Skip to main content

Cyclic fatty acids: qualitative and quantitative analysis

  • Chapter
Lipid Analysis in Oils and Fats

Abstract

Cyclic fatty acids can be classified into those that are naturally occurring and those that are formed in vegetable oils during heating. The former include cyclopropane, cyclopropene and cyclopentenyl acids. C17 (structure la, Fig. 5.1) and C19 (structure Ib) cyclopropane acids are common in many bacteria, for example Lactobacilli and enterobacteria, and mycolic (2-alkyl-3-hydroxy) acids (structure II), with up to about 90 carbons and one or two cyclopropane rings, occur in mycobacteria (Christie, 1970; Minnikin, 1978). Recently, several acids with up to 26 carbons, one or two cyclopropane rings and a double bond in the Δ5 position were identified in an invertebrate from a deep-water lake (Rezanka and Dembitsky, 1994). C18 (structure Ic) and C19 (structure Id) cyclopropane acids occur in varying amounts in the seed oils of some species of a few plant families including Malvaceae and Sterculiaceae (Christie, 1970; Sebedio and Grandgirard, 1989). The cyclopropene counterparts (structures IIIa and IIIb) are more widespread in these families, and cyclopentenyl acids (structures IV a-c) are present in the seed oils of the family Flacourtiaceae, notably the genus Hydnocarpus (Sebedio and Grandgirard, 1989). Fatty acids with six-membered (structure Va; Hippchen, Roell and Poralla, 1981) and, unusually, seven-membered (structure Vb; Poralla and Koenig, 1983) rings have been characterized from the thermoacidophilic bacterium, Bacillus acidocaldarius.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J., Deterding, L. J. and Gross, M. L. (1987) Tandem mass spectrometry for determining structural features of fatty acids. Spectros. Int. J., 5, 199–228.

    CAS  Google Scholar 

  • Ahmad, M. S., Ahmad, M. U., Osman, S. M. and Ballantine, J. A. (1979) Eriolaena hookeriana seed oil: a rich source of malvalic acid. Chem. Phys. Lipids, 25, 29–38.

    Article  CAS  Google Scholar 

  • Bailey, A. V., Boudreaux, G. J. and Skau, E. L. (1965) Determination of cyclopropenoid fatty acids. VI. A direct infrared absorption method. J. Am. Oil Chem. Soc., 42 (7), 637–8.

    Article  CAS  Google Scholar 

  • Bianchini, J.-P., Ralaimanarivo, A. and Gaydou, E. M. (1981) Determination of cyclopropenoic and cyclopropanoic fatty acids in cottonseed and kapok seed oils by gas—liquid chromatography. Anal. Chem., 53, 2194–201.

    Article  CAS  Google Scholar 

  • Boudreaux, G. J., Bailey, A. V. and Tripp, V. W. (1972) High resolution NMR for purity determination of cyclopropenoid concentrates. J. Am. Oil Chem. Soc., 49, 278–80.

    Article  CAS  Google Scholar 

  • Busseil, N. E. and Miller, R. A. (1979) Analysis of hydroxyl, unsaturated, and cyclopropane fatty acids by high pressure liquid chromatography. J. Liquid Chromatogr., 2 (5), 697–718.

    Article  Google Scholar 

  • Chardigny, J.-M., Wolff, R. L., Mager, E. et al., (1995) Trans mono- and polyunsaturated fatty acids in human milk. Eur. J. Clin. Nutr., 49, 523–31.

    CAS  Google Scholar 

  • Christie, W. W. (1970) Cyclopropane and cyclopropene fatty acids, in Topics in Lipid Chemistry, Vol. 1 (ed. F. D. Gunstone), Logos Press, London, pp. 1–49.

    Google Scholar 

  • Christie, W. W. (1987) HPLC and Lipids: A Practical Guide, Pergamon Press, Oxford.

    Google Scholar 

  • Christie, W. W. (1989) Gas Chromatography and Lipids: A Practical Guide, The Oily Press, Dundee.

    Google Scholar 

  • Christie, W. W. and Holman, R. T. (1966) Mass spectrometry of lipids. 1. Cyclopropane fatty acid esters. Chem. Phys. Lipids, 1 (3), 176–82.

    CAS  Google Scholar 

  • Christie, W. W., Brechany, E. Y. and Shukla, V. K. S. (1989) Analysis of seed oils containing cyclopentenyl fatty acids by combined chromatographic procedures. Lipids, 24 (2), 116–20.

    Article  CAS  Google Scholar 

  • Christie, W. W., Rebello, D. and Holman, R. T. (1969) Mass spectrometry of derivatives of cyclopentenyl fatty acids. Lipids, 4 (3), 229–31.

    Article  CAS  Google Scholar 

  • Christie, W. W., Brechany, E. Y., Sebedio, J.-L., and Le Quere, J.-L. (1993) Silver ion chromatography and gas chromatography—mass spectrometry is the structural analysis of cyclic monoenoic acids formed in frying oils. Chem. Phys. Lipids, 66, 143–53.

    Article  CAS  Google Scholar 

  • Christopher, R. K. and Duffield, A. M. (1980) Use of vinyl methyl ether as a chemical ionization reagent gas for gas chromatographic chemical ionization mass spectrometric discrimination between cyclopropanoid and monoenoic fatty acid methyl esters. Biomed. Mass Spectrom., 7 (10), 429–32.

    Article  CAS  Google Scholar 

  • Coleman, E. C. (1970) Evaluation of five methods for the quantitative determination of cyclopropenoid fatty acids. J. Ass. Offic. Anal. Chem., 53 (6), 1209–13.

    CAS  Google Scholar 

  • Conway, J., Ratnayake, W. M. N. and Ackman, R. G. (1985) Hydrazine reduction in the gas liquid chromatographic analysis of the methyl esters of cyclopropenoic fatty acids. J. Am. Oil Chem. Soc., 62 (9), 1340–3.

    Article  CAS  Google Scholar 

  • Dobson, G. and Christie, W. W. (1996) Structural analysis of fatty acids by mass spectrometry of picolinyl esters and dimethyloxazoline derivatives. Trends Anal. Chem., 15(3), 130–7.

    Article  CAS  Google Scholar 

  • Dobson, G., Christie, W. W. and Sebedio, J.-L. (1996a) Monocyclic saturated fatty acids formed from oleic acid in heated sunflower oils. Chem. Phys. Lipids, 82, 101–10.

    Article  CAS  Google Scholar 

  • Dobson, G., Christie, W. W. and Sebedio, J.-L. (1996b) The nature of cyclic fatty acids formed in heated vegetable oils. Grasas y Aceites, 4, 26–33.

    Article  Google Scholar 

  • Dobson, G., Christie, W. W. and Sebedio, J.-L. (1996c) Gas chromatographic properties of cyclic dienoic acids formed in heated linseed oil. J. Chromatogr. A, 723, 349–54.

    Article  CAS  Google Scholar 

  • Dobson, G., Christie, W. W. and Sebedio, J.-L. (1997) Saturated bicyclic fatty acids formed in heated sunflower oils. Chem. Phys. Lipids, 87, 137–47.

    Article  CAS  Google Scholar 

  • Dobson, G., Christie, W. W., Brechany, E. Y. et al. (1995) Silver ion chromatography and gas chromatography—mass spectrometry in the structural analysis of cyclic dienoic acids formed in frying oils. Chem. Phys. Lipids, 75, 171–82.

    Article  CAS  Google Scholar 

  • Eisele, T. A., Libbey, L. M., Pawlowski, N. E. et al. (1974) Mass spectrometry of the silver nitrate derivatives of cyclopropenoid compounds. Chem. Phys. Lipids, 12, 316–26.

    Article  CAS  Google Scholar 

  • Frostegard, A., Tunlid, A. and Baath, E. (1993) Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to two different heavy metals. Appl. Environ. Microbiol., 59 (11), 3605–17.

    CAS  Google Scholar 

  • Gaydou, E. M., Bianchini, J.-P. and Ralaimanarivo, A. (1983) Determination of cyclopropenoic fatty acids by reversed-phase liquid chromatography and gas chromatography. Anal Chem., 55, 2313–17.

    Article  CAS  Google Scholar 

  • Gaydou, E. M., Ralaimanarivo, A. and Bianchini, J.-P. (1993) Cyclopropanoic fatty acids of litchi (Litchi chinensis) seed oil. A reinvestigation. J. Agric. Food Chem., 41 (6), 886–90.

    Article  CAS  Google Scholar 

  • Gente, M. and Guillaumin, R. (1977) Determination of cyclic monomers. Rev. Fr. Corps Gras, 24(4), 211–18.

    CAS  Google Scholar 

  • Gere, A., Gertz, C. and Morin, O. (1984) Methodological studies on the quantitation of cyclic monomers formed in fats during heating. Rev. Fr. Corps Gras, 31 (9), 341–6.

    CAS  Google Scholar 

  • Grandgirard, A. and Julliard, F. (1983) Determination of cyclic monomers in heated oils — a critical study. Fr. Corps Gras, 30 (3), 123–9.

    CAS  Google Scholar 

  • Grondin, I., Smadja, J., Farines, M. and Soulier, J. (1993) The lipids of litchi and longan seeds. Study of cyclopropanoic acids by NMR. Oleagineux, 48 (10), 425–8.

    CAS  Google Scholar 

  • Harvey, D. J. (1984) Picolinyl derivatives for the characterization of cyclopropane fatty acids by mass spectrometry. Biomed. Mass Spectrom., 11 (4), 187–92.

    Article  CAS  Google Scholar 

  • Harvey, D. J. (1992) Mass spectrometry of picolinyl and other nitrogen-containing derivatives of lipids, in Advances in Lipid Methodology - One (ed. W. W. Christie), The Oily Press, Dundee, pp. 19–80.

    Google Scholar 

  • Hippchen, B., Roell, A. and Poralla, K. (1981) Occurrence in soil of thermo-acidophilic bacilli possessing ω-cyclohexane fatty acids and hopanoids. Arch. Microbiol., 129 (1), 53–5.

    Article  CAS  Google Scholar 

  • Hooper, N. K. and Law, J. H. (1968) Mass spectrometry of derivatives of cyclopropene fatty acids. J. Lipid Res., 9, 270–5.

    CAS  Google Scholar 

  • Howarth, O. W. and Vlahov, G. (1996) 13C nuclear magnetic resonance study of cyclopropenoid triacylglycerols. Chem. Phys. Lipids, 81, 81–5.

    Article  CAS  Google Scholar 

  • Kint, S., Lundin, R. E., Waiss, A. C. and Elliger, C. A. (1981) Analysis of cyclopropenoid fatty acids by Raman spectroscopy. Anal. Biochem., 118, 364–70.

    Article  CAS  Google Scholar 

  • Le Quere, J.-L. and Sebedio, J.-L. (1996) Cyclic monomers of fatty acids, in Deep Frying: Chemistry, Nutrition and Practical Applications (eds E. G. Perkins and M. D. Erickson), AOCS Press, Champaign, IL, pp. 49–88.

    Google Scholar 

  • Le Quere, J.-L., Sebedio, J.-L., Henry, R. et al. (1991) Gas chromatography—mass spectrometry and gas chromatography-tandem mass spectrometry of cyclic fatty acid monomers isolated from heated fats. J. Chromatogr., 562, 659–72.

    Article  Google Scholar 

  • Le Quere, J.-L., Semon, E., Lanher, B. and Sebedio, J.-L. (1989) On-line hydrogenation in GC—MS analysis of cyclic fatty acid monomers isolated from heated linseed oil. Lipids, 24 (4), 347–50.

    Article  Google Scholar 

  • Loveland, P. M., Pawlowski, N. E., Libbey, L. M., et al. (1983) HPLC analysis of cyclopropenoid fatty acids. J. Am. Oil Chem. Soc., 60 (10), 1786–8.

    Article  CAS  Google Scholar 

  • Mayberry, W. R. and Lane, J. R. (1993) Sequential alkaline saponification/acid hydrolysis/ esterification: a one-tube method with enhanced recovery of both cyclopropane and hydroxylated fatty acids. J. Microbiol. Methods, 18, 21–32.

    Article  CAS  Google Scholar 

  • Minnikin, D. E. (1978) Location of double bonds and cyclopropane rings in fatty acids by mass spectrometry. Chem. Phys. Lipids, 21, 313–47.

    Article  CAS  Google Scholar 

  • Mossoba, M. M., Yuracwecz, M. P., Lin, H. S., et al. (1995a) Application of GC-MS-FTIR spectroscopy to the structural elucidation of cyclic fatty acid monomers. Am. Lab. (Shelton, Conn.), 27, 16K-0.

    Google Scholar 

  • Mossoba, M. M., Yuracwecz, M. P., Roach, J. A. G. et al. (1994) Rapid determination of double bond configuration and position along the hydrocarbon chain in cyclic fatty acid monomers. Lipids, 29 (12), 893–6.

    Article  CAS  Google Scholar 

  • Mossoba, M. M., Yuracwecz, M. P., Roach, J. A. G. et al. (1995b) Elucidation of cyclic fatty acid monomer structures. Cyclic and bicyclic ring sizes and double bond position and configuration. J. Am. Oil Chem., Soc., 72 (6), 721–7.

    Article  CAS  Google Scholar 

  • Mossoba, M. M., Yuracwecz, M. P., Roach, J. A. G. et al., (1996a) Analysis of cyclic fatty acid monomer 2-alkenyl-4,4-dimethyloxazoline derivatives by gas chromatography—matrix isolation—Fourier transform infrared spectroscopy. J. Agric. Food Chem., 44, 3193–6.

    Article  CAS  Google Scholar 

  • Mossoba, M. M., Yuracwecz, M. P., Roach, J. A. G. et al. (1996b) Confirmatory mass-spectral data for cyclic fatty acid monomers. J. Am. Oil Chem. Soc., 73 (10), 1317–21.

    Article  CAS  Google Scholar 

  • Nixon, J. E., Eisele, T. A., Wales, J. H. and Sinnhuber, R. O. (1974) Effect of subacute toxic levels of dietary cyclopropenoid fatty acids upon membrane function and fatty acid composition in the rat. Lipids, 9 (5), 314–21.

    Article  CAS  Google Scholar 

  • Park, S. W. and Rhee, K. C. (1988) A capillary GC determination of cyclopropenoid fatty acids in cottonseed oils. J. Food Sci., 53 (5), 1497–502.

    Article  CAS  Google Scholar 

  • Pasha, M. K. and Ahmad, F. (1992) Analysis of triacylglycerols containing cyclopropene fatty acids in Sterculia foetida (Linn.) seed lipids. J. Agric. Food Chem., 40, 626–9.

    Article  CAS  Google Scholar 

  • Pawlowski, N. E., Nixon, J. E. and Sinnhuber, R. O. (1972) Assay of cyclopropenoid lipids by nuclear magnetic resonance. J. Am. Oil Chem. Soc., 49, 387–92.

    Article  CAS  Google Scholar 

  • Poralla, K. and Koenig, W. A. (1983) The occurrence of ω-cycloheptane fatty acids in a thermoacidophilic bacillus. FEM S Microbiol. Lett., 16 (2–3), 303–6.

    CAS  Google Scholar 

  • Potteau, B. (1976) Presence of monomeric acids of cyclic structure type in the milk of the female rat fed thermopolymerized linseed oil. Ann. Nutr. Aliment., 30 (1), 89–93.

    CAS  Google Scholar 

  • Ralaimanarivo, A., Gaydou, E. M. and Bianchini, J.-P. (1982) Fatty acid composition of seed oils from six Adansonia species with particular reference to cyclopropane and cyclopropene acids. Lipids, 17 (1), 1–10.

    Article  CAS  Google Scholar 

  • Rezanka, T. and Dembitsky, V. M. (1994) Identification of unusual cyclopropane fatty acids from the deep-water lake invertebrate Acanthogammarus grewingkii. Comp. Biochem. Physiol., 109B (2/3), 407–13.

    CAS  Google Scholar 

  • Ribot, E., Grandgirard, A., Sebedio, J.-L. et al. (1992) Incorporation of cyclic fatty acid monomers in lipids of rat heart cell cultures. Lipids, 21 (1), 79–81.

    Article  Google Scholar 

  • Rojo, J. A. and Perkins, E. G. (1987) Cyclic fatty acid monomer formation in frying fats. 1. Determination and structural study. J. Am. Oil Chem. Soc., 64 (3), 414–21.

    Article  CAS  Google Scholar 

  • Rojo, J. A. and Perkins, E. G. (1989a) Chemical synthesis and spectroscopic characteristics of C18 1,2–disubstituted cyclopentyl fatty acid methyl esters. Lipids, 24 (6), 467–76.

    Article  CAS  Google Scholar 

  • Rojo, J. A. and Perkins, E. G. (1989b) Cyclic fatty acid monomer: isolation and purification with solid phase extraction. J. Am. Oil Chem. Soc., 66 (11), 1593–5.

    Article  CAS  Google Scholar 

  • Schuch, R., Ahmad, F. and Mukherjee, K. D. (1986) Composition of triacylglycerols containing cyclopropene fatty acids in seed lipids of Munguba (Bombax munguba Mart.). J. Am. Oil Chem. Soc., 63 (6), 778–83.

    Article  CAS  Google Scholar 

  • Sebedio, J.-L. (1985) Application of methoxy-bromomercuric-adduct fractionation to the study of cyclic fatty acid monomers from a heated linseed oil. Fette Seifen Anstrichm., 87 (7), 267–73.

    Article  CAS  Google Scholar 

  • Sebedio, J.-L. and De Rasilly, A. (1993) Analysis of cyclic fatty acids in fish oil concentrates, in Proceedings of the 17th Nordic Lipid Symposium, Imatra, Finland, pp. 212–16.

    Google Scholar 

  • Sebedio, J.-L. and Grandgirard, A. (1989) Cyclic fatty acids: natural sources, formation during heat treatment, synthesis and biological properties. Prog. Lipid Res., 28, 303–36.

    Article  CAS  Google Scholar 

  • Sebedio, J.-L., Prevost, J. and Grandgirard, A. (1987) Heat treatment of vegetable oils I. Isolation of the cyclic fatty acid monomers from heated sunflower and linseed oils. J. Am. Oil Chem. Soc., 64 (7), 1026–32.

    Article  CAS  Google Scholar 

  • Sebedio, J.-L., Catte, M., Boudier, M. A. et al. (1996a) Formation of fatty acid geometrical isomers and of cyclic fatty acid monomers during the finish frying of frozen prefried potatoes. Food Res. Internat., 29 (2), 109–16.

    Article  CAS  Google Scholar 

  • Sebedio, J.-L., Chardigny, J.-M., Juaneda, P. et al. (1996b) Nutritional impact and selective incorporation of cyclic fatty acid monomers in rats during reproduction, in Proceedings of the 21st World Congress of the International Society for Fat Research, The Hague, 1995, PJ Barnes & Associates, Bridgwater, pp. 307–10.

    Google Scholar 

  • Sebedio, J.-L., Kaitaranta, J., Grandgirard, A. and Malkki, Y. (1991) Quality assessment of industrial prefried french fries. J. Am. Oil Chem. Soc., 68 (5), 299–302.

    Article  CAS  Google Scholar 

  • Sebedio, J.-L., Le Quere, J.-L., Semon, E. et al. (1987) Heat treatment of vegetable oils. II. GC—MS and GC—FTIR spectra of some isolated cyclic fatty acid monomers. J. Am. Oil Chem. Soc., 64 (9), 1324–33.

    Article  CAS  Google Scholar 

  • Sebedio, J.-L., Le Quere, J.-L., Morin, O. et al. (1989) Heat treatment of vegetable oils. III. GC—MS characterization of cyclic fatty acid monomers in heated sunflower and linseed oils after total hydrogenation. J. Am. Oil Chem. Soc., 66, 704–9.

    Article  CAS  Google Scholar 

  • Sebedio, J.-L., Prevost, J., Ribot, E. and Grandgirard, A. (1994) Utilization of high-performance liquid chromatography as an enrichment step for the determination of cyclic fatty acid monomers in heated fats and biological samples. J Chromatogr., 659, 101–9.

    Article  CAS  Google Scholar 

  • Shukla, V. K. S. and Spener, F. (1985) High-performance liquid chromatography of triglycerides of Flacourtiaceae seed oils containing cyclopentenyl fatty acids (chaulmoogric oils). J. Chromatogr., 348, 441–6.

    Article  CAS  Google Scholar 

  • Spitzer, V. (1991) GC—MS characterization (chemical ionization and electron impact modes) of the methyl esters and oxazoline derivatives of cyclopropenoid fatty acids. J. Am. Oil Chem. Soc., 68 (12), 963–9.

    Article  CAS  Google Scholar 

  • Spitzer, V. (1995) The mass spectra of the 4,4-dimethyloxazoline derivatives of the methoxymethyl olefins of malvalic and sterculic acids. J. Am. Oil Chem. Soc., 12 (3), 389–90.

    Article  Google Scholar 

  • Spitzer, V., Marx, F., Maia, J. G. S. and Pfeilsticker, K. (1994) The mass spectra of the picolinyl ester derivatives of malvalic and sterculic acid. Fat Sci. Technol., 10, 395–6.

    Google Scholar 

  • Taylor, J. and Parkes, R. J. (1983) The cellular fatty acids of the sulphate-reducing bacteria, Desulfobacter sp., Desulfobulbus sp. and Desulfovibrio desulfuricans. J. Gen. Microbiol., 129, 3303–9.

    CAS  Google Scholar 

  • Tomer, K. B., Crow, F. W. and Gross, M. L. (1983) Location of double bond position in unsaturated fatty acids by negative ion MS/MS. J. Am. Chem. Soc., 105, 5487–8.

    Article  CAS  Google Scholar 

  • Tomer, K. B., Jensen, N. J. and Gross, M. L. (1986) Fast atom bombardment and tandem mass spectrometry for determining structural modification of fatty acids. Anal. Chem., 58, 2429–33.

    Article  CAS  Google Scholar 

  • Vatele, J. M., Sebedio, J.-L. and Le Quere, J.-L. (1988) Cyclic fatty acid monomers: synthesis and characterization of methyl ω-(2-alkylcyclopentyl) alkenoates and alkanoates. Chem. Phys. Lipids, 48, 119–28.

    Article  Google Scholar 

  • White, P. J. (1991) Methods for measuring changes in deep-fat frying oils. Food Technol., 45 (2), 75–80.

    CAS  Google Scholar 

  • Wood, R. (1986a) High-performance liquid chromatography analysis of cyclopropene fatty acids. Biochem. Arch., 2, 63–71.

    CAS  Google Scholar 

  • Wood, R. (1986b) Comparison of the cyclopropene fatty acid content of cottonseed varieties, glanded and glandless seeds, and various seed structures. Biochem. Arch., 2, 73–80.

    CAS  Google Scholar 

  • Zelles, L. and, Bai, Q. Y. (1994) Fatty acid patterns of phospholipids and lipopolysaccharides in environmental samples. Chemosphere, 28 (2), 391–411.

    Article  CAS  Google Scholar 

  • Zhang, J. Y., Wang, H. Y., Yu, Q. T. et al. (1989) The structures of cyclopentenyl fatty acids in the seed oils of Flacourtiaceae species by GC—MS of their 4,4–dimethyloxazoline derivatives. J. Am. Oil Chem. Soc., 66 (2), 242–6.

    Article  CAS  Google Scholar 

  • Zhang, J. Y., Yu, Q. T. and Huang, Z. H. (1987) 2-Substituted 4,4-dimethyloxazolines as useful derivatives for the localization of cyclopropane rings in long-chain fatty acids. Mass Spectros., 35 (1), 23–30.

    CAS  Google Scholar 

  • Zollner, P. and Schmid, R. (1996) Utility of nicotinoyl derivatives in structural studies of mono- and diacylglycerols by gas chromatography/mass spectrometry. J. Mass Spectrom., 31, 411–17.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Chapman & Hall

About this chapter

Cite this chapter

Dobson, G. (1998). Cyclic fatty acids: qualitative and quantitative analysis. In: Hamilton, R.J. (eds) Lipid Analysis in Oils and Fats. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1131-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1131-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8432-1

  • Online ISBN: 978-1-4613-1131-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics