Skip to main content

The Generation and Down-Regulation of the Immune Response to Progressive Tumors

  • Chapter
Development and Recognition of the Transformed Cell

Abstract

Determining whether a given animal or human tumor possesses antigens capable of evoking a specific antitumor immune response is essential before a rational attempt can be made to treat the tumor by a therapeutic modality designed to augment specific antitumor immunity. The role of the experimental tumor immunologists is to obtain detailed information about the immunogenicity of animal tumors and about the antitumor immune response they evoke, with a view to supplying the clinical oncologist with knowledge about the type of immune response that needs to be boosted. Regardless of whether or not animal tumors are suitable models of the human disease, the fact is that animal and human tumors have a lot in common, including the capacity to grow progressively in their hosts. Therefore, even though an animal tumor may possess tumor-specific antigens, it is not destroyed by specific or nonspecific host defense mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Foley, E. J., 1953, Antigenic properties of methylcholanthrene-induced tumors in mice at the strain of origin, Cancer Res. 13:835–837.

    PubMed  CAS  Google Scholar 

  2. Old, L. J., Boyse, E. A., Clarke, D. A., and Carswell, E. A., 1962, Antigenic properties of chemicallyinduced tumors, Ann. N.Y. Acad. Sci. 101:80–106.

    Article  CAS  Google Scholar 

  3. Sjogren, H. O., 1965, Transplantation methods as a tool for detection of tumor-specific antigens, Prog. Exp. Tumor Res. 6:289–322.

    PubMed  CAS  Google Scholar 

  4. Klein, G., 1966, Tumor antigens, Annu Rev. Microbiol. 20:223–252.

    Article  PubMed  CAS  Google Scholar 

  5. Hellstrom, K. E., and Hellstrom, I., 1969, Cellular immunity against tumor antigens, Adv. Cancer Res. 12:167–223.

    Article  PubMed  CAS  Google Scholar 

  6. Tuttle, R. L., and North, R. J., 1976, Mechanisms of antitumor action of Corynebacterium parvum: Replicating short-lived T cells as the mediators of potentiated tumor-specific immunity, J. Reticuloendothel. Soc. 20:209–216.

    PubMed  CAS  Google Scholar 

  7. Burton, R. C., Chism, S. E., and Warner, N. L., 1978, In vitro induction and expression of T cell immunity to tumor-associated antigens, Contemp. Top. Immunobiol. 8:69–106.

    PubMed  CAS  Google Scholar 

  8. Greenberg, P. D., Kern, D. E., and Cheever, M. A., 1985, Therapy of disseminated murine leukemia with cyclophosphamide and immune Ly-l+,2- T cells: Tumor eradication does not require participation of cytotoxic T cells, J. Exp. Med. 161:1122–1134.

    Article  PubMed  CAS  Google Scholar 

  9. Bhan, A. K., Perry, L. L., Cantor, H., McCluskey, R. T., Benacerraf, B., and Greene, M. I., 1981, The role of T cell sets in rejection of a methylcholanthrene-induced sarcoma (S1509a) in syngeneic mice, Am. J. Pathol. 102:20–27.

    PubMed  CAS  Google Scholar 

  10. Loveland, B. E., Hogarth, P. M., Ceredig, R., and McKenzie, I. F. C., 1981, Cells mediating skin graft rejection in the mouse. I. Lyt-1 cells mediate skin graft rejection, J. Exp. Med. 153:1044–1057.

    Article  PubMed  CAS  Google Scholar 

  11. Lukacher, A. E., Morrison, L. A., Braciale, V. L., Malissen, B., and Braciale, T. J., 1985, Expression of specific cytolytic activity by H-2I region-restricted, influenza virus-specific T lymphocyte clones, J. Exp. Med. 162:172–187.

    Article  Google Scholar 

  12. Golding, H., Munitz, T. I., and Singer, A., 1985, Characterization of antigen-specific, la-restricted, L3T4+ cytolytic T lymphocytes and assessment of thymic influence on their self specificity, J. Exp. Med. 162:943–961.

    Article  PubMed  CAS  Google Scholar 

  13. Gorelik, E., 1983, Concomitant tumor immunity, Adv. Cancer Res. 39:71–120.

    Article  PubMed  CAS  Google Scholar 

  14. North, R. J., and Kirstein, D. P., 1977, T cell-mediated concomitant immunity to syngeneic tumors: Activated macrophages as the expressors of nonspecific immunity to unrelated tumors and bacterial parasites, J. Exp. Med. 145:275–292.

    Article  PubMed  CAS  Google Scholar 

  15. Bast, R. C., Bast, B. S., and Rapp, H. J., Critical review of previously reported animal studies of tumor immunotherapy with non-specific immunostimulants, 1976, Ann. N.Y. Acad. Sci. 277:60–92.

    Article  PubMed  CAS  Google Scholar 

  16. Vaage, J., 1971, Concomitant immunity and specific depression of immunity by residual or reinjected syngeneic tumor tissue, Cancer Res. 31:1655–1662.

    PubMed  CAS  Google Scholar 

  17. Takai, F., Levy, J. G., and Kilburn, D. G., 1976, In vitro induction of cytotoxicity against syngeneic mastocytoma and its suppression by spleen and thymus cells from tumor bearing mice, J. Immunol. 116:288–293.

    Google Scholar 

  18. Tuttle, R. L., Knick, V. C., Stopford, C. R., and Wolberg, G., 1983, In vivo and in vitro antitumor activity expressed by cells of concomitant immune mice, Cancer Res. 43:2600–2605.

    PubMed  CAS  Google Scholar 

  19. North, R. J., and Dye, E. S., 1985, Ly-1+2- suppressor T cells down-regulate the generation of Ly 1+2- effector T cells, Immunology 53:47–56.

    Google Scholar 

  20. North, R. J., and Bursuker, I., 1984, The generation and decay of the immune response to a progressive fibrosarcoma: Ly-1+2- suppressor T cells down-regulate the generation of Ly-1-2+ effector T cells, J. Exp. Med. 159:1295–1311.

    Article  PubMed  CAS  Google Scholar 

  21. North, R. J., 1984, The therapeutic significance of concomitant antitumor immunity: Ly-1-2+ T cells from mice with a progressive tumor cause regression of an established tumor in 7-irradiated recipients, Cancer Immunol. Immunother. 18:69–74.

    Article  PubMed  CAS  Google Scholar 

  22. Dye, E. S., 1986, The antimetastatic function of concomitant immunity. II. Evidence that the genration of Ly-1+2+ effector T cells temporarily causes destruction of already disseminated tumor cells, J. Immunol. 136:1510–1515.

    PubMed  CAS  Google Scholar 

  23. Greene, M. I., 1980, The genetic and cellular basis of regulation of the immune response to tumor antigens, Contemp. Top. Immunobiol. 11:81–116.

    CAS  Google Scholar 

  24. Hawrylko, E., 1982, Tumor bearer T cells suppress BCG-potentiated antitumor responses. 1. Requirements for their effectors, Cell. Immunol. 66:121–138.

    Article  PubMed  CAS  Google Scholar 

  25. Hawrylko, E., Mele, C. A., and Stutman, O., 1982, Tumor bearer T cells suppress BCG-potentiated antitumor responses. II. Characteristics of the efferent phase suppressor, Cell. Immunol. 66:139–151.

    Article  PubMed  CAS  Google Scholar 

  26. Berendt, M. J., and North, R. J., 1980, T cell-mediated immunosuppression of antitumor immunity: An explanation for progressive growth of an immunogenic tumor, J. Exp. Med. 151:69–80.

    Article  PubMed  CAS  Google Scholar 

  27. Dye, E. S., and North, R. J., 1981, T cell mediated immunosuppression as an obstacle to adoptive immunotherapy of the P815 mastocytoma and its metastases, J. Exp. Med. 154:1033–1042.

    Article  PubMed  CAS  Google Scholar 

  28. Bonventre, P. F., Nockol, A. D., Ball, E. J., Michael, J. G., and Bubel, H. C., 1982, Development of protective immunity against bacterial and viral infections in tumor-bearing mice is coincident with suppression, J. Reticuloendothel. Soc. 32:25–34.

    PubMed  CAS  Google Scholar 

  29. North, R. J., 1982, Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on the elimination of tumor-induced suppressor T cells, J. Exp. Med. 55:1063–1074.

    Article  Google Scholar 

  30. North, R. J., 1984, γ-Irradiation facilitates the expression of adoptive immunity against established tumors by eliminating suppressor T cells, Cancer Immunol. Immunother. 16:175–181.

    Article  PubMed  CAS  Google Scholar 

  31. Dye, E. S., and North, R. J., 1984, Specificity of the T cells that mediate and suppress adoptive immunotherapy of established tumors, J. Leukocyte Biol. 36:27–38.

    PubMed  CAS  Google Scholar 

  32. Bursuker, I., and North, R. J., 1985, Suppression of generation of concomitant immunity by passively transferred suppressor T cells from tumor-bearing donors, Cancer Immunol. Immunother. 19:215–218.

    Article  PubMed  CAS  Google Scholar 

  33. Hellstrom, K. E., Hellstrom, I., Kant, J. A., and Temerius, J. D., 1978, Regression and inhibition of sarcoma growth by interference with a radiosensitive T cell population, J. Exp. Med. 148:799–804.

    Article  PubMed  CAS  Google Scholar 

  34. Frost, P., Prete, P., and Kerbel, R., 1982, Abrogation of the in vitro generation of the cytotoxic T cell response to a murine tumor: The role of suppressor cells, Int. J. Cancer 30:211–217.

    Article  PubMed  CAS  Google Scholar 

  35. Mills, C. D., and North, R. J., 1983, Expression of passively transferred immunity against an established tumor depends on generation of cytolytic T cells in recipient: Inhibition by suppressor T cells, J. Exp. Med. 157:1448–1460.

    Article  PubMed  CAS  Google Scholar 

  36. Dye, E. S., and North, R. J., 1984, Adoptive immunization against an established tumor with cytolytic versus memory T cells: Immediative versus delayed onset of regression, Transplantation 37:600–605.

    Article  PubMed  CAS  Google Scholar 

  37. Hall, B. M., Jelbart, M. E., Gurley, K. E., and Dorsch, S. E., 1985, Specific unresponsiveness in rats with prolonged cardiac allograft survival after treatment with cyclosporine: Mediation of suppression by T helper/inducer cells, J. Exp. Med. 162:1683–1694.

    Article  PubMed  CAS  Google Scholar 

  38. Mullen, C. A., Urban, J. L, VanWaes, C., Rowley, D. A., and Schreiber, H., 1985, Multiple cancers: Tumor burden permits the outgrowth of other cancers, J. Exp. Med. 162:1665–1682.

    Article  PubMed  CAS  Google Scholar 

  39. DiGiacomo, A., and North, R. J., 1986, T cell suppressors of antitumor immunity. The production of Ly-1-,2+ suppressors of delayed sensitivity precedes the production of suppressors of protective immunity, J. Exp. Med. 164:1179–1192.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

North, R.J., DiGiacomo, A., Dye, E.S. (1987). The Generation and Down-Regulation of the Immune Response to Progressive Tumors. In: Greene, M.I., Hamaoka, T. (eds) Development and Recognition of the Transformed Cell. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1925-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1925-2_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9070-4

  • Online ISBN: 978-1-4613-1925-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics