Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 279))

Abstract

A striking characteristic of soluble phospholipases A2 is their tendency to become activated at a lipid-water interface.1 The activity of these enzymes is much greater with aggregated phospholipid substrates than with monomeric substrates. Furthermore, the activity is heavily influenced by the state of the aggregated lipids. Our interests in phospholipase A2 are focussed on the mechanism of the activation process and the physical basis of the role of lipid structure and/or dynamics in that process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. M. Verheij, A. J. Slotboom, and G. H. De Haas, Structure and function of phospholipase A2. Rev. Physiol. Biochem. Pharmacol. 91:91 (1981).

    PubMed  CAS  Google Scholar 

  2. M. Menashe, G. Romero, R. L. Biltonen, and D. Lichtenberg, Hydrolysis of dipalmitoylphosphatidylcholine small unilamellar vesicles by porcine pancreatic phospholipase A2, J. Biol. Chem. 261:5328 (1986).

    PubMed  CAS  Google Scholar 

  3. D. Lichtenberg, G. Romero, M. Menashe, and R. L. Biltonen, Hydrolysis of dipalmitoylphosphatidylcholine large unilamellar vesicles by porcine pancreatic phospholipase A2, J. Biol. Chem. 261:5334 (1986).

    PubMed  CAS  Google Scholar 

  4. G. Romero, K. Thompson, and R. L. Biltonen, The activation of porcine pancreatic phospholipase A2 by dipalmitoylphosphatidylcholine large unilamellar vesicles: analysis of the state of aggregation of the activated enzyme, J. Biol. Chem. 262:13476 (1987).

    PubMed  CAS  Google Scholar 

  5. W. Cho, A. G. Tomasseli, R. L. Heinrikson and F. J. Kézdy, The chemical basis for interfacial activation of monomeric phospholipases A2: autocatalytic derivatization of the enzyme by acyl transfer from substrate, J. Biol. Chem. 263:11237 (1988).

    PubMed  CAS  Google Scholar 

  6. A.G. Tomasselli, J. Hui, J. Fisher, H. Zürcher-Neely, I. M. Reardon, E. Oriaku, F. J. Kézdy, and R. L. Heinrickson, Dimerization and activation of porcine pancreatic phospholipase A2 via substrate level acylation of lysine 56, J. Biol. Chem. 264:10041 (1989).

    PubMed  CAS  Google Scholar 

  7. J. D. Bell, and R. L. Biltonen, The temporal sequence of events in the activation of phospholipase A2 by lipid vesicles: studies with the monomeric enzyme from Agkistrodon piscivorus piscivorus, J. Biol. Chem. 264:12194 (1989).

    PubMed  CAS  Google Scholar 

  8. M. C. E. van Dam-Mieras, A. J. Slotboom, W. A. Pieterson, and G. H. de Haas, The interaction of phospholipase A2 with micellar interfaces. The role of the N-terminal region, Biochemistry 14:5387 (1975).

    Article  PubMed  Google Scholar 

  9. M. K. Jain, J. Rogers, J. F. Marecek, F. Ramirez, and H. Eibl, Effect of the structure of phospholipid on the kinetics of intravesicle scooting of phospholipase A2, Biochim Biophys. Acta 860:462 (1986).

    Article  PubMed  CAS  Google Scholar 

  10. J. D. Bell, and R. L. Biltonen, Thermodynamic and kinet ic studies of the interaction of vesicular dipalmitoylphosphatidylcholine with Agkistrodon piscivorus piscivorus phospholipase A2, J. Biol. Chem. 264:225 (1989).

    PubMed  CAS  Google Scholar 

  11. F. G. Prendergast, R. P. Haugland, and P. J. Callahan, l-[4-(Trimethylamino)phenyl]-6-phenylhexa-1, 3, 5 –triene: synthesis, fluorescence properties, and use as a fluorescence probe of lipid bilayers, Biochemistry 20:7333 (1981).

    Article  PubMed  CAS  Google Scholar 

  12. M. K. Jain, B.-Z. Yu, A. Kozubek, Binding of phospholipase A2 to zwitterionic bilayers is promoted by lateral segregation of anionic amphiphiles, Biochim Biophys. Acta 980:23 (1989).

    Article  PubMed  CAS  Google Scholar 

  13. N. Gheriani-Gruszka, S. Almog, R. L. Biltonen, and D. Lichtenberg, Hydrolysis of phosphatidylcholine in phosphatidylcholine-cholate mixtures by porcine pancreatic phospholipase A2, J. Biol. Chem. 263:11808 (1988).

    PubMed  CAS  Google Scholar 

  14. B.A. Cunningham, T. Tsujita, and H.L. Brockman, Enzymatic and physical characterization of diacylglycerol—phosphatidylcholine interactions in bilayers and monolayers, Biochemistry 28:32 (1989).

    Article  PubMed  CAS  Google Scholar 

  15. T. Thuren, A.-P. Tulkki, J. A. Virtanen, and P. K. J. Kinnunen, Triggering of the activity of phospholipase A2 by an electric field, Biochemistry 26:4907 (1987).

    Article  PubMed  CAS  Google Scholar 

  16. J. M. Ziman in Models of Disorder, pp. 370–379, Cambridge University Press, Cambridge (1979).

    Google Scholar 

  17. J. C. Owicki, and H. M. McConnell, Lateral diffusion in inhomogeneous membranes: model membranes containing cholesterol, Biophys. J 30:383 (1980).

    Article  PubMed  CAS  Google Scholar 

  18. B. Snyder, and E. Freire, Compositional domain structure in phosphatidylcholine-cholesterol and sphingomyelin-cholesterol bilayers, Proc. Natl. Acad. Sci. U.S.A. 77:4055 (1980).

    Article  PubMed  CAS  Google Scholar 

  19. M. K. Jain, and 0. G. Berg, The kinetics of interfacial catalysis by phospholipase A2 and regulation of interfacial activation: hopping versus scooting, Biochim Biophys. Acta 1002:127 (1989).

    PubMed  CAS  Google Scholar 

  20. A. Achari, D. Scott, P. Barlow, J. C. Vidal, Z. Otwinowski, S. Brunie, and P. B. Sigler, Facing up to membranes: structure/function relationships in phospholipases, Cold Spring Harbor Symposia on Quantitative Biology 52:441 (1987).

    PubMed  CAS  Google Scholar 

  21. M. F. Roberts, R. A. Deems, and E. A. Dennis, Dual role of interfacial phospholipid in phospholipase A2 catalysis, Proc. Natl. Acad. Sci. U.S.A. 74:1950 (1977).

    Article  PubMed  CAS  Google Scholar 

  22. D. 0. Tinker, and J. Wei, Heterogeneous catalysis by phosphlipase A2: formulation of a kinetic description of surface effects, J. BioChem. 57:97 (1979).

    CAS  Google Scholar 

  23. J. P. Kupferberg, S. Yokoyama, and F. J. Kézdy, The kinetics of the phospholipase A2-catalyzed hydrolysis of egg phosphatidylcholine in unilamelllar vesicles: product inhibition and its relief by serum albumin, J. Biol. Chem. 256:6274 (1981).

    PubMed  CAS  Google Scholar 

  24. M. F. Crouch, and E. G. Lapetina, No direct correlation between Ca2+ mobilization and dissociation of during platelet phospholipase A2 activation, Biochem Biophys. Res. Commun. 153:21 (1988).

    Article  PubMed  CAS  Google Scholar 

  25. R. Bicknell and B. L. Vallee, Angiogenin stimulates endothelial cell prostacyclin secretion by activation of phospholipase A2, Proc. Natl. Acad. Sci. U.S.A. 86:1573 (1989).

    Article  PubMed  CAS  Google Scholar 

  26. J. H. Gronich, J. V. Bonventre, and R. A. Nemenofff, Identification and characterization of a hormonally regulated form of phospholipase A2 in rat renal mesangial cells, J. Biol. Chem. 263:16645 (1988).

    PubMed  CAS  Google Scholar 

  27. J. D. Sweatt, T. M. Connolly, E. J. Cragoe, and L. E. Limbird, Evidence that Na+/H+ exchange regulates receptor—mediated phospholipase A2 activation in human platelets, J. Biol. Chem. 261:8667 (1986).

    PubMed  CAS  Google Scholar 

  28. T. Nakano, K. Hanasaki, and H. Arita, Possible involvement of cytoskeleton in collagen-stimulated activation of phospholipases in human platelets, J. Biol. Chem. 264:5400 (1989).

    PubMed  CAS  Google Scholar 

  29. C C. Leslie, D. R. Voelker, J. Y. Channon, M. M. Wall, and P. T. Zelarney, Properties and purfication of an arachidonoyl-hydrolyzing phospholipase A2 from a macrophage cell line, RAW 264.7, Biochim Biophys. Acta 963:476 (1988).

    PubMed  CAS  Google Scholar 

  30. D.K. Kim, I. Kudo, and K. Inoue, Detection in human platelets of phospholipase A2 activity which preferentially hydrolyzes an arachidonoyl residue, J. BioChem. 104:492 (1988).

    PubMed  CAS  Google Scholar 

  31. R. A. Wolf and R. W. Gross, Identification of neutral active phospholipase C which hydrolyzes choline glycerophospholipids and plasmalogen selective phospholipase A2 in canine myocardium, J. Biol. Chem. 260:7295 (1985).

    PubMed  CAS  Google Scholar 

  32. J. Balsinde, E. Diez, A. Schüller, and F. Mollinedo, Phospholipase A2 activity in resting and activated human neutrophils: substrate specificity, pH dependence, and subcellular localization, J. Biol. Chem. 263:1929 (1988).

    PubMed  CAS  Google Scholar 

  33. J. Axelrod, R. M. Burch, and C. L. Jelsema, Receptor-mediated activation of phospholipase A2 via GTP-binding proteins: arachidonic acid and its metabolites as second messengers, Trends in Neurosciences 11:117 (1988).

    Article  PubMed  CAS  Google Scholar 

  34. A. G. Gilman, G-Proteins: transducers of receptor-generated signals Trends in Neurosciences. 56:615 (1987).

    Article  PubMed  CAS  Google Scholar 

  35. R. Kannagi, K. Koizumi, Effect of different physical states of phospholipid substrates on partially purified platelet phospholipae A2 activity, Biochim Biophys. Acta 556:423 (1979).

    Article  PubMed  CAS  Google Scholar 

  36. D. H. Petkova, A. B. Monchilova-Pankova, and K. S. Koumanov, Effect of liver plasma membrane fluidity on endogenous phospholipase A2 activity, Biochimie 69:1251 (1987).

    Article  PubMed  CAS  Google Scholar 

  37. R. J. Ulevitch, Y. Watanabe, M. Sano, M. D. Lister, R. A. Deems, and E. A. Dennis, Solubilization, purification, and characterization of a membrane-bound phospholipase A2 from the P388D-L macrophage-like cell line, J. Biol. Chem. 263:3079 (1988).

    PubMed  CAS  Google Scholar 

  38. R. M. C. Dawson, R. F. Irvine, J. Bray, and P. J. Quinn, Long-chain diacylglycerols cause a perturbation in the structure of phospholipid bilayers rendering them susceptible to phospholipase attack, Biochem Biophys. Res. Commun. 125:836 (1984).

    Article  PubMed  CAS  Google Scholar 

  39. R. M. Kramer, G. C. Checani, and D. Deykin, Stimulation of Ca2+-activated human platelet phospholipase A2 by diacylglycerol, Biochem. J. 248:779 (1987).

    PubMed  CAS  Google Scholar 

  40. M. M. Billah and M. I. Siegel, Phospholipase A2 activation in chemotactic peptide—stimulated HL60 granulocytes: synergism between diacylglycerol and Ca2+in a protein kinase C-independent mechanism, Biochem Biophys. Res. Commun. 144:683 (1987).

    Article  PubMed  CAS  Google Scholar 

  41. M. A. Clark, T. M. Conway, R. G. L. Shorr, and S. T. Crooke, Identification and isolation of a mammalian protein which is antigenically and functionally related to the phospholipase A2 stimulatory peptide melittin, J. Biol. Chem.262:4402 (1987).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Biltonen, R.L., Heimburg, T.R., Lathrop, B.K., Bell, J.D. (1990). Molecular Aspects of Phospholipase A2 Activation. In: Mukherjee, A.B. (eds) Biochemistry, Molecular Biology, and Physiology of Phospholipase A2 and Its Regulatory Factors. Advances in Experimental Medicine and Biology, vol 279. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0651-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0651-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7910-5

  • Online ISBN: 978-1-4613-0651-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics