Skip to main content

Mechanisms of Membrane Fusion in Acidic Lipid-Cation Systems

  • Chapter
Molecular Mechanisms of Membrane Fusion

Abstract

Since the original discovery that Ca+2 converts small vesicles of phosphatidylserine into large sheets of spirally-wrapped membrane (1), the use of acidic lipid-divalent cation systems as models of membrane fusion has become widespread. There is now a wealth of experimental data available on the response of many different acidic lipids to a number of different cations under a wide variety of conditions (2). Many of these experimental investigations have utilized either a terbium-based fluorescence assay for mixing of vesicles contents (3) or a fluorescence energy transfer assay of membrane mixing (4). It is clear from results of both of these assays, as from early electron micrographs (1) that the membranes of many types of small vesicles merge with each other following divalent cation treatment, but the details of the pathway from initial vesicle to end product remain somewhat obscure. There is little doubt that fusion is involved at some stage, although the absence of precise terminology often leads to considerable ambiguity with regard to what kind of entity is fusing. The distinction is of some consequence, since the morphology of the species in which membranes become reconstructed places limits on the mechanical and chemical forces that may operate and hence influence the validity of the analogy that may be drawn to fusion of biological membranes. Thus, sentiment has been expressed for cautious extrapolation from these model systems to cells on the basis that extensive aggregation and leakage of contents, common features of model systems, cannot occur in cells (5–8).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Papahadjopoulos, W. Vail, K. Jacobson and G. Poste, Biochim. Biophys. Acta 448:245–264 (1975).

    Google Scholar 

  2. N. Düzgünes and J. Bentz, in Spectroscopic Membrane Probes, L. M. Loew, ed. CRC Press, in press.

    Google Scholar 

  3. J. Wilschut and D. Papahadjopoulos, Nature 281:690–692 (1979).

    Article  PubMed  CAS  Google Scholar 

  4. D. Hoekstra, Biochim. Biophys. Acta 692:171–175 (1982).

    Article  CAS  Google Scholar 

  5. L. Ginsberg, Nature 275:758–760 (1978).

    Article  PubMed  CAS  Google Scholar 

  6. D.A. Kendall and R.C. MacDonald, J. Biol. Chem. 257:13892–13895 (1982).

    PubMed  CAS  Google Scholar 

  7. S.J. Morris, C.C. Gibson, P.D. Smith, P.C. Greif, C.W. Stirk, D. Bradley, D.H. Haynes and R. Bumenthai, J. Biol. Chem. 260:4122–4127 ee(1985).

    PubMed  CAS  Google Scholar 

  8. B. Kachar, N. Fuller and R.P. Rand, Biophys. J. 50:779–788 (1986).

    Article  PubMed  CAS  Google Scholar 

  9. R. Kwok and E. Evans, Biophys. J. 35:637–652 (1981).

    Article  PubMed  CAS  Google Scholar 

  10. E. Evans and V.A. Parsegian Ann. N.Y. Acad. Sci. 416:13–33 (1983).

    Article  PubMed  CAS  Google Scholar 

  11. V.A. Parsegian and R.P. Rand. Ann N.Y. Acad. Sci. 416:1–12 (1983).

    Article  PubMed  CAS  Google Scholar 

  12. S. Ohki, Biochim. Biophys. Acta 689:1–11 (1982).

    Article  PubMed  CAS  Google Scholar 

  13. A.J. Verkleij, C.J.A. Eckfeld, W.J. Gerritsen, P.R. Cullis and B. DeKruiff Biochim. Biophys. Acta 600:620–624 (1980).

    Article  PubMed  CAS  Google Scholar 

  14. S.W. Hu, T.P. Stewart, L.T. Boni & P.L. Yeagle, Science 212:921–923 (1981).

    Article  Google Scholar 

  15. R.C. MacDonald and S.A. Simon, Proc. Natl. Acad. Sci. USA, in press.

    Google Scholar 

  16. J.F. Nagle, Ann. Rev. Phys. Chem 31:29–45 (1980).

    Article  Google Scholar 

  17. J. Israelachvili, Marcelja and Horn. Quart. Rev. Biophys (1980).

    Google Scholar 

  18. S.W. Hui, M. Cowden, D. Papahadjopoulos and D. F. Parsons, Biochim. biophys. Acta 382:265–272 (1975).

    Article  PubMed  CAS  Google Scholar 

  19. R.C. MacDonald, to be published.

    Google Scholar 

  20. H. Schindler, FEBS Lett. 122:77–79 (1980).

    Article  PubMed  CAS  Google Scholar 

  21. S. Ohki and H. Ohshima, Biochim. Biophys. Acta 812:147–154 (1985).

    Article  PubMed  CAS  Google Scholar 

  22. F.J. Martin, and R.C. MacDonald, Biochemistry 15:321–327 (1976).

    Article  PubMed  CAS  Google Scholar 

  23. S. Ohki and J. Duax, Biochim. Biophys. Acta 861:177–186 (1986).

    PubMed  CAS  Google Scholar 

  24. A. Walter, C.J. Steer and R. Blumenthal, Biochim. Biophys. Acta 861:319–330 (1986).

    Article  PubMed  CAS  Google Scholar 

  25. J. Wilschut, N. Düzgüneş, and D. Papahadjopoulos, Biochemistry 20:3126–3133 (1981).

    Article  PubMed  CAS  Google Scholar 

  26. E. A. Evans and R. Skalak, Mechanics and Thermodynamics of Membranes, CRC Press, 1980, p. 87–91.

    Google Scholar 

  27. S. McLaughlin, N. Mulrine, T. Gresalfi, G. Vaio and A. McLaughlin, J. Gen. Physiol. 77:445–473 (1981).

    Article  PubMed  CAS  Google Scholar 

  28. J. Wilchut, J. Scholma, M. Bental, D. Hoekstra and S. Nir, Biochim. Biophys Acta, 821:45–55 (1985).

    Article  Google Scholar 

  29. L. Ababu and K. Hildenbrand, Chem. Phys. Lipids, 35:39–48 (1984).

    Article  Google Scholar 

  30. D. Papahadjopoulos, W.J. Vail, W.A, Pangborn and G. Poste Biochim. Biophys. Acta 448:265–283 (1976).

    Article  PubMed  CAS  Google Scholar 

  31. J.R. Silvius and J. Gagne, Biochemistry 23:3241–3247 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

MacDonald, R.C. (1988). Mechanisms of Membrane Fusion in Acidic Lipid-Cation Systems. In: Ohki, S., Doyle, D., Flanagan, T.D., Hui, S.W., Mayhew, E. (eds) Molecular Mechanisms of Membrane Fusion. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1659-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1659-6_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8921-0

  • Online ISBN: 978-1-4613-1659-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics