    Article  Google Scholar 

  6. J. L. Dobbie, Beam direction in X-ray therapy, Br. J. Radiol. 12, 121–128 (1939).

    Article  Google Scholar 

  7. A. Green, W. A. Jennings, and F. Bush, Rotational Roentgen therapy in the horizontal plane, Acta Radiol. 31, 275–320 (1949).

    Google Scholar 

  8. A. Green, W. A. Jennings, and H. M. Christie, Radiotherapy by tracking the spread of disease, Transactions of the Ninth International Congress of Radiology, Munchen 1959, Verlag, Stuttgart, 766–772 (1960).

    Google Scholar 

  9. W. A. Jennings, Programmed three-dimensional irradiations, Abstract of the Eleventh International Congress of Radiology, Rome 1965, International Congress Series No. 89, Excerpta Medica Foundation, Amsterdam 332 (1965).

    Google Scholar 

  10. A. Green, Tracking cobalt project, Nature 207, 1311 (1965).

    Article  CAS  Google Scholar 

  11. T. J. Davy, P. K. Johnson, R. Redford, and J. R. Williams, Conformation therapy using the tracking cobalt unit, Br. J. Radiol. 48, 122–130 (1975).

    Article  CAS  Google Scholar 

  12. J. A. Brace, T. J. Davy, D. B. L. Skeggs, and H. S. Williams, Conformation therapy at the Royal Free Hospital. A progress report on the tracking cobalt project, Br. J. Radiol. 54, 1068–1074 (1981).

    Article  CAS  Google Scholar 

  13. R. Knox and A. St. G. Caulfield, described in A Textbook of Radiotherapeutics, 4th ed., W. M. Levitt, ed, p. 79–80, A. & C. Black, London (1932).

    Google Scholar 

  14. U. Henschke, Uber Rotationsbestrahlung, Fortschr. auf dem Gebiete der Röntgenstr. 58, 456–461 (1938).

    Google Scholar 

  15. H. Meyer, Das Problem der “Kreuzfeuerwirkung” in der gynakologischen Roentgen-therapie, Zentralbl. Gynäk. 37, 1741–1752 (1913).

    Google Scholar 

  16. J. Nielsen and S. H. Jensen, Some experimental and clinical lights in the rotational therapy and its basis and possibilities, Acta Radiol. 23, 51–66 (1942).

    Article  Google Scholar 

  17. W. A. Jennings and A. L. McCrea, Dose distribution in conical rotation therapy with a 2-MeV generator, Radiology 68, 689–697 (1957).

    CAS  Google Scholar 

  18. W. A. Jennings, Percentage depth dose in moving-field therapy, Radiology 68, 698–707 (1957).

    CAS  Google Scholar 

  19. S. W. Alderson, L. H. Lanzl, M. Rollins, and J. Spira, An instrumented phantom system for analog computation of treatment plans, Am. J. Roentgenol. 87, 185–195 (1962).

    CAS  Google Scholar 

  20. J. van de Geijn, Dose distribution in moving-beam cobalt-60 teletherapy—a generalised calculation method, Br. J. Radiol. 36, 879–885 (1963).

    Article  Google Scholar 

  21. J. van de Geijn, The computation of 2- and 3-dimensional dose distributions in cobalt-60 teletherapy, Br. J. Radiol. 38, 369–377 (1965).

    Article  Google Scholar 

  22. K. A. Wright, B. S. Proimos, J. G. Trump, M. I. Smedal, D. O. Johnson, and F. A. Salzman, Field shaping and selective protection in megavolt radiation therapy, Radiology 72, 101 (1959).

    Google Scholar 

  23. B. S. Proimos, Synchronous field shaping in rotational megavolt therapy, Radiology 74, 753–757 (1960).

    CAS  Google Scholar 

  24. B. S. Proimos, Synchronous protection and field shaping in cyclotherapy, Radiology 77, 591–599 (1961).

    CAS  Google Scholar 

  25. B. S. Proimos, New accessories for precise teletherapy with cobalt-60 units, Radiology 81, 307–316 (1963).

    CAS  Google Scholar 

  26. B. S. Proimos, Beam shapers oriented by gravity in rotational therapy, Radiology 87, 928–933 (1966).

    CAS  Google Scholar 

  27. B. S. Proimos, S. P. Tsialas, and S. C. Coutroubas, Gravity-oriented filters in arc cobalt therapy, Radiology 87, 933–937 (1966).

    CAS  Google Scholar 

  28. B. S. Proimos, Shaping the dose distribution through a tumor model, Radiology 92, 130–135 (1969).

    CAS  Google Scholar 

  29. D. N. Ilfeld, K. A. Wright, and F. A. Salzman, Synchronous shielding and field shaping for megavolt irradiation of advanced cervical carcinoma, Am. J. Roentgenol. 112, 792–796 (1971).

    CAS  Google Scholar 

  30. S. Takahashi, T. Kitabatake, K. Morita, S. Okajima, and H. Iida, Methoden zur besseren Anpassung der Dosisverteilung an tiefliegende Krankheitsherde bei Bewegungsbestrahlung, Strahlentherapie 115, 478–488 (1961).

    CAS  Google Scholar 

  31. S. Takahashi, Conformation radiotherapy: rotation techniques as applied to radiography and radiotherapy of cancer, Acta Radiol. Suppl. 242, 1–142 (1965).

    Google Scholar 

  32. W. Bohndorf and D. Harder, Die Dosisverteilung bei der horizontaltranslation an Telekolaltgeraten, Strahlentherapie 119, 389–400 (1962).

    CAS  Google Scholar 

  33. W. A. Jennings and A. Green, The tracking cobalt-60 method, or programmed 3D irradiation, Abstracts of the Second Congress of the European Association of Radiology, 7977, Excerpta Medica International Congress Series, no. 230, p. 154, Excerpta Medica, Amsterdam (1971).

    Google Scholar 

  34. J. E. Turner, R. M. Johnson, and S. M. Whitfield, An analysis of factors affecting optimal axis placement and 80% isodose volume dimensions in telecobalt arc therapy, Am. J. Roentgenol. 94, 852–864 (1965).

    CAS  Google Scholar 

  35. K. C. Tsien, J. R. Cunningham, and D. J. Wright, Effects of different parameters on dose distributions in cobalt-60 planar rotation, Acta Radiol. Ther. Phys. Biol. 4, 129–154 (1966).

    CAS  Google Scholar 

  36. J. van de Geijn, A computer programme for 3-D planning in external-beam radiation therapy, EXTDOS, Comput. Programs Biomed. 1, 47–57 (1970).

    Article  Google Scholar 

  37. T. J. Davy and J. A. Brace, Dynamic 3-D treatment using a computer-controlled cobalt unit, Br. J. Radiol. 53, 384 (1979).

    Google Scholar 

  38. J. A. Brace, A computer system for the dynamic control of a telecobalt unit, International Symposium on Fundamentals in Technical Progress, Liege, Belgium, Presses Universitaires de Liege (1979).

    Google Scholar 

  39. T. J. Davy, Dynamic treatment using a computer-controlled telecobalt-60 unit, International symposium on fundamentals in technical progress, Liege, Belgium, Presses Universitaires de Liege (1979).

    Google Scholar 

  40. J. A. Brace, T. J. Davy, and D. B. L. Skeggs, Computer-controlled cobalt unit for radiotherapy, Med. Biol. Eng. Computing 19, 612–616 (1981).

    Article  CAS  Google Scholar 

  41. T. J. Davy, The control of radiotherapy dose distributions in three dimensions using a computer-controlled tracking unit, Abstract, Int. Congress Radiol., Brussels(1981).

    Google Scholar 

  42. D. B. L. Skeggs, 3-dimensional radiotherapy under computer control and its relationship to CT scanning, Abstract, Int. Congress Radiol., Brussels(1981).

    Google Scholar 

  43. P. K. Kijewski, L. M. Chin, and B. E. Bjarngard, Wedge-shaped dose distributions by computer-controlled collimator motion, Med. Phys. 5, 426–429 (1978).

    Article  CAS  Google Scholar 

  44. M. B. Levene, P. K. Kijewski, L. M. Chin, B. E. Bjarngard, and S. Hellman, Computer- controlled radiation therapy, Radiology 129, 769–775 (1978).

    CAS  Google Scholar 

  45. K. Takahashi, J. A. Purdy, and Yeong Ylin, Work in progress: treatment planning for conformation radiotherapy, Radiology 147, 567–573 (1983).

    CAS  Google Scholar 

  46. B. S. Proimos, “Shell technic,” a new concept in rotational radiotherapy, Proceedings of the Fifth International Conference on Medical Physics, and the Twelfth International Conference on Medical and Biological Engineering, Jerusalem, Bellinson Medical Center, Petak, Tikra, Israel (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Jennings, W.A. (1985). The Tracking Cobalt Project. In: Orton, C.G. (eds) Progress in Medical Radiation Physics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2387-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2387-7_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9458-0

  • Online ISBN: 978-1-4613-2387-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics