Skip to main content

Chemistry of Reactive Oxygen Species

  • Chapter
Chemical Changes in Food during Processing

Part of the book series: Basic Symposium Series ((IFTBSS))

Abstract

Oxidation is one of the most significant causes of foodstuff deterioration. It can lead to rancidity, off-flavor and -color, deterioration of texture, and other damage. Toxic materials may also result from the oxidation of naturally occurring substances (Pryor 1984). For example, cholesterol epoxides and hydroperoxides are thought to be carcinogenic or mutagenic (Koch and Schenck 1967; Sporer et al. 1982); they are among the products of oxidation of cholesterol (Smith et al. 1979).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ansari, G.A.S., and Smith, L.L. 1979. High-performance liquid chromatography of cholesterol autoxidation products. J. Chromatogr. 175, 307–315.

    Article  CAS  Google Scholar 

  • Arnason, T., Towers, G.H.N., Philogene, B.J.R., and Lambert, J.D.H. 1983. The role of natural photosensitizers in plant resistance to insects. ACS Symp. Ser. 208, 139–151.

    Google Scholar 

  • Aubry, J.M., Rigaudy, J., Ferradini, C., and Pucheault, J. 1981. A search for singlet oxygen in the disproportionation of superoxide anion. J. Am. Chem. Soc. 103, 4965–4966.

    Article  CAS  Google Scholar 

  • Bielski, B.H.J., and Allen, A.O. 1977. Mechanism of the disproportionation of superoxide radicals. J. Phys. Chem. 81, 1048–1050.

    Article  CAS  Google Scholar 

  • Bielski, B.H.J., Arudi, R.L., and Sutherland, M.W. 1983. A study of the reactivity of the HO2/O2 with unsaturated fatty acids. J. Biol. Chem. 258, 4759–4761.

    CAS  Google Scholar 

  • Burton, G., and Ingold, K. 1984. Beta-carotene: An unusual type of lipid antioxidant. Science 569–573.

    Google Scholar 

  • Denecke, C.F., and Krinsky, N.I. 1977. Inhibition and enhancement of singlet oxygen 1Ag dimol chemiluminescence. Photochem. Photobiol. 25, 299–304.

    Article  Google Scholar 

  • Farhataziz, and Ross, A.B. 1977. Selected specific rates of reactions of transients from water in aqueous solution. III. Hydroxyl radical and perhydroxyl radical and their radical ions. Natl. Stand. Ref. Data Ser. (U.S. Natl. Bur. Stand.) NSRDS-NBS 59, 1–13.

    Google Scholar 

  • Fee, J.A. 1982. Is superoxide important in oxygen poisoning? Trends Biol. Sci. 7, 84–86.

    Article  CAS  Google Scholar 

  • Foote, C.S. 1976. Photosensitized oxidation and singlet oxygen: Consequences in biological systems. In Free Radicals in Biology. W.A. Pryor (Editor), Vol. 2, pp. 85–133. Academic Press, NY.

    Google Scholar 

  • Foote, C.S. 1979. Detection of singlet oxygen in complex systems: A critique. In Biochemical and Clinical Aspects of Oxygen. W.S. Caughey (Editor), pp. 603–626. Academic Press, NY.

    Google Scholar 

  • Foote, C.S. 1982. Light, oxygen, and toxicity. In Pathology of Oxygen. A.P. Autor (Editor), pp. 21–43. Academic Press, NY.

    Google Scholar 

  • Foote, C.S., Shook, F.C., and Abakerli, R.B. 1980. Singlet oxygen is not a major product of dismutation. J. Am. Chem. Soc. 102, 2503.

    Article  CAS  Google Scholar 

  • Foote, C.S., Shook, F.C., and Abakerli, R.B. 1984. Characterization of singlet oxygen. Methods Enzymol. 105, 36–46.

    Article  CAS  Google Scholar 

  • Fridovich, I. 1978. The biology of oxygen radicals. Science 201, 875.

    Article  CAS  Google Scholar 

  • Goda, K., Kimura, T., Thayer, A.L., Kees, K., and Schaap, A.P. 1974. Singlet molecular oxygen in biological systems: Non-quenching of singlet oxygen-mediated chemiluminescence by superoxide dismutase. Biochem. Biophys. Res. Commun. 58, 1300–1306.

    Article  Google Scholar 

  • Gollnick, K. 1968. Type II photooxidation reactions in solution. Adv. Photochem. 6, 1–122.

    Article  CAS  Google Scholar 

  • Greenstock, C.L., and Ruddock, G.W. 1976. Determination of superoxide (O 22122 ) radical anion reaction rates using pulse radiolysis. Int. J. Radiat. Res. 8, 367–369.

    CAS  Google Scholar 

  • Howard, J.A., and Scaiano, T. 1984. Oxy, peroxy and related radicals. In Landolt-Bornstein Tables. H. Fischer (Editor), New Series, Vol. 130. Springer-Verlag, Berlin.

    Google Scholar 

  • Hurst, J.R., and Schuster, G.B. 1983. Nonradiative relaxation of singlet oxygen in solution. J. Am. Chem. Soc. 105, 5756–5760.

    Article  CAS  Google Scholar 

  • Janzen, E.G. 1980. A critical review of spin trapping in biological systems. In Free Radicals in Biology. W.A. Pryor (Editor), Vol. 4, pp. 116–154. Academic Press, NY.

    Google Scholar 

  • Khan, A.U. 1970. Singlet molecular oxygen from superoxide anion and sensitized fluorescence. Science 168, 476–477.

    Article  CAS  Google Scholar 

  • Koch, R., and Schenck, G.O. 1967. Zur geschlechtsspezifischen Cancerogenitat des Cholesterin-5-hydroperoxyds. Naturwissenschaften 54, 172.

    Article  CAS  Google Scholar 

  • Nanni, E.J., Jr., Birge, R.R., Hubbard, L.M., Morrison, M.M., and Sawyer, D.T. 1981. Oxidation and dismutation of superoxide ion solutions to molecular oxygen. Singlet vs triplet state. Inorg. Chem. 20, 737–741.

    Article  CAS  Google Scholar 

  • Ogilby, P.R., and Foote, C.S. 1983. The chemistry of singlet oxygen. 42. The effect of solvent, solvent isotopic substitution and temperature on the lifetime of singlet molecular oxygen (1Δg). J. Am. Chem. Soc. 105, 3423–3430.

    Article  CAS  Google Scholar 

  • Pryor, W.A. 1981. Autoxidation in biological systems. A novel low-temperature method for spin trapping and the mechanism of reaction of ozone with polyunsaturated fatty acids. In Oxygen and Oxy-Radicals in Chemistry and Biology. M.A.J. Rodgers and E.L. Powers (Editors), pp. 119–131. Academic Press, NY.

    Google Scholar 

  • Pryor, W.A. 1982. Free radical biology. Ann. N.Y. Acad. Sci. 393, 1–30.

    Article  CAS  Google Scholar 

  • Pryor, W.A. 1984. Free radical involvement in diseases and aging. The toxicity of lipid peroxides and their decomposition products. ACS Symp. Ser. (in press).

    Google Scholar 

  • Pryor, W.A., and Tang, R.H. 1978. Ethylene formation from methional. Biochem. Biophys. Res. Commun. 81, 498–503.

    Article  CAS  Google Scholar 

  • Rabinowitch, H.D., and Fridovich, I. 1983. Superoxide radicals, superoxide dismutases and oxygen toxicity in plants. Photochem. Photobiol. 37, 679–690.

    Article  CAS  Google Scholar 

  • Richmond, R., Halliwell, B., Chauhan, J., and Darbre, A. 1981. Superoxide-dependent formation of hydroxyl radicals: Detection of hydroxyl radicals by the hydroxylation of aromatic compounds. Anal. Biochem. 118, 328–335.

    Article  CAS  Google Scholar 

  • Rosen, G.M., and Rauckman, E.J. 1984. Spin trapping of superoxide and hydroxyl radicals. Methods Enzymol. 105, 198–209.

    Article  CAS  Google Scholar 

  • Singh, A. 1982. Chemical and biochemical aspects of superoxide radicals and related species of activated oxygen. Can. J. Physiol. Pharmacol. 60, 1330–1345.

    Article  CAS  Google Scholar 

  • Smith, L.L., Smart, V.B., and Ansari, G.A.S. 1979. Mutagenic cholesterol preparation. Mutat. Res. 68, 23–30.

    Article  CAS  Google Scholar 

  • Sporer, A., Brill, D.R., and Schaffner, C.P. 1982. Epoxycholesterols in secretions and tissues of normal, benign, and cancerous human prostate glands. Urology 20, 244–250.

    Article  CAS  Google Scholar 

  • Thomas, M., and Pryor, W. 1980. Singlet oxygen oxidation of methyl linoleate: Isolation and characterization of the NaBH4-reduced products. Lipids 15, 544–548.

    Article  CAS  Google Scholar 

  • Weinstein, J., and Bielski, B.H.J. 1979. Kinetics of the interaction of HO2 and O2 radicals with hydrogen peroxide. The Haber-Weiss reaction. J. Am. Chem. Soc. 101, 58–62.

    Article  CAS  Google Scholar 

  • Wilkinson, F., and Brummer, J.G. 1981. Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. J. Phys. Chem. Ref. Data 10, 809–1000.

    Article  CAS  Google Scholar 

  • Yang, S.F. 1969. Further studies on ethylene formation for α-keto-γ-methylthio-butyric acid or ß-methylthiopropionaldehyde by peroxidase in the presence of sulfite and oxygen. J. Biol. Chem. 244, 4360–4365.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 AVI Publishing Co.

About this chapter

Cite this chapter

Foote, C.S. (1985). Chemistry of Reactive Oxygen Species. In: Richardson, T., Finley, J.W. (eds) Chemical Changes in Food during Processing. Basic Symposium Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2265-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2265-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9389-7

  • Online ISBN: 978-1-4613-2265-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics