Skip to main content

Legume Signals to Rhizobial Symbionts: A New Approach for Defining Rhizosphere Colonization

  • Chapter
Plant-Microbe Interactions

Part of the book series: Plant-Microbe Interactions ((PMI,volume 1))

Abstract

Classic observations describe distinctive relationships that have evolved between roots and their associated microbes:1 (1) The rhizosphere, an imprecisely defined zone near, on, and within the root, contains much higher numbers of total bacteria than root-free soil; and (2) healthy plant roots growing in soil normally are colonized by a limited number of bacterial species, which include few pathogens. Detailed field studies with mangel2 and soybean3 showed that physiological traits of heterotrophic bacteria isolated from the rhizosphere differ markedly from those in root-free soil in terms of amino acid nutrition, carbon metabolism, extracellular enzymatic activities, and resistance to antimicrobial compounds. Despite such indications that striking, potentially beneficial microbial communities develop around plant roots, our knowledge of the genetic and physiological traits in microbes that confer rhizosphere competence4 is limited. A better understanding of factors controlling microbial communities in the rhizosphere could help establish superior strains of microsymbionts, such as Rhizobium and Bradyrhizobiwn, might suppress growth of microbial pathogens, and could make it possible to establish populations of genetically altered bacteria that degrade crop pesticides or fulfill other agriculturally useful roles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bolton, H., J. K. Fredrickson, and L. F. Elliott. 1993. Microbial ecology of the rhizosphere. In Soil Microbial Ecology, ed. F.B. Metting, pp. 27–63. Marcel Dekker, New York.

    Google Scholar 

  2. Lochhead, A. G. and R. H. Thexton. 1947. Qualitative studies of soil microorganisms. VII. The rhizosphere effect in relation to the amino acid nutrition of bacteria. Can. J. Res. C25:20–26.

    Google Scholar 

  3. Gilbert, G. S., J. L. Parke, M. K. Clayton, and J. Handelsman. 1993. Effects of an introduced bacterium on bacterial communities on roots. Ecology 74:840–854.

    Google Scholar 

  4. Schmidt, E. L. 1979. Initiation of plant root-microbe interactions. Annu. Rev. Microbiol. 33:355–376.

    PubMed  CAS  Google Scholar 

  5. Beattie, G. A. and J. Handelsman. 1993. Evaluation of a strategy for identifying nodulation competitiveness genes in Rhizobium leguminosarum biovar phaseoli. J. Gen. Microbiol. 139:529–538.

    PubMed  CAS  Google Scholar 

  6. Long, S. R. and B. J. Staskawicz. 1993. Prokaryotic plant parasites. Cell 73:921–935.

    PubMed  CAS  Google Scholar 

  7. Kloepper, J. W. and C. J. Beauchamp. 1992. A review of issues related to measuring colonization of plant roots by bacteria. Can. J. Microbiol. 38:1219–1232.

    Google Scholar 

  8. Lynch, J. M., ed. 1990. The Rhizosphere .John Wiley, Chichester.

    Google Scholar 

  9. Bowen, G. D. 1991. Microbial dynamics in the rhizosphere: Possible strategies in managing rhizosphere populations. In The Rhizosphere and Plant Growth, eds. D. L. Keister and P. B. Cregan, pp. 25–32. Kluwer Academic Publisher, Dordrecht.

    Google Scholar 

  10. Foster, R. C, A. D. Rovira, and T. W. Cock. 1983. Ultrastructure of the root-soil interface. American Phytopathological Society, St. Paul, MN.

    Google Scholar 

  11. Marschner, H. and V. Römheld. 1983. In vivo measurement of root-induced pH changes at the soil-root interface: effect of plant species and nitrogen source. Z. Pflanzenphysiol. 111:241–251.

    CAS  Google Scholar 

  12. Bottomley, P. J. 1992. Ecology of Bradyrhizobium and Rhizobium. In Biological Nitrogen Fixation, eds. G. Stacey, R. H. Burris, and H. J. Evans, pp. 293–348. Chapman and Hall, New York.

    Google Scholar 

  13. Triplett, E. W., K. A. Albrecht, and E. S. Oplinger. 1993. Crop rotation effects on populations of Bradyrhizobium japonicum and Rhizobium meliloti. Soil Biol. Biochem. 25:781–784.

    Google Scholar 

  14. Ellis, W. R., G. E. Ham and E. L. Schmidt. 1984. Persistence and recovery of Rhizobium japonicum inoculum in a field soil. Agron. J. 76:573–576.

    Google Scholar 

  15. Bhagwat, A. A. and D. L. Keister. 1992. Identification and cloning of Bradyrhizobium japonicum genes expressed strain selectively in soil and rhizosphere. Appl. Environ. Microbiol. 58:1490–1495.

    PubMed  CAS  Google Scholar 

  16. Ames, P. and K. Bergman. 1981. Competitive advantage provided by bacterial motility in the formation of nodules by Rhizobium meliloti. J. Bacteriol. 148:728–729.

    CAS  Google Scholar 

  17. Mellor, H. Y., A. R. Glenn, R. Arwas, and M. J. Dilworth. 1987. Symbiotic and competitive properties of motility mutants of Rhizobium trifolii TA1. Arch. Microbiol. 148:34–39.

    CAS  Google Scholar 

  18. Caetano-Anollés, G., L. G. Wall, A. T. de Micheli, E. M. Macchi, W. D. Bauer, and G. Favelukes. 1988. Role of motility and Chemotaxis in efficiency of nodulation by Rhizobium meliloti. Plant Physiol. 86:1228–1235.

    PubMed  Google Scholar 

  19. Catlow, H. Y., A. R. Glenn, and M. J. Dilworth. 1990. Does rhizobial motility affect its ability to colonize along the legume root? Soil Biol. Biochem. 22:573–575.

    Google Scholar 

  20. Scher, F. M., J. W. Kloepper, C. Singleton, I. Zaleska, and M. Laliberte. 1988. Colonization of soybean roots by Pseudomonas and Serratia species: relationship to bacterial motility, Chemotaxis and generation time. Phytopath. 78:1055–1059.

    Google Scholar 

  21. Anderson, A. J., P. Habibzadegah-Tari, and C. S. Tepper. 1988. Molecular studies on the role of a root surface agglutinin in adherence and colonization by Pseudomonas pu tida. Appl. Environ. Microbiol. 54:375–380.

    PubMed  CAS  Google Scholar 

  22. Zdor, R. E. and S. G. Pueppke. 1991. Nodulation competitiveness of Tn5-in-duced mutants of Rhizobium fredii USDA208 that are altered in motility and extracellular polysaccharide production. Can. J. Microbiol. 37:52–58.

    CAS  Google Scholar 

  23. Bhagwat, A. A., R. E. Tully, and D. L. Keister. 1991. Isolation and characterization of a competition-defective Bradyrhizobium japonicum mutant. Appl. Environ. Microbiol. 57:3496–3501.

    PubMed  CAS  Google Scholar 

  24. Parniske, M., K. Kosch, D. Werner, and P. Müller. 1993. ExoB mutants of Bradyrhizobium japonicum with reduced competitiveness for nodulation of Glycine max. Mol. Plant-Microbe Inter. 6:99–106.

    CAS  Google Scholar 

  25. Weiler, D. M. 1988. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu. Rev. Phytopathol. 26:379–407.

    Google Scholar 

  26. Hodgson, A. L. M., W. P. Roberts, and J. S. Waid. 1985. Regulated nodulation of Trifolium subterraneum inoculated with bacteriocin-producing strains of Rhizobium trifolii. Soil Biol. Biochem. 17:475–478.

    Google Scholar 

  27. Triplett, E. W. and T. M. Barta. 1987. Trifolitoxin production and nodulation are necessary for the expression of superior nodulation competitiveness by Rhizobium leguminosarum bv. trifolii strain T24 on clover. Plant Physiol. 85:335–342.

    PubMed  CAS  Google Scholar 

  28. Triplett, E. W. 1988. Isolation of genes involved in nodulation competitiveness from Rhizobium leguminosarum bv. trifolii T24. Proc. Natl. Acad. Sci. USA 85:3810–3814.

    PubMed  CAS  Google Scholar 

  29. Triplett, E. W. 1990. Construction of a symbiotically effective strain of Rhizobium leguminosarum bv. trifolii with increased nodulation competitiveness. Appl. Environ. Microbiol. 56:98–103.

    PubMed  CAS  Google Scholar 

  30. Mazzola, M., R. J. Cook, L. S. Thomashcw, D. M. Weiler, and L. S. Pierson. 1992. Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Appl. Environ. Microbiol. 58:2616–2624.

    PubMed  CAS  Google Scholar 

  31. Sanjuan, J. and J. Olivares. 1989. Implication of nifA in regulation of genes located on a Rhizobium meliloti cryptic plasmid that affect nodulation efficiency. J. Bacteriol. 171:4154–4161.

    PubMed  CAS  Google Scholar 

  32. Sanjuan, J. and J. Olivares. 1991. NifA-NtrA regulatory system activates transcription of nfe, a gene locus involved in nodulation competitiveness of Rhizobium meliloti. Arch. Microbiol. 155:543–548.

    PubMed  CAS  Google Scholar 

  33. Triplett, E. W. and M. J. Sadowsky. 1992. Genetics of competition for nodulation of legumes. Annu. Rev. Microbiol. 46:399–428.

    PubMed  CAS  Google Scholar 

  34. Amarger, N. 1981. Competition for nodule formation between effective and ineffective strains of Rhizobium meliloti. Soil Biol. Biochem. 13:475–480.

    Google Scholar 

  35. Rynne, F., M. J. Dilworth, and A. R. Glenn. 1988. Effect of aromatic metabolism on the competitiveness and persistence of Rhizobium trifolii WU95. In Nitrogen Fixation: Hundred Years After, eds. H. Bothe, F. J. de Bruijn, and W. E. Newton, 787 pp. Gustav Fischer, Stuttgart.

    Google Scholar 

  36. Garfinkel, D. J. and E. W. Nester. 1980. Agrobacterium tumefaciens mutants affected in crown gall tumorigenesis and octopine catabolism. J. Bacteriol. 144:732–743.

    PubMed  CAS  Google Scholar 

  37. Meade, H. M., S. R. Long, G. B. Ruvkun, S. E. Brown, and F. M. Ausubel. 1982. Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J. Bacteriol. 149:114–122.

    PubMed  CAS  Google Scholar 

  38. Lindgren, P. B., R. C. Peet, and N. J. Panopoulos. 1986. Gene cluster of Pseudomonas syringae pv. “phaseolicola” controls pathogenicity of bean plants and hypersensitivity on nonhost plants. J. Bacteriol 168:512–522.

    PubMed  CAS  Google Scholar 

  39. Lam, S. T., D. M. Ellis, and J. M. Ligon. 1991. Genetic approaches for studying rhizosphere colonization. In The Rhizosphere and Plant Growth, eds. D. L. Keister and P. B. Creagan, pp. 43–50. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  40. McLoughlin, T. J., A. O. Merlo, S. W. Satola, and E. Johansen. 1987. Isolation of competition-defective mutants of Rhizobium fredii. J. Bacteriol. 169:410–413.

    PubMed  CAS  Google Scholar 

  41. Pinto, C. M., P. Y. Yao, and J. M. Vincent. 1974. Nodulating competitiveness amongst strains of Rhizobium meliloti and R. trifolii. Austral J. Agric. Res. 25:317–329.

    Google Scholar 

  42. Hagedorn, C. 1992. Experimental methods for terrestrial ecosystems. In Microbial Ecology, Principles, Methods, and Applications, eds. M. A. Levin, R. J. Seidler, and M. Rogul, pp. 525–541. McGraw-Hill, New York.

    Google Scholar 

  43. Meharg, A. A. and K. Killham. 1990. The effect of soil pH on rhizosphere carbon flow of Lolium perenne. Plant Soil 123:1–7.

    CAS  Google Scholar 

  44. Cheng, W. X., D. C. Coleman, C. R. Carroll and C. A. Hoffman. 1993. In situ measurement of root respiration and soluble C-concentrations in the rhizosphere. Soil Biol. Biochem. 25:1189–1196.

    Google Scholar 

  45. Martin, J. K. and R. Merckx. 1992. The partitioning of photosynthetically fixed carbon within the rhizosphere of mature wheat. Soil Biol. Biochem. 24:1147–1156.

    Google Scholar 

  46. Hawes, M. C. 1990. Living plant cells released from the root cap: A regulator of microbial populations in the rhizosphere? Plant Soil 129:19–27.

    Google Scholar 

  47. Frenzel, B. 1960. Zur Ätiologie der Anreicherung von Aminosäuren und Amiden im Wurzelraum von Helianthus annuus L. Planta 55:169–207.

    CAS  Google Scholar 

  48. Rovira, A. D. 1969. Plant root exudates. Bot. Rev. 35:35–57.

    CAS  Google Scholar 

  49. Schönwitz, R. and H. Ziegler. 1982. Exudation of water-soluble vitamins and of some carbohydrates by intact roots of maize seedlings (Zea mays L.) into a mineral nutrient solution. Z. Pflanzenphysiol. 107:7–14.

    Google Scholar 

  50. Bachmann, G. and H. Kinzel. 1992. Physiological and ecological aspects of the interactions between plant roots and rhizosphere soil. Soil Biol. Biochem. 24:543–552.

    Google Scholar 

  51. Jones, D. L. and P. R. Darrah. 1992. Re-sorption of organic components by roots of Zea mays L. and its consequences in the rhizosphere I. Resorption of 14C labelled glucose, mannose and citric acid. Plant Soil 143:259–266.

    CAS  Google Scholar 

  52. Jones, D. L. and P. R. Darrah. 1993. Re-sorption of organic compounds by roots of Zea mays L. and its consequences in the rhizosphere II. Experimental and model evidence for simultaneous exudation and re-sorption of soluble C compounds. Plant Soil 153:47–59.

    CAS  Google Scholar 

  53. D’Arcy, A. L. 1982. Etude des exsudats racinaires de soja et de lentille I. Cinetique d’exsudation des composés phénoliques, des amino acides et des sucres, au cours des premiers jours de la vie des plantules. Plant Soil 68:399–403.

    Google Scholar 

  54. Boulter, D., J. J. Jeremy, and M. Wilding. 1966. Amino acids liberated into the culture medium by pea seedling roots. Plant Soil 24:121–127.

    CAS  Google Scholar 

  55. Lipton, D. S., R. W. Blanchar, and D. G. Blevins. 1987. Citrate, malate, and succinate concentration in exudates from P-sufficient and P-stressed Medicago sativa L. seedlings. Plant Physiol. 85:315–317.

    PubMed  CAS  Google Scholar 

  56. Fries, N. and B. Foreman. 1951. Quantitative determination of certain nucleic acid derivatives in pea root exudate. Physiol Plant. 4:410–420.

    Google Scholar 

  57. Rovira, A. D. and J. R. Harris. 1961. Plant root excretions in relation to the rhizosphere effect V. The exudation of B-group vitamins. Plant Soil 14:199–214.

    CAS  Google Scholar 

  58. Gardner, W. K., D. A. Barber, and D. G. Parbery. 1983. Non-infecting rhizosphere micro-organisms and the mineral nutrition of temperate cereals. J. Plant Nutr. 6:185–199.

    CAS  Google Scholar 

  59. Cakmak, I. and H. Marschner. 1988. Increase in membrane permeability and exudation in roots of zinc deficient plants. J. Plant Physiol. 132:356–361.

    CAS  Google Scholar 

  60. Ehrhardt, D. W., E. M. Atkinson, and S. R. Long. 1992. Depolarization of alfalfa root hair membrane potential by Rhizobium meliloti Nod factors. Science 256:998–1000.

    PubMed  CAS  Google Scholar 

  61. Tepfer, D., A. Goldman, N. Pamboukdjian, M. Maille, A. Lepingle, D. Chevalier, J. Dénarié, and C. Rosenberg. 1988. A plasmid of Rhizobium meliloti 41 encodes catabolism of two compounds from root exudate of Calystegium sepium. J. Bacterial. 170:1153–1161.

    CAS  Google Scholar 

  62. Boivin, C, L. R. Barran, C. A. Malpica and C. Rosenberg. 1991. Genetic analysis of a region of the Rhizobium meliloti pSym plasmid specifying catabolism of trigonelline, a secondary metabolite present in legumes. J. Bacteriol. 173:2809–2817.

    PubMed  CAS  Google Scholar 

  63. Goldmann, A., C. Boivin, V. Fleury, B. Message, L. Lecoeur, M. Maille, and D. Tepfer. 1991. Betaine use by rhizosphere bacteria: Genes essential for trigonelline, stachydrine, and carnitine catabolism in Rhizobium meliloti are located on pSym in the symbotic region. Mol. Plant-Microbe Inter. 4:571–578.

    CAS  Google Scholar 

  64. Murphy, P. J., N. Heycke, Z. BHanfalvi, M. E. Tate, F. De Bruijn, A Kondorosi, J. Tempe, and J. Schell. 1987. Genes for the catabolism and synthesis of an opine-like compound in Rhizobium meliloti are closely linked and on the Sym Plasmid. Proc. Natl. Acad. Sci. USA 84:493–497.

    PubMed  CAS  Google Scholar 

  65. Bergeron, J., C. Beaulieu, R. C. Levesque, A. Kondorosi, and P. Dion. 1993. Homology between the genes of octopine catabolism of Rhizobium meliloti A3 and corresponding genes from the Ti plasmid. Can. J. Microbiol. 39:1041–1050.

    CAS  Google Scholar 

  66. Murphy, P. J., N. Heycke, S. P. Trenz, P. Ratet, F. J. de Bruijn, and J. Schell. 1988. Synthesis of an opine-like compound, a rhizopine, in alfalfa nodules is symbolically regulated. Proc. Natl. Acad. Sci. USA 85:9133–9137.

    CAS  Google Scholar 

  67. Boivin, C., S. Camut, C. A. Malpica, G. Truchet, and C. Rosenberg. 1990. Rhizobium meliloti genes encoding catabolism of trigonelline are induced under symbiotic conditions. Plant Cell 2:1157–1170.

    PubMed  CAS  Google Scholar 

  68. Tepfer, D., et al. 1988. Calystegins, nutritional mediators in plant-microbe interactions. In Molecular Genetics of Plant-Microbe Interactions 1988, eds. R. Palacios and D. P. S. Verma, pp. 139–144. APS Press, St. Paul, MN.

    Google Scholar 

  69. Schubert, K. R. and H. J. Evans. 1976. Hydrogen evolution: a major factor affecting the efficiency of nitrogen fixation in nodulated symbionts. Proc. Nat. Acad. Sci. USA 73:1207–1211.

    PubMed  CAS  Google Scholar 

  70. Cunningham, S. D., Y. Kapulnik, and D. A. Phillips. 1986. Distribution of hydrogen-metabolizing bacteria in alfalfa field soil. Appl. Environ Microbiol 52:1091–1095.

    PubMed  CAS  Google Scholar 

  71. Caetano-Anollés, G., D. K. Crist-Estes, and W. D. Bauer. 1988. Chemotaxis of Rhizobium meliloti to the plant flavone luteolin requires functional nodulation genes. J. Bacteriol. 170:3164–3169.

    PubMed  Google Scholar 

  72. Keen, N. T. 1986. Phytoalexins and their involvement in plant disease resistance. Iowa State J. Res. 60:477–499.

    CAS  Google Scholar 

  73. Wyman, J. G. and H. D. VanEtten. 1978. Antibacterial activity of selected isoflavonoids. Phytopathology 68:583–589.

    CAS  Google Scholar 

  74. Pankhurst, C. E. and D. R. Biggs. 1980. Sensitivity of Rhizobium to selected isoflavonoids. Can. J. Microbiol. 26:542–545.

    PubMed  CAS  Google Scholar 

  75. Gnanamanickam, S. S. and D. A. Smith. 1980. Selective toxicity of isoflavonoid phytoalexins to gram-positive bacteria. Phytopathology 70:894–896.

    CAS  Google Scholar 

  76. Weinstein, L. I. and P. Albersheim. 1983. Host-pathogen Interactions. XIII. The mechanism of the antibacterial action of glycinol, a pterocarpan phytoalexin synthesized by soybeans. Plant Physiol. 72:557–563.

    PubMed  CAS  Google Scholar 

  77. Parniske, M., B. Ahlborn, and D. Werner. 1991. Isoflavonoid-inducible resistance to the phytoalexin glyceollin in soybean rhizobia. J. Bacteriol. 173:3432–3439.

    PubMed  CAS  Google Scholar 

  78. Ingham, J. L. 1983. Naturally occurring isoflavonoids (1855–1981). Fortschr. d. Chem. org. Naturst. 43:1–266.

    CAS  Google Scholar 

  79. Keen, N. T. and B. W. Kennedy. 1974. Hydroxyphaseollin and related isof-lavanoids in the hypersensitive resistance reaction of soybeans to Pseudomonas glycinea. Physiol. Plant Pathol. 4:173–185.

    CAS  Google Scholar 

  80. Keen, N. T. 1975. The isolation of phytoalexins from germinating seeds of Cicer arietinum, Vigna sinensis, Arachis hypogaea, and other plants. Phytopathology 65:91–92.

    CAS  Google Scholar 

  81. Schmidt, P. E., M. Parniske, and D. Werner. 1992. Production of the phytoalexin glyceollin I by soybean roots in response to symbiotic and pathogenic infection. Bot. Acta 105:18–25.

    CAS  Google Scholar 

  82. Stössel, P. and D. Magnolato. 1983. Phytoalexins in Phaseolus vulgaris and Glycine max induced by chemical treatment, microbial contamination and fungal infection. Experientia 39:153–154.

    Google Scholar 

  83. D’Arcy-Lameta, A. 1986. Study of soybean and lentil root exudates II. Identification of some polyphenols compounds, relation with plantlet physiology. Plant Soil 92:113–123.

    Google Scholar 

  84. Dakora, F. D., C. M. Joseph, and D. A. Phillips. 1993. Alfalfa (Medicago sativa L.) root exudates contain isoflavonoids in the presence of Rhizobium meliloti. Plant Physiol. 101:819–824.

    PubMed  CAS  Google Scholar 

  85. Tiller, S. A., A. D. Parry, and R. Edwards. 1994. Changes in the accumulation of flavonoid and isoflavonoid conjugates associated with plant age and nodulation in alfalfa (Medicago sativa). Physiol. Plant. 91:27–36.

    CAS  Google Scholar 

  86. Burden, R. S., P. M. Rogers, and R. L. Wain. 1974. Investigations on fungicides. XVI. Natural resistance of plant roots to fungal pathogens. Ann. Appl. Biol. 78:59–63.

    PubMed  CAS  Google Scholar 

  87. Gnanamanickam, S. S. 1979. Isolation of isoflavonoid phytoalexins from seeds of Phaseolus vulgaris L. Experientia 35:323.

    CAS  Google Scholar 

  88. Stössel, P. 1985. Structure-activity relationship of some bean phytoalexins and related isoflavonoids. Physiol Plant Pathol. 26:269–277.

    Google Scholar 

  89. Dakora, F. D., C. M. Joseph, and D. A. Phillips. 1993. Common bean root exudates contain elevated levels of daidzein and coumestrol in response to Rhizobium inoculation. Mol Plant-Microbe Inter. 6:665–668.

    CAS  Google Scholar 

  90. Lyne, R. L. and L. J. Mulheim. 1978. Minor pterocarpinoids of soybean. Tetrahedron Lett. 1978:3127–3128.

    Google Scholar 

  91. Weinstein, L. I., M. G. Hahn, and P. Albersheim. 1981. Host-pathogen interactions. XVIII. Isolation and biological activity of glycinol, a pterocarpan phytoalexin synthesized by soybeans. Plant Physiol. 68:358–363.

    PubMed  CAS  Google Scholar 

  92. Schmidt, P. E., W. J. Broughton, and D. Werner. 1994. Nod factors of Bradyr-hizobium japonicum and Rhizobium sp. NGR234 induce flavonoid accumulation in soybean root exudate. Mol. Plant-Microbe Inter. 7:384–390.

    CAS  Google Scholar 

  93. Parniske, M., C. Zimmermann, P. B. Cregan, and D. Werner. 1990. Hypersensitive reaction of nodule cells in the Glycine sp./Bradyrhizobium japonicum-symbiosis occurs at the genotype-specific level. Bot. Acta 103:143–148.

    Google Scholar 

  94. Parniske, M., H. M. Fischer, H. Hennecke, and D. Werner. 1991. Accumulation of the phytoalexin glyceollin I in soybean nodules infected by a Bradyrhizobium japonicum nifA mutant. Z. Naturforsch. 46C:318–320.

    Google Scholar 

  95. Karr, D. B., D. W. Emerich, and A. L. Karr. 1992. Accumulation of the phytoalexin, glyceollin, in root nodules of soybean formed by effective and ineffective strains of Bradyrhizobium japonicum. J. Chem. Ecol. 18:997–1008.

    CAS  Google Scholar 

  96. Morandi, D. and J. L. Le Quere. 1991. Influence of nitrogen on accumulation of isosojagol (a newly detected coumestan in soybean) and associated isoflavonoids in roots and nodules of mycorrhizal and non-mycorrhizal soybean. New Phytol. 117:75–79.

    CAS  Google Scholar 

  97. Higgins, V. J. and R. L. Millar. 1968. Phytoalexin production by alfalfa in response to infection by Colletotrichum phomoides, Helminthosporium turcicum, Stemphylium loti and S. botryosum. Phytopathology 58:1377–1383.

    CAS  Google Scholar 

  98. Harper, S. H., A. D. Kemp, G. E. Underwood, and R. V. M. Campbell. 1969. Pterocarpanoid constituents of the heartwoods of Pericopsis angolensis and Swartzia madagascariensis. J. Chem. Soc. C 1969:1109–1116.

    Google Scholar 

  99. Sakagami, Y., S. Kumai, and A. Suzuki. 1974. Isolation and structure of medi-carpin-β-D-glucoside in alfalfa. Agric. Biol. Chem. 38:1031–1034.

    CAS  Google Scholar 

  100. Dornbos, D. L., G. F. Spencer, and R. W. Miller. 1990. Medicarpin delays alfalfa seed germination and seedling growth. Crop Sci. 30:162–166.

    CAS  Google Scholar 

  101. Miller, K. J., J. A. Hadley, and D. L. Gustine. 1994. Cyclic β–1,6–1,3 glucans of Bradyrhizobium japonicum USDA 110 elicit isoflavonoid production in the soybean (Glycine max) host. Plant Physiol. 104:917–923.

    PubMed  CAS  Google Scholar 

  102. Lundegardh, H. and G. Stenlid. 1944. On the exudation of nucleotides and flavanone from living roots. Arkiv Bot. 31A:1–27.

    Google Scholar 

  103. Lugtenberg, B., ed. 1986. Recognition in Microbe-Plant Symbiotic and Pathogenic Interactions. Springer-Verlag, Berlin.

    Google Scholar 

  104. Redmond, J. W., M. Batley, M. A. Djordjevic, R. W. Innes, P. L. Kuempel, and B. G. Rolfe. 1986. Flavones induce expression of nodulation genes in Rhizobium. Nature 323:632–635.

    CAS  Google Scholar 

  105. Peters, N. K., J. W. Frost, and S. R. Long. 1986. A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233:977–980.

    PubMed  CAS  Google Scholar 

  106. Firmin, J. L., K. E. Wilson, L. Rossen, and A. W. B. Johnston. 1986. Flavonoid activation of nodulation genes in Rhizobium reversed by other compounds present in plants. Nature 324:90–92.

    CAS  Google Scholar 

  107. Kosslak, R. M., R. Bookland, J. Barkei, H. E. Paaren, and E. R. Appelbaum. 1987. Induction of Bradyrhizobium japonicum common nod genes by isoflavones isolated from Glycine max. Proc. Natl. Acad. Sci. USA 84:7428–7432.

    PubMed  CAS  Google Scholar 

  108. Banfalvi, Z., A. Nieuwkoop, M. Schell, L. Besl, and G. Stacey. 1988. Regulation of nod gene expression in Bradyrhizobium japonicum. Mol. Gen. Genet. 214:420–424.

    PubMed  CAS  Google Scholar 

  109. Göttfert, M., J. Weber, and H. Hennecke. 1988. Induction of a nodA-lacZ fusion in Bradyrhizobium japonicum by an isoflavone. J. Plant Physiol. 132:394–397.

    Google Scholar 

  110. Heller, W. and G. Forkmann. 1994. Biosynthesis of flavonoids. In The Flavonoids, Advances in Research Since 1986, ed. J. B. Harborne, pp. 499–535. Chapman & Hall, London.

    Google Scholar 

  111. Dewick, P. M. 1994. Isoflavonoids. In The Flavonoids, Advances in Research Since 1986, ed. J. B. Harborne, pp. 117–238. Chapman & Hall, London.

    Google Scholar 

  112. Zaat, S., J. Schripsema, C. Wijffelman, T. Tak, A. Van Brussel, and B. Lugtenberg. 1988. Analysis of Rhizobium leguminosarum nod gene inducers in root exudate, and comparison to inducers present in root extract of Vicia sativa. In Nitrogen Fixation: Hundred Years After, eds. H. Bothe, F. J. de Bruijn, and W. E. Newton, 469 pp. Gustav Fischer, Stuttgart.

    Google Scholar 

  113. Kapulnik, Y., C. M. Joseph, and D. A. Phillips. 1987. Flavone limitations to root nodulation and symbiotic nitrogen fixation in alfalfa. Plant Physiol. 84:1193–1196.

    PubMed  CAS  Google Scholar 

  114. Harborne, J. B., ed. 1994. The Flavonoids, Advances in Research Since 1986. Chapman & Hall, London.

    Google Scholar 

  115. Smit, G., V. Puvanesarajah, R. W. Carlson, W. M. Barbour, and G. Stacey. 1992. Bradyrhizobium japonicum nodD1 can be specifically induced by soybean flavonoids that do not induce the nodYABCSUIJ operon. J. Biol Chem. 267:310–318.

    PubMed  CAS  Google Scholar 

  116. Kape, R., M. Parniske, S. Brandt, and D. Werner. 1992. Isoliquiritigenin, a strong nod gene-and gyceollin resistance-inducing flavonoid from soybean root exudate. Appl. Environ. Microbiol. 58:1705–1710.

    PubMed  CAS  Google Scholar 

  117. Maxwell, C. A., U. A. Hartwig, C. M. Joseph, and D. A. Phillips. 1989. A chalcone and two related flavonoids released from alfalfa roots induce nod genes of Rhizobium meliloti. Plant Physiol. 91:842–847.

    PubMed  CAS  Google Scholar 

  118. Hartwig, U. A., C. A. Maxwell, C. M. Joseph, and D. A. Phillips. 1990. Chrysoeriol and luteolin released from alfalfa seeds induce nod genes in Rhizobium meliloti. Plant Physiol. 92:116–122.

    PubMed  CAS  Google Scholar 

  119. Phillips, D. A., C. M. Joseph, and C. A. Maxwell. 1992. Trigonelline and stachydrine released from alfalfa seeds activate NodD2 protein in Rhizobium meliloti. Plant Physiol. 99:1526–1531.

    PubMed  CAS  Google Scholar 

  120. Hungria, M., C. M. Joseph, and D. A. Phillips. 1991. Anthocyanidins and flavonols, major nod-gene inducers from seeds of a black-seeded common bean (Phaseolus vulgaris L.). Plant Physiol. 97:751–758.

    PubMed  CAS  Google Scholar 

  121. Hungria, M., C. M. Joseph, and D. A. Phillips. 1991. Rhizobium nod-gene inducers exuded naturally from roots of common bean (Phaseolus vulgaris L.). Plant Physiol. 97:759–764.

    PubMed  CAS  Google Scholar 

  122. Ayabe, S. I., A. Udagawa, and T. Furuya. 1988. NAD(P)H-Dependent 6’deoxychalcone synthase activity in Glycyrrhiza echinata cells induced by yeast extract. Arch. Biochem. Biophys. 261:458–462.

    PubMed  CAS  Google Scholar 

  123. Welle, R. and H. Grisebach. 1988. Isolation of a novel NADPH-dependent reductase which coacts with chalcone synthase in the bisynthesis of 6’-deoxychalcone. FEBS Lett. 236:221–225.

    CAS  Google Scholar 

  124. Graham, T. L. 1991. Flavonoid and isoflavonoid distribution in developing soybean seedling tissues and in seed and root exudates. Plant Physiol. 95:594–603.

    PubMed  CAS  Google Scholar 

  125. Djordjevic, M. A., J. W. Redmond, M. Batley, and B. G. Rolfe. 1987. Clovers secrete specific phenolic compounds which either stimulate or repress nod gene expression in Rhizobium trifolii. Embo J. 6:1173–1179.

    PubMed  CAS  Google Scholar 

  126. Maxwell, C. A. and D. A. Phillips. 1990. Concurrent synthesis and release of nod-gene-inducing flavonoids from alfalfa roots. Plant Physiol. 93:1552–1558.

    PubMed  CAS  Google Scholar 

  127. Maxwell, C. A., M. J. Harrison, and R. A. Dixon. 1993. Molecular characterization and expression of alfalfa isoliquiritigenin 2′-O-methyltransferase, an enzyme specifically involved in the biosynthesis of an inducer of Rhizobium-meliloti nodulation genes. Plant J. 4:971–981.

    PubMed  CAS  Google Scholar 

  128. Hartwig, U. A., C. A. Maxwell, C. M. Joseph, and D. A. Phillips. 1990. Effects of alfalfa nod gene-inducing flavonoids on nodABC transcription in Rhizobium meliloti strains containing different nodD genes. J. Bacteriol. 172:2769–2773.

    PubMed  CAS  Google Scholar 

  129. Hartwig, U. A., C. M. Joseph, and D. A. Phillips. 1991. Flavonoids released naturally from alfalfa seeds enhance growth rate of Rhizobium meliloti. Plant Physiol. 95:797–803.

    PubMed  CAS  Google Scholar 

  130. Hungria, M., A. W. B. Johnston, and D. A. Phillips. 1992. Effects of flavonoids released naturally from bean (Phaseolus vulgaris) on nodD-regulated gene transcription in Rhizobium leguminosarum bv. phaseoli. Molec. Plant-Microbe Inter. 5:199–203.

    CAS  Google Scholar 

  131. Recourt, K., J. Schripsema, J. W. Kijn, A. A. N. van Brussel, and B. J. J. Lugtenberg. 1991. Inoculation of Vicia sativa subsp. nigra roots with Rhizobium leguminosarum biovar viciae results in release of nod gene activating flavanones and chalcones. Plant Mol. Biol. 16:841–852.

    PubMed  CAS  Google Scholar 

  132. van Brussel, A. A. N., K. Recourt, E. Pees, H. P. Spaink, T. Tak, C.A. Wijffelman, J. W. Jijne, and B. J. J. Lugtenberg. 1990. A biovar-specific signal of Rhizobium leguminosarum bv. viciae induces increased nodulation gene-inducing activity in root exudate of Vicia sativa subsp. nigra. J. Bacteriol. 172:5394–5401.

    Google Scholar 

  133. Tramontano, W. A., P. A. McGinley, E. F. Ciancaglini, and L. S. Evans. 1986. A survey of trigonelline concentrations in dry seeds of the dicotyledoneae. Environ. Expt. Bot. 26:197–205.

    CAS  Google Scholar 

  134. Wyn Jones, R. G. and R. Storey. 1981. Betaines. In The Physiology and Biochemistry of Drought Resistance in Plants, eds. L. G. Paleg and D. Aspinall, pp. 171–204. Academic Press, Sydney.

    Google Scholar 

  135. Phillips, D. A., F. D. Dakora, E. Sande, C. M. Joseph, and J. Zon. 1994. Synthesis, release, and transmission of alfalfa signals to rhizobial symbionts. Plant Soil 161:69–80.

    CAS  Google Scholar 

  136. León-Barrios, M., F. D. Dakora, C. M. Joseph, and D. A. Phillips. 1993. Isolation of Rhizobium meliloti nod gene inducers from alfalfa rhizosphere soil. Appl. Environ. Microbiol. 59:636–639.

    PubMed  Google Scholar 

  137. Barz, W. 1970. Isolation of rhizosphere bacterium capable of degrading flavonoids. Phytochemistry 9:1745–1749.

    CAS  Google Scholar 

  138. Höhl, B., M. Arnemann, L. Schwenen, D. Stöckl, G. Bringmann, J. Jansen, and W. Barz. 1989. Degradation of the pterocarpan phytoalexin (-)-maackiain by Ascochyta rabiei. Z. Naturforsch. 771–776.

    Google Scholar 

  139. VanEtten, H. D., D. E. Matthews, and P. S. Matthews. 1989. Phytoalexin detoxification: Importance for pathogenicity and practical implications. Annu. Rev. Phytopathol. 27:143–164.

    PubMed  CAS  Google Scholar 

  140. Hartwig, U. A. and D. A. Phillips. 1991. Release and modification of nod-gem-inducing flavonoids from alfalfa seeds. Plant Physiol. 95:804–807.

    PubMed  CAS  Google Scholar 

  141. Klus, K., G. Börger-Papendorf, and W. Barz. 1993. Formation of 6,7,4′-trihyd-roxyisoflavone (factor 2) from soybean seed isoflavones by bacteria isolated from tempe. Phytochemistry 34:979–981.

    CAS  Google Scholar 

  142. Peters, N. K. and S. R. Long. 1988. Alfalfa root exudates and compounds which promote or inhibit induction of Rhizobium meliloti nodulation genes. Plant Physiol. 88:396–400.

    PubMed  CAS  Google Scholar 

  143. Hartwig, U. A., C. A. Maxwell, C. M. Joseph, and D. A. Phillips. 1989. Interactions among flavonoid nod gene inducers released from alfalfa seeds and roots. Plant Physiol. 91:1138–1142.

    PubMed  CAS  Google Scholar 

  144. Darrah, P. R. 1991. Measuring the diffusion coefficients or rhizosphere exudates in soil II. The diffusion of sorbing compounds. J. Soil Sci. 42:421–434.

    CAS  Google Scholar 

  145. Darrah, P. R. 1991. Measuring the diffusion coefficient of rhizosphere exudates in soil. I. The diffusion of non-sorbing compounds. J. Soil Sci. 42:413–420.

    CAS  Google Scholar 

  146. Kosslak, R. M., R. S. Joshi, B. A. Bowen, H. E. Paaren, and E. R. Appelbaum. 1990. Strain-specific inhibition of nod gene induction in Bradyrhizobium japon-icum by flavonoid compounds. Appl. Environ. Microbiol. 56:1333–1341.

    PubMed  CAS  Google Scholar 

  147. Cunningham, S., W. D. Kollmeyer, and G. Stacey. 1991. Chemical control of interstrain competition for soybean nodulation by Bradyrhizobium japonicum. Appl. Environ. Microbiol. 57:1886–1892.

    PubMed  CAS  Google Scholar 

  148. Siqueira, J. O., M. G. Nair, R. Hammerschmidt, and G.R. Safir. 1991. Significance of phenolic compounds in plant-soil-microbial systems. Crit. Rev. Plant Sci. 10:63–121.

    CAS  Google Scholar 

  149. Rao, A. S. 1990. Root flavonoids. Bot. Rev. 56:1–84.

    Google Scholar 

  150. Kado, G I. 1992. Lux and other reporter genes. In Microbial Ecology, Principles, Methods, and Applications, eds. M. A. Levin, R. J. Seidler, and M. Rogul, pp. 371–392. McGraw-Hill, New York.

    Google Scholar 

  151. Wolk, G P., Y. Cai, and J. M. Panoff. 1991. Use of a transposon with luciferase as a reporter to identify environmentally responsive genes in a cyanobacterium. Proc. Natl. Acad. Sci. USA 88:5355–5359.

    PubMed  CAS  Google Scholar 

  152. Simon, R., J. Quandt, and W. Klipp. 1989. New derivatives of transposon Tn5 suitable for mobilization of replicons, generation of operon fusions and induction of genes in Gram-negative bacteria. Gene 80:161–169.

    PubMed  CAS  Google Scholar 

  153. Mahan, M. J., J. M. Slauch, and J. J. Mekalanos. 1993. Selection of bacterial virulence genes that are specifically induced in host tissues. Science 259:686–688.

    PubMed  CAS  Google Scholar 

  154. Aguilar, J. M. M., A. M. Ashby, A. J. M. Richards, G. J. Loake, M. D. Watson, and C. H. Shaw. 1988. Chemotaxis of Rhizobium leguminosarum biovar phaseoli towards flavonoid inducers of the symbiotic nodulation genes. J. Gen. Microbiol. 134:2741–2746.

    Google Scholar 

  155. Armitage, J. P., A. Gallagher, and A. W. B. Johnston. 1988. Comparison of the chemotactic behaviour of Rhizobium leguminosarum with and without the nodulation plasmid. Molec. Microbiol. 2:743–748.

    CAS  Google Scholar 

  156. Kape, R., M. Parniske, and D. Werner. 1991. Chemotaxis and nod gene activity of Bradyrhizobium japonicum in response to hydroxycinnamic acids and isof-lavonoids. Appl. Environ. Microbiol. 57:316–319.

    PubMed  CAS  Google Scholar 

  157. Dharmatilake, A. J., and W. D. Bauer. 1992. Chemotaxis of Rhizobium meliloti towards nodulation gene-inducing compounds from alfalfa roots. Appl. Environ. Microbiol. 58:1153–1158.

    PubMed  CAS  Google Scholar 

  158. Morris, P. F. and E. W. B. Ward. 1992. Chemoattraction of zoospores of the soybean pathogen, Phytophthora sojae, by isoflavones. Physiol. Molec. Plant Path. 40:12–22.

    Google Scholar 

  159. Barbour, W. M., D. R. Hattermann, and G. Stacey. 1991. Chemotaxis of Bradyrhizobium japonicum to soybean exudates. Appl. Environ. Microbiol. 57:2635–2639.

    PubMed  CAS  Google Scholar 

  160. Gianinazzi-Pearson, V., B. Branzanti, and S. Gianinazzi. 1989. In vitro enhancement of spore germination and early hyphal growth of a vesicular-arbuscular mycorrhizal fungus by host root exudates and plant flavonoids. Symbiosis 7:243–255.

    CAS  Google Scholar 

  161. Tsai, S. M. and D. A. Phillips. 1991. Flavonoids released naturally from alfalfa promote development of symbiotic Glomus spores in vitro. Appl. Environ. Microbiol. 57:1485–1488.

    PubMed  CAS  Google Scholar 

  162. Bécard, G., D. D. Douds, and P. E. Pfeffer. 1992. Extensive in vitro hyphal growth of vesicular-arbuscular mycorrhizal fungi in the presence of CO2 and flavonols. Appl. Environ. Microbiol. 58:821–825.

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Chapman & Hall

About this chapter

Cite this chapter

Phillips, D.A., Streit, W. (1996). Legume Signals to Rhizobial Symbionts: A New Approach for Defining Rhizosphere Colonization. In: Stacey, G., Keen, N.T. (eds) Plant-Microbe Interactions. Plant-Microbe Interactions, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1213-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1213-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8514-4

  • Online ISBN: 978-1-4613-1213-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics