Skip to main content

Chitosan Both Activates Genes in Plants and Inhibits RNA Synthesis in Fungi

  • Chapter
Chitin in Nature and Technology

Abstract

The regulatory role of chitosan in eucaryotic organisms may have far reaching consequences because chitosan and its acetylated form, chitin, are prevalent in nature. We have found two different regulatory functions for chitosan in a simple fungal-plant interaction1. Chitosan which is a normal component of the cell walls of some fungi (Fig. 1) can activate specific genes in plants and at similar concentrations can completely inhibit all RNA synthesis in some fungal organisms and thus suppress gene activity. In this paper we review data which partially explains this paradoxical action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. A. Hadwiger and J. M. Beckman, Chitosan as a component of pea-Fusarium solani interactions, Plant Physiol. 66: 205 (1980).

    Article  PubMed  CAS  Google Scholar 

  2. D. F. Kendra and L. A. Hadwiger, Characterization of the smallest chitosan oligomer that is maximally antifungal to Fusarium solani and elicits pisatin formation in Pisum sativum, Exp. Mycol. 8: 276 (1984).

    Article  CAS  Google Scholar 

  3. D. S. Zarlenga, H. B. Halsall and R. A. Day. A polycationic amine that induces unique conformational changes in poly (dA-dT) in low salt, Nucl. Acid Res. 12: 6325 (1984).

    Article  CAS  Google Scholar 

  4. D. C. Loschke, L. A. Hadwiger and W. Wagoner, Comparison of mRNA populations coding for phenylalanine ammonia lyase and other peptides from pea tissue treated with biotic and abiotic phytoalexin inducers, Physiol. Plant Pathol. 23: 163 (1983).

    Article  CAS  Google Scholar 

  5. L. A. Hadwiger, J. M. Beckman and M. J. Adams, Localization of fungal components in the pea-Fusarium interaction detected immunochemically with anti-chitosan and anti-fungal cell wall antisera, Plant Physiol. 67: 170 (1981).

    Article  PubMed  CAS  Google Scholar 

  6. A. Szecsi, Kinetic complexity and repetitiveness of Fusarium graminearum nuclear DNA, Exp. Mycol. 5: 323 (1981).

    Article  CAS  Google Scholar 

  7. M. G. Murray, R. E. Cuellar and W. F. Thompson, DNA sequence organization in the pea genome, Biochem. 17: 5781 (1978).

    Article  CAS  Google Scholar 

  8. B. Fristensky, R. C. Riggleman, W. Wagoner and L. A. Hadwiger, Gene expression in susceptible and disease resistant interactions of peas induced with Fusariumsolani pathogens and chitosan, Physiol. Plant Pathol. (In press).

    Google Scholar 

  9. W. Wagoner, D. C. Loschke and L. A. Hadwiger, Two-dimensional electrophoretic analysis of in vivo and in vitro synthesis of proteins in peas inoculated with compatible and incompatible Fusarium solani, Physiol. Plant Pathol. 20: 99 (1982).

    Article  CAS  Google Scholar 

  10. E. J. Nichols, J. M. Beckman and L. A. Hadwiger, Glycosidic enzyme activity in pea tissue and pea-Fusarium solani interactions. Plant Physiol. 66: 199 (1980).

    Article  PubMed  CAS  Google Scholar 

  11. F. Mauch, L. A. Hadwiger and T. Boiler, Ethylene: symptom, not signal for induction of chitinase and β-1, 3-glucanase in pea pods by pathogens and elicitors, Plant Physiol. 76: 607 (1984).

    Article  PubMed  CAS  Google Scholar 

  12. R. Reeves, Transcriptionally active chromatin, Biochim. Biophys. Acta 782: 343 (1984).

    PubMed  CAS  Google Scholar 

  13. C. R. Alan and L. A. Hadwiger, The fungicidal effect of chitosan on fungi of varying cell wall composition, Exp. Mycol. 3: 285 (1979).

    Article  Google Scholar 

  14. M. Walker-Simmons, D. Jin, C. A. West, L. Hadwiger and C. A. Ryan, Comparison of proteinase inhibitor-inducing activities and phytoalexin elicitor activities of a pure fungal endopolygalacturonase, pectic fragments, and chitosans, Plant Physiol. 76: 833 (1984).

    Article  PubMed  CAS  Google Scholar 

  15. R. H. Miller, A. A. Berryman and C. A. Ryan, Biological elicitors of defense reactions in Lodgepole pine. Forest Science (In press).

    Google Scholar 

  16. R. B. Pearce and J. P. Ride, Chitin and related compounds as elicitors of the lignification response in wounded wheat leaves. Physiol. Plant Pathol. 20: 119 (1982).

    Article  CAS  Google Scholar 

  17. L. A. Hadwiger, B. Fristensky and R. C. Riggleman, Chitosan a natural-regulator in plant-fungal interactions increases crop yields, in: “Chitin, Chitosan and Related Enzymes,” J. P. Zikakis, ed., Academic Press, New York (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Hadwiger, L.A., Kendra, D.F., Fristensky, B.W., Wagoner, W. (1986). Chitosan Both Activates Genes in Plants and Inhibits RNA Synthesis in Fungi. In: Muzzarelli, R., Jeuniaux, C., Gooday, G.W. (eds) Chitin in Nature and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2167-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2167-5_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9277-7

  • Online ISBN: 978-1-4613-2167-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics