Skip to main content

Receptors for hematopoietic regulatory cytokines: Overview of structure and function

  • Chapter

Part of the book series: Cancer Treatment and Research ((CTAR,volume 80))

Abstract

The production of blood cells is regulated by the action of external factors, cytokines, that can be released by many cell types. In the first place, a population of multipotent stem cells, mostly in the resting Go phase of the cell cycle, but with self-renewal capacity, gives rise to progenitor cells that are predetermined for differentiation into all kinds of blood cells. Expression of genes for cytokine receptors leads to external regulation of hematopoiesis by cytokines which bind to the receptors, resulting in modifications of proliferation and differentiation, as cytokines are not only growth factors, but are also maturation factors capable of directing hematopoiesis towards functionally competent cells. What is more, they are survival factors capable of suppressing programmed cell death (apoptosis). This is of particular importance for the viability of stem cells which must be preserved. Thus cytokines can act at all positions of the hematopoietic family tree, and the response can differ from proliferation and differentiation of progenitor cells to functional activation of mature cells. Under physiological conditions, during constitutive hematopoiesis, the regulatory cytokines are produced locally, for instance by stromal ceils of the microenvironment, and act locally in a paracrine manner [2].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Metcalf D. The molecular control of cell division, differentiation commitment and maturation in haemopoietic cells. Nature 339:27–30, 1989.

    PubMed  CAS  Google Scholar 

  2. Tavassoli M, ed. Handbook of Hemopoietic Microenvironment. The Clifton, N.J.: Humana Press Inc., 1989.

    Google Scholar 

  3. Bazan JF. Structral design and molecular evolution of a cytokine receptor superfamily. Proc Natl Acad Sci USA 87:6934–6938, 1990.

    PubMed  CAS  Google Scholar 

  4. Patthy L. Homology of a domain of the growth hormone/prolactin receptor family with type III modules of fibronectin. Cell 61:13–14, 1990.

    PubMed  CAS  Google Scholar 

  5. Bazan JF. Haemopoietic receptors and helical cytokines. Immunol Today 11:350–354, 1990.

    PubMed  CAS  Google Scholar 

  6. De Vos AM, Ultsch M, Kossiakoff AA. Human growth hormone and extracellular domain of its receptor: Crystal structure of the complex. Science 255:306–312, 1992.

    PubMed  Google Scholar 

  7. Yawata H, Yasukawa K, Natsuka S, Murakami M, Yamasaki K, Hibi M, Taga T, Kishimoto T. Structure-function analysis of human IL-6 receptor: Dissociation of amino acid residues required for IL-6 binding and for IL-6 signal transduction through gp130. EMBO J 12:1705–1712, 1993.

    PubMed  CAS  Google Scholar 

  8. Taga T, Hibi M, Hirata Y, Yamasaki K, Yasukawas K, Matsuda T, Hirano T, Kishimoto T. Interleukin-6 triggers the association of its receptor with a possible signal transducer, gp130. Cell 58:573–581, 1989.

    PubMed  CAS  Google Scholar 

  9. Taga T, Kishimoto T. Cytokine receptors and signal transduction. FASEB 6:3387–3396, 1992.

    CAS  Google Scholar 

  10. Kishimoto T, Taga T, Akira S. Cytokine receptors and signal transduction. Cell 76:253–262, 1994.

    PubMed  CAS  Google Scholar 

  11. Hilton DJ, Gough NM. Leukemia inhibitory factor: A biological perspective, J Cell Biochem 46:21–26, 1991.

    PubMed  CAS  Google Scholar 

  12. Ip NY, Nye SH, Boulton TG, Davis S, Taga T, Li Y, Birren SJ, Yasukawa K, Kishimoto T, Anderson DJ. Stahl N, Yancopoulos GD. CNTF and LIF act on neuronal cells via shared signaling pathways that involve the IL-6 signal transducing receptor component gp130. Cell 69:1121–1132, 1992.

    PubMed  CAS  Google Scholar 

  13. Kishimoto T, Akira S, Taga T. Interleukin-6 and its receptor: A paradigm for cytokines. Science 258:593–597, 1992.

    PubMed  CAS  Google Scholar 

  14. Rose TM, Bruce AG. Oncostatin M is a member of a cytokine family that includes leukemia inhibitory factor, granulocyte-colony-stimulating factor, and interleukin-6. Proc Natl Acad Sci USA 88:8641–8645, 1991.

    PubMed  CAS  Google Scholar 

  15. Baumann H, Schendel P. Interleukin-11 regulates the hepatic expression of the same plasma protein genes as interleukin-6. J Biol Chem 266:20424–20427, 1992.

    Google Scholar 

  16. Hancog G, Yin T, Cooper S, Schendel P, Yang YC, Broxmeyer HE. In vivo effects of recombinant interleukin-11 on myelopoiesis in mice. Blood 81:965–972, 1993.

    Google Scholar 

  17. Tamura T, Udagawa N, Takahashi N, Miyaura C, Tanaka S, Yamada Y, Koishihara Y, Ohsugi Y, Kumaki K, Taga T, Kishimoto T, Suda T. Soluble interleukin-6 receptor triggers osteoclast formation by interleukin 6. Proc Natl Acad Sci (USA) 90:11924–11928, 1993.

    CAS  Google Scholar 

  18. Gearing DP, Comeau MR, Friend DJ, Gimpel SD, Thut CJ, McGourty J, Brasher KK, King JA, Gillis S, Mosley B, Ziegler SF, Cosman D. The IL-6 signal transducer, gp130: An oncostatin M receptor and affinity converter for the LIF receptor. Science 255:1434–1437, 1992.

    PubMed  CAS  Google Scholar 

  19. Yin T, Taga T, Tsang ML, Yasukawa T, Kishimoto T, Yang YC. Involvement of interleukin-6 signal transducer gp130 in interleukin-11-mediated signal transduction. J Immunol 151:2555–2561, 1993.

    PubMed  CAS  Google Scholar 

  20. Yin T, Miyazawa K, Yang YC. Characterization of interleukin-11 receptor and protein tyrosine phosphorylation induced by interleukin-11 in mouse 3T3-L1 cells. J Biol Chem 267:8347–8351, 1992.

    PubMed  CAS  Google Scholar 

  21. Hibi M, Murakami M, Saito M, Hirano T, Taga T, Kishimoto T. Molecular cloning and expression of an IL-6 signal transducer, gp130. Cell 63:1149–1157, 1990.

    PubMed  CAS  Google Scholar 

  22. Kitamura T, Sato N, Arai KI, Miyajima A. Expression cloning of the human IL-3 receptor cDNA reveals a shared beta subunit for the human IL-3 and GM-CSF receptors. Cell 66:1165–1174, 1991.

    PubMed  CAS  Google Scholar 

  23. Miyajima A, Kitamura T, Harada N, Yokota T, Arai K-I. Cytokine receptors and signal transduction. Ann Rev Immunol 10:295–331, 1992.

    CAS  Google Scholar 

  24. Lopez AF, Vadas MA, Woodcock JM, Milton SE, Lewis A, Elliott MJ, Gillis D, Ireland R, Olwell E, Park LS. Interleukin-5, interleukin-3, and granulocyte-macrophage colony-stimulating factor cross-compete for binding to cell surface receptors on human eosinophils. J Biol Chem 266:24741–24747, 1991.

    PubMed  CAS  Google Scholar 

  25. Metcalf D. Hematopoietic regulators: Redundancy or subtlety? Blood 82:3515–3523, 1993.

    PubMed  CAS  Google Scholar 

  26. Byrne PV, Guilbert LJ, Stanley ER. Distribution of cells bearing receptors for colony-stimulating factors (CSF-1) in murine tissues. J Cell Biol 91:848–853, 1981.

    PubMed  CAS  Google Scholar 

  27. Nicola NA, Metcalf D. Binding of 125-I-Iabeled granulocyte colony-stimulating factor to normal murine hemopoietic cells. J Cell Physiol 124:313–321, 1985.

    PubMed  CAS  Google Scholar 

  28. Nicola NA, Metcalf D. Binding of iodinated multipotential colony-stimulating factor (interleukin 3) to murine bone marrow cells. J Cell Physiol 128:180–188, 1986.

    PubMed  CAS  Google Scholar 

  29. Yamaguchi Y, Suda T, Suda J, Eguchi M, Miura Y, Harada N, Tominaga A, Takatsu K. Purified interleukin 5 supports the terminal differentiation and proliferation of murine eosinophilic precursors. J Exp Med 167:43–56, 1988.

    PubMed  CAS  Google Scholar 

  30. Vaux DL, Lalor PA, Cory S, Johnson GR. In vivo expression of interleukin-5 induces an eosinophilia and expanded Ly-1B lineage populations. Int Immunol 2:965–971, 1990.

    PubMed  CAS  Google Scholar 

  31. Sanderson CJ. Interleukin-5 and the regulation of eosinophil production. In: H Smith, RM Cook, eds. Immunopharmacology of Eosinophils. London: Academic Press, 1993, pp 11–24.

    Google Scholar 

  32. Dranoff G, Crawford AD, Sadelain M. Ream B, Rashid A, Bronson RT, Dickersin GR, Bachurski CJ, Mark EL, Whitsett JA, Mulligan RC. Involvement of granulocyte-macrophage colony-stimulating factor in pulmonary homeostasis. Science 264:713–716, 1994.

    PubMed  CAS  Google Scholar 

  33. Owen WF. Eosinophil heterogeneity. In: H Smith, RM Cook, eds. Immunopharmacology of Eosinophils. London: Academic Press, 1993, pp 57–72.

    Google Scholar 

  34. Polotskaya A, Zhao Y, Lilly ML, Kratf AS. A critical role for the cytoplasmic domains of the granulocyte-macrophage colony-stimulating factor alpha receptor in mediating cell growth. Cell Growth and Differentiation 4:523–531, 1993.

    PubMed  CAS  Google Scholar 

  35. Takaki S, Murata Y, Kitamura T, Miyajima A, Tominaga A, Takatsu K. Reconstitution of the functional receptors for murine and human interleukin-5. J Exp Med 177:1523–1529, 1993.

    PubMed  CAS  Google Scholar 

  36. Sakamaki K, Miyajima I, Kitamura T, Miyajima A. Critical cytoplasmic domains of the common beta subunit of the human GM-CSF, IL-3 and IL-5 receptors for growth signal transduction and tyrosine phosphorylation. EMBO J 11:3541–3549, 1992.

    PubMed  CAS  Google Scholar 

  37. D’Andrea AD, Lodish HF, Wang GG. Expression cloning of the murine erythropoietin receptor. Cell 57:277–285, 1989.

    PubMed  Google Scholar 

  38. Jones SS, D’Andrea AD, Haines LL, Wong GG. Human erythropoietin receptor: cloning, expression and biologic characterization. Blood 76:31–35, 1990.

    PubMed  CAS  Google Scholar 

  39. Li J-P, D’Andrea AD, Lodish HF, Baltimore D. Activation of cell growth by binding of Friend spleen focus-forming virus gp55 glycoprotein to the erythropoietin receptor. Nature 343:762–764, 1990.

    PubMed  CAS  Google Scholar 

  40. Miura O, D’Andrea AD, Kabat D, Ihle JN. Induction of tyrosine phosphorylation by the erythropoietin receptor correlates with mitogenesis. Mol Cell Biol 11:4895–4902, 1991.

    PubMed  CAS  Google Scholar 

  41. Sawyer ST. Biology and biochemistry of the erythropoietin receptor. Progr Clin Biol Res 352:145–152, 1990.

    CAS  Google Scholar 

  42. Mayeux P, Lacombe C, Cassdevall N, Chretien S, Dusanter I, Gisselbrecht S. Structure of the murine erythropoietin receptor complex. J Biol Chem 266:23380–23385, 1991.

    PubMed  CAS  Google Scholar 

  43. Youssoufian H, Longmore G, Neumann D, Yoshimura A, Lodish HF. Structure, function, and activation of the erythropoietin receptor. Blood 81:2223–2236, 1993.

    PubMed  CAS  Google Scholar 

  44. Yoshimura A, Zimmers T, Neumann D, Longmore G, Yoshimura Y, Lodish HF. Mutations in the Trp-Ser-X-Trp-Ser motif of the erythropoietin receptor abolish processing, ligand binding, and activation of the receptor. J Biol Chem 267:11619–11625, 1992.

    PubMed  CAS  Google Scholar 

  45. Fukunaga R, Ishizaka-Ikeda E, Nagata S. Purification and characterization of the receptor for the murine granulocyte colony-stimulating factor. J Biol Chem 265:14008–14015, 1990.

    PubMed  CAS  Google Scholar 

  46. Li J-P, Baltimore D. Mechanism of leukemogenesis induced by mink cell focus-forming murine leukemia viruses. J Virol 65:2408–2414, 1991.

    PubMed  CAS  Google Scholar 

  47. Yoshimura A, Longmore G, Lodish HF. Point mutation in the exoplasmic domain of the erythropoietin receptor resulting in hormone-independent activation and tumorigenicity. Nature 348:647–649, 1990.

    PubMed  CAS  Google Scholar 

  48. Watowich SS, Yoshimura A, Longmore GD, Hilton DJ, Yoshimura Y, Lodish HF. Homodimerization and constitutive activation of the erythropoietin receptor. Proc Natl Acad Sci USA 89:2140–2144, 1992.

    PubMed  CAS  Google Scholar 

  49. Longmore GD, Lodish HF. An activating mutation in the murine erythropoietin receptor induces erythroleukemia in mice: A cytokine receptor superfamily oncogene. Cell 67:1089–1102, 1991.

    PubMed  CAS  Google Scholar 

  50. Demetri GD, Griffin JD. Granulocyte colony-stimulating factor and its receptor. Blood 78:2791–2808, 1991.

    PubMed  CAS  Google Scholar 

  51. Nicola NA, Begley CG, Metcalf D. Identification of the human analogue of a regulator that induces differentiation in murine leukemic cells. Nature 314:625–628, 1985.

    PubMed  CAS  Google Scholar 

  52. Nicola NA, Vadas MA, Lopez AF. Down-modulation of receptors for granulocyte colony-stimulating factor on human neutrophils by granulocyte-activating agents. J Cell Physiol 128:501–509, 1986.

    PubMed  CAS  Google Scholar 

  53. Elbaz O, Budel LM, Hoogerbrugge H, Touw IP, Delwel R, Mahmoud LA, Lowenberg B. Tumor necrosis factor downregulates granulocyte-colony-stimulating factor receptor expression on human acute myeloid leukemia cells and granulocytes. J Clin Invest 87:838–841, 1991.

    PubMed  CAS  Google Scholar 

  54. Bussolino F, Wang JM, Defilippi P, Turrini F, Sanavio F, Edgell CJ, Aglietta M, Arese P, Mantovani A. Granulocyte- and granulocyte-macrophage-colony stimulating factors induce human endothelial cells to migrate and proliferate. Nature 337:471–473, 1989.

    PubMed  CAS  Google Scholar 

  55. Uzumaki H, Okabe T, Sasaki N, Hagiwara K, Takaku F, Tobita M, Yasukawa K, Ito S, Umezawa Y. Identification and characterization of receptors for granulocyte colony-stimulating factor on human placenta and trophoblastic cells. Proc Natl Acad Sci USA 86:9323–9326, 1989.

    PubMed  CAS  Google Scholar 

  56. Bussolino F, Ziche M, Wang JM, Alessi D, Mobidelli L, Gremona O, Bosai A, Marchisio PC, Mantovani A. In vitro and in vivo activation of endothelial cells by colony-stimulating factors. J Clin Invest 87:986–995, 1991.

    PubMed  CAS  Google Scholar 

  57. Fukunaga R, Seto Y, Mizushima S, Nagata S. Three different mRNAs encoding human granulocyte colony-stimulating factor receptor. Proc Natl Acad Sci USA 87:8702–8706, 1990.

    PubMed  CAS  Google Scholar 

  58. Larsen A, Davis T, Curtis BM, Gimpel S, Sims JE, Cosman D, Park L, Sorensen E, March CJ, Smith CA. Expression cloning of a human granulocyte colony-stimulating factor receptor: A structural mosaic of hematopoietin receptor, immunoglobulin, and fibronectin, and fibronectin domains. J Exp Med 172:1559–1570, 1990.

    PubMed  CAS  Google Scholar 

  59. Williams AF, Barclay AN. The immunogobulin superfamily domain of the cell surface recognition. Ann Rev Immunol 6:381–405, 1988.

    CAS  Google Scholar 

  60. Minami Y, Kono T, Miyazaki T, Taniguchi T. The IL-2 receptor complex: Its structure, function, and target genes. Annu Rev Immunol 11:245–268, 1993.

    PubMed  CAS  Google Scholar 

  61. Takeshita T, Asao H, Ohtani K, Ishii N, Kumaki S, Tanaka N, Munakata H, Nakamura M, Sugamura K. Cloning of the gamma chain of the human IL-2 receptor. Science 257:379–382, 1992.

    PubMed  CAS  Google Scholar 

  62. Taniguchi T, Minami Y. The IL-2/IL-2 receptor system: A current overview. Cell 73:5–8, 1993.

    CAS  Google Scholar 

  63. Schorle H, Holtschke T, Hunig T, Schimpl A, Horak I. Development and function of T cells in mice rendered interleukin-2 deficient by gene targeting. Nature 352:621–624, 1991.

    PubMed  CAS  Google Scholar 

  64. Kondo M, Takeshita T, Ishii N, Nakamura M, Watanabe S, Arai K-I, Sugamura K. Sharing of the IL-2 receptor gamma chain between receptors for IL-2 and IL-4. Science 262:1874–1877, 1993.

    PubMed  CAS  Google Scholar 

  65. Noguchi M, Nakamura Y, Russell SM, Ziegler SF, Tsang M, Cao X, Leonard WJ. Interleukin-2 receptor gamma chain: A functional component of the interleukin-7 receptor. Science 262:1877–1880, 1993.

    PubMed  CAS  Google Scholar 

  66. Zurawski SM, Vega FJr, Huyghe B, Zurawski G. Receptors for interleukin-13 and interleukin-4 are complex and share a novel component that functions in signal transduction. EMBO J 12:2663–2670, 1993.

    PubMed  CAS  Google Scholar 

  67. Murakami M, Hibi M, Nakagawa N, Nakagawa T, Yasukawa K, Yamanishi K, Taga T, Kishimoto T. IL-6-induced homodimerization of gp130 and associated activation of a tyrosine kinase. Science 260:1808–1810, 1993.

    PubMed  CAS  Google Scholar 

  68. Taga T, Narazaki M, Yasukawa K, Saito T, Miki D, Hamaguichi M, Davis S, Shoyab M, Yancopoulos GD, Kishimoto T. Functional inhibition of hematopoietin and neurotrophic cytokines by blocking the interleukin-6 signal transducer gp130. Proc Natl Acad Sci USA 89:10998–11001, 1992.

    PubMed  CAS  Google Scholar 

  69. Murakami M, Narazaki M, Hibi M, Yawata H, Yasukawa K, Hamaguichi M, Taga T, Kishimoto T. Critical cytoplasmic region of the interleukin-6 signal transducer gp130 is conserved in the cytokine receptor family. Proc Natl Acad Sci USA 88:11349–11353, 1991.

    PubMed  CAS  Google Scholar 

  70. Devos R, Plaetinck G, Van der Heyden J, Cornelis S, Vandekerckhove J, Fiers W, Tavernier J. Molecular basis of a high affinity murine interleukin-5 receptor. EMBO J 10:2133–2137, 1991.

    PubMed  CAS  Google Scholar 

  71. Harada N, Yang G, Miyajima A, Howard M. Identification of an essential region for growth signal transduction in the cytoplasmic domain of the human interleukin-4 receptor. J Biol Chem 267:22752–22758, 1992.

    PubMed  CAS  Google Scholar 

  72. Miura O, Ihle JN. Dimer-and oligomerization of erythropoietin receptor by disulfide bond formation and significance of WSXWS motif on intracellular transport. Arch Biochem Biophys 306:200–208, 1993.

    PubMed  CAS  Google Scholar 

  73. Ziegler SF, Bird TA, Morella KK, Mosley B, Gearing DP, Baumann H. Distinct regions of the human granulocyte-colony-stimulating factor receptor cytoplasmic domain are required for proliferation and gene induction. Mol Cell Biol 13:2384–2390, 1993.

    PubMed  CAS  Google Scholar 

  74. Sato N, Sakamari K, Terada N, Arai K-I, Miyajima A. Signal transduction by the high-affinity GM-CSF receptor: Two distinct cytoplasmic regions of the comon beta subunit responsible for different signalling. EMBO J 12:4181–4189, 1993.

    PubMed  CAS  Google Scholar 

  75. Watanabe N, Mui AL-F, Muto A, Chen JX, Hayashida K, Yokota T, Miyajima A, Arai K-I. Reconstituted human granulocyte-macrophage colony-stimulating factor receptor transduces growth-promoting signals in mouse NIH 3T3 cells: Comparison with signalling in BA/F3 Pro-B cells. Mol Cell Biol 13:1440–1448, 1993.

    PubMed  CAS  Google Scholar 

  76. Fukunaga R, Ishizaka-Ikeda E, Nagata S. Growth and differentiation signals mediated by different regions in the cytoplasmic domain of granulocyte colony-stimulating factor receptor. Cell 74:1079–1087, 1993.

    PubMed  CAS  Google Scholar 

  77. Nakamura Y, Komatsu N, Nakauchi H. A truncated erythropoietin receptor that fails to prevent programmed cell death of erythroid cells. Science 257:1138–1141, 1992.

    PubMed  CAS  Google Scholar 

  78. Hatakeyama M, Kawahara A, Mori H, Shibuya H, Taniguchi T. Fos gene induction by interleukin-2: Identification of the critical cytoplasmic regions within the interleukin-2 receptor beta chain. Proc Natl Acad Sci USA 89:2022–2026, 1992.

    PubMed  CAS  Google Scholar 

  79. Koch CA, Anderson D, Moran MF, Ellis C, Pawson T. SH2 and SH3 domains: Elements that control interactions of cytoplasmic signalling proteins. Science 252:668–674, 1991.

    PubMed  CAS  Google Scholar 

  80. Noguichi M, Yi H, Rosenblatt HM, Filipovich AH, Adelstein S, Modi WS, McBride OW, Leonard WJ. Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 73:147–157, 1993.

    Google Scholar 

  81. Ihle JN, Witthuhn B, Tang B, Yi T, Quelle FW. Cytokine receptors and signal transduction. In: M. Brenner, ed. Baillere’s Clinical Haematology: Cytokines and Growth Factors. London: Bailliere’ Tindall, 1994, pp 17–48.

    Google Scholar 

  82. Silvennoinen O, Witthuhn B, Quelle FW, Cleveland JL, Yi T, Ihle JN. Structure of the JAK2 protein tyrosine kinase and its role in the interleukin 3 signal transduction. Proc Natl Acad Sci USA 90:8429–8433, 1993.

    PubMed  CAS  Google Scholar 

  83. Witthuhn BA, Quelle FW, Silvennoinen O, Yi T, Tang B, Miura O, Ihle JN. Jak2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following EPO stimulation. Cell 74:227–236, 1993.

    PubMed  CAS  Google Scholar 

  84. D’Andrea AD, Yoshimura A, Youssoufian H, Zon LI, Koo JW, Lodish HF. The cytoplasmic region of the erythropoietin receptor contains nonoverlapping positive and negative growth-regulatory domains. Mol Cell Biol 11:1980–1987, 1991.

    PubMed  Google Scholar 

  85. Chiba T, Nagata Y, Machide M, Kishi A, Amanuma H, Sugiyama M, Todokoro K. Tyrosine kinase activation through the extracellular domains of cytokine receptors. Nature 362:646–648, 1993.

    PubMed  CAS  Google Scholar 

  86. Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell 61:203–212, 1990.

    PubMed  CAS  Google Scholar 

  87. Stanley ER, Guilbert LJ, Tushinski RJ, Bartelmez SH. CSF-1: A mononuclear phagocyte lineage-specific hemopoietic growth factor. J Cell Biochem 21:151–159, 1983.

    PubMed  CAS  Google Scholar 

  88. Pollard JW, Bartocci A, Arceci R, Orlofsky A, Ladner MB, Stanley ER. Apparent role of the macrophage growth factor, CSF-1, in placental development. Nature 330:484–486, 1987.

    PubMed  CAS  Google Scholar 

  89. Li W, Stanley ER. Role of dimerization and modification of the CSF-1 receptor in its activation and internalization during the CSF-1 response. EMBO J 10:277–288, 1991.

    PubMed  CAS  Google Scholar 

  90. Witte OW. Steel locus defines new multipotent growth factor. Cell 63:5–6, 1990.

    PubMed  CAS  Google Scholar 

  91. Williams DE, Lyman SD. Characterization of the gene product of the Steel locus. Prog Growth Factor Res 3:235–242, 1992.

    Google Scholar 

  92. Lyman SV, James L, Vanden Bos T, de Vries P, Brasel K, Gliniak B, Hollingsworth LT, Picha KS, McKenna HJ, Splett RR, Fletcher FA, Maraskovsky E, Farrah T, Foxworthe D, Williams DE, Beckmann MP. Molecular cloning of a ligand for the flt3/flk-2 tyrosine kinase receptor: A proliferative factor for primitive hematopoietic cells. Cell 75:1157–1167, 1993.

    PubMed  CAS  Google Scholar 

  93. Small D, Levenstein M, Kim E, Carow C, Amin S, Rockwell P, Witte L, Burrow C, Ratajczak MZ, Gewirtz AM, Civin CI. STK-1, the human homolog of Flk-2/Flt-3, is selectively expressed in CD34+ human bone marrow cells and is involved in the proliferation of early progenitor stem cells. Proc Natl Acad Sci USA 91:459–463, 1994.

    PubMed  CAS  Google Scholar 

  94. Himmler A, Maurer-Fogy I, Krönke M, Scheurich P, Phizenmaier K, Lantz M, Olsson I, Hauptmann R, Stratowa C, Adolf G. Molecular cloning and expression of human and rat tumor necrosis factor receptor chain (p60) and its soluble derivative, tumor necrosis factor-binding protein. DNA Cell Biol 9:705–715, 1990.

    PubMed  CAS  Google Scholar 

  95. Schall T J, Lewis M, Koller KJ, Loe A, Rice GC, Wong GHW, Gatanaga T, Granger GA, Lentz R, Raab H, Kohr WJ, Goeddel DV. Molecular cloning and expression of a receptor for human tumor necrosis factor. Cell 61:361–370, 1990.

    PubMed  CAS  Google Scholar 

  96. Nophar Y, Kemper O, Brakebusch C, Engelmann H, Zwang R, Aderka D, Holtmann H, Wallach D. Soluble forms of tumor necrosis factor receptors (TNF-Rs). The cDNA for the type 1 TNF-R, cloned using amino acid sequence data of its soluble form, encodes both the cell surface and a soluble form of the receptor. EMBO J 9:3269–3278, 1990.

    PubMed  CAS  Google Scholar 

  97. Loetscher H, Pan Y-CE, Lahm H-W, Gentz R, Brockhaus M, Tabuchi H, Lesslauer W, Molecular cloning and expression of the human 55 kd tumor necrosis factor receptor. Cell 61:351–359, 1990.

    PubMed  CAS  Google Scholar 

  98. Smith CA, Davis T, Anderson D, Solam L, Beckmann MP, Jerzy R, Dower SK, Cosman D, Goodwin RG. A receptor for tumor necrosis factor defines an unusual family of cellular and viral proteins. Science 248:1019–1023, 1990.

    PubMed  CAS  Google Scholar 

  99. Engelmann H, Aderka D, Rubinstein M, Rotman D, Wallach D. A tumor necrosis factor-binding protein purified to homogeneity protects cells from tumor necrosis factor toxicity. J Biol Chem 264:11974–11980, 1989.

    PubMed  CAS  Google Scholar 

  100. Gatanaga T, Hwang C, Kohr W, Cappuccini F, Lucci JA, Jeffes EWB, Lentz R, Tomich J, Yamamoto RS, Granger GA. Purification and characterization of an inhibitor (soluble tumor necrosis factor receptor) for tumor necrosis factor and lymphotoxin from the serum ultrafiltrate of human cancer patients. Proc Natl Acad Sci USA 87:8781–8784, 1990.

    PubMed  CAS  Google Scholar 

  101. Olsson I, Lantz M, Nilsson E, Peetre C, Thysell H, Grubb A, Adolf G. Isolation and characterization of a tumor necrosis factor binding protein from urine. Eur J Haematol 42:270–275, 1989.

    PubMed  CAS  Google Scholar 

  102. Seckinger P, Isaaz S, Dayer JM. Purification and biologic characterization of a specific tumor necrosis factor alpha inhibitor. J Biol Chem 264:11966–11973, 1989.

    PubMed  CAS  Google Scholar 

  103. Tartaglia LA, Goeddel DV. Two TNF receptors. Immunology Today 13:151–153, 1992.

    PubMed  CAS  Google Scholar 

  104. Gillis S. Cytokine receptors. Current Opinions Immunology 3:315–319, 1991.

    CAS  Google Scholar 

  105. Foxwell BMJ, Barrett K, Feldmannn M. Cytokine receptors: Structure and signal transduction 90:161–169, 1992.

    CAS  Google Scholar 

  106. Togni PD, Goellner J, Ruddle NH, Streeter PR, Fick A, Mariathasan S, Smith SC, Carlson R, Shornick LP, Strauss-Schoenberger J, Russell JH, Karr R, Chaplin DD. Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science 264:703–707, 1994.

    PubMed  Google Scholar 

  107. Crowe PD, VanArsdale TL, Walter BN, Ware CF, Hession C, Ehrenfels B, Browning JL, Din WS, Goodwin RG, Smith CA. A lymphotoxin-beta-specific receptor. Science 264:707–710, 1994.

    PubMed  CAS  Google Scholar 

  108. Armitage RJ, Fanslow WC, Strockbine L, Sato TA, Clifford KN, Macduff BM, Anderson DM, Gimpel SD, Davis-Smith T, Maliszewski CR, Clark EA, Smith CA, Grabstein KH, Cosman D, Spriggs MK. Molecular and biological characterization of a murine ligand for CD40. Nature 357:80–82, 1992.

    PubMed  CAS  Google Scholar 

  109. Goodwin RG, Alderson MR, Smith CA, Armitage RJ, VandenBos T, Jerzy R, Tough TW, Schoenborn MA, Davis-Smith T, Hennen K, Falk B, Cosman D, Baker E, Sutherland GR, Grabstein KH, Farrah T, Giri JG, Beckmann MP. Molecular and biological characterization of a ligand for CD27 defines a new family of cytokines with homology to tumor necrosis factor. Cell 73:447–456, 1993.

    PubMed  CAS  Google Scholar 

  110. Banner DW, D’Arcy A, Janes W, Gentz R. Schoenfeld H-J, Broger C, Loetscher H, Lesslauer W. Crystal structure of the soluble human 55 kd receptor-human TNF beta complex: Implications for TNF receptor actovation. Cell 73:431–445, 1993.

    CAS  Google Scholar 

  111. Itoh N, Yonehara S, Ishii A, Yonehara M, Mizushima S-I, Sameshima M, Hase A, Seto Y, Nagata S. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66:233–243, 1991.

    PubMed  CAS  Google Scholar 

  112. Inui S, Kaisho T, Kikutani H, Stamenkovic I, Seed B, Clark EA, Kishimoto T. Identification of the intracytoplasmic region essential for signal transduction through a B cell activation molecule. J Immunol 20:1747–1753, 1990.

    CAS  Google Scholar 

  113. Brakebusch C, Nophar Y, Kemper O, Engelmann H, Wallach D. Cytoplasmic truncation of the p55 tumour necrosis factor (TNF) receptor abolishes signalling, but not induced shedding of the receptor. EMBO J 11:943–950, 1992.

    PubMed  CAS  Google Scholar 

  114. Lin HY, Lodish HF. Receptors for the TGF-beta superfamily: multiple polypeptides and serinc/threonine kinases. Trends in Cell Biology 3:14–19, 1992.

    Google Scholar 

  115. Wrana JL, Attisano L, Carcamo J, Zentella A, Doody J, Laiho M, Wang XF, Massague J. TGF beta signals through a heterodimeric protein kinase receptor complex. Cell 71:1003–1014, 1992.

    PubMed  CAS  Google Scholar 

  116. Ebner R, Chen RH, Shum L, Lawler S, Zioncheck TF, Lee A, Lopez AR, Derynck R. Cloning of a type I TGF-beta receptor and its effect on TGF-beta binding to the type II receptor. Science 260:1344–1348, 1993.

    PubMed  CAS  Google Scholar 

  117. Segarini PR, Seyedin SM. The high molecular weight receptor to transforming growth factor-beta contains glycosaminoglycan chains. J Biol Chem 263:8366–8370, 1988.

    PubMed  CAS  Google Scholar 

  118. Narazaki M, Yasukawa K, Saito T, Ohsugi Y, Fukui H, Koishihara Y, Yancopoulos GD, Taga T, Kishimoto T. Soluble forms of the interleukin-6 signal-transducing receptor component gp130 in human serum possessing a potential to inhibit signals through membrane-anchored gp130. Blood 82:1120–1126, 1993.

    PubMed  CAS  Google Scholar 

  119. Olsson, I, Gatanaga T, Gullberg U, Lantz M, Granger GA. Tumor necrosis factor (TNF) binding proteins (soluble TNF receptor forms) with possible roles in inflammation and malignancy. Eur Cytokine Network 4:169–180, 1993.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Kluwer Academic Publishers

About this chapter

Cite this chapter

Gullberg, U., Bergh, G., Ehinger, M., Olsson, I. (1995). Receptors for hematopoietic regulatory cytokines: Overview of structure and function. In: Kurzrock, R., Talpaz, M. (eds) Cytokines: Interleukins and Their Receptors. Cancer Treatment and Research, vol 80. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1241-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1241-3_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8528-1

  • Online ISBN: 978-1-4613-1241-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics