Skip to main content

Interactions of Superoxide Dismutases with Nitric Oxide

  • Chapter
Vascular Endothelium

Part of the book series: NATO ASI Series ((NSSA,volume 281))

  • 99 Accesses

Abstract

Superoxide (O2 ) is an important component of a variety of vascular inflammatory disorders including reperfusion injuries, hemorrhagic shock, oxygen toxicities, infections, neoplasia and apoptosis. Extracellular superoxide dismutase (EC-SOD) has been found in the extracellular spaces and fluids where it is thought to defend against O2 produced by inflammatory cells. Nitric oxide (NO) is also produced during inflammatory reactions and has some anti-inflammatory properties. In the extracellular spaces the primary species that will react with NO is O2 . The product of this reaction is peroxynitrite which is a strong proinflammatory mediator. Therefore, to control inflammation, the reaction of O2 with NO must be prevented. High EC-SOD levels in the extracellular spaces may act to preserve NO and thus create strong anti-inflammatory microenvironments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barry, B.E. and Crapo, J.D., 1991, Patterns of accumulation of platelets and neutrophils in rat lungs during exposure to 100% and 85% oxygen. Am. Rev. Respir. Dis. 132: 548–555.

    Google Scholar 

  • Beckman, J.S., 1991, The double-edged role of nitric oxide in brain function and superoxide-mediated injury. J. Dev. Phys. 15: 53–59.

    Google Scholar 

  • Borel, J. P. and Monboisse, J. C, 1985, Collagenolysis. In: CRC Handbook of Methods for Oxygen Research, pp 407–412.

    Google Scholar 

  • Blough, N.V. and ZaFlriou, O.C., 1985, Reaction of superoxide with nitric oxide to form peroxynitrite in alkaline aqueous solution. Inorg. Chem. 24: 3502–3504.

    Google Scholar 

  • Bredt, D.S. and Snyder, S.H., 1990, Isolation of nitric oxide synthase, a calmodulin requiring enzyme. Proc.Natl Acad. Sci. USA 87: 682–685.

    Google Scholar 

  • Burkhardt, H., Hartmann, F. and Schwingel, M.L., 1986, Activation of latent collagenase from polymorphonuclear leukocytes by oxygen radicals. Enzyme 36: 221–231.

    PubMed  CAS  Google Scholar 

  • Clancy, R.M., Leszczynska-Piziak, J. and Abramson, S.B., 1992, Nitric oxide, an endothelial cell relaxation factor, inhibits neutrophil superoxide anion production via a direct action on the NADPH oxidase. J. Clin. Invest. 90: 1116–1121.

    Google Scholar 

  • Cohen, G. and Cederbaum, A., 1979, The production of hydroxyl radicals by rat liver microsomes. Science 204: 66–68.

    Article  PubMed  CAS  Google Scholar 

  • Forman, H.J. and Fridovich, I., 1973, Superoxide dismutase: A comparison of rate constraints. Arch. Biochem. Biophys. 396–400.

    Google Scholar 

  • Fostermann, U., Schmidt, H.H., Pollock, H.H.H.W., Sheng, J.S., Mitchell, H., Warner, J.A., Nakane, T.D., and Murad, F., 1991, Isoforms of nitric oxide synthase: Characterization and purification from different cell types. Biochem. Pharmacol. 42: 1849–1857.

    Google Scholar 

  • Freeman, B.A. and Crapo, J.D., 1982, Biology of disease: free radicals and tissue injury. Lab. Invest. 47: 412–426.

    Google Scholar 

  • Greenwald, R.A. and Moy, W.W., 1979, Inhibition of collagen gelation by action of the superoxide radical. Arthritis Rheum. 22: 251–359.

    Article  PubMed  CAS  Google Scholar 

  • Gryglewski, R.J., Palmer, R.M.J. and Moncada, S., 1986, Superoxide anion is involved in the breakdown of endothelium–derived relaxing factors. Nature 320: 454–456.

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez, H.H., Pitt, B.R., Brookens, M., Watkins, S., Lowenstein, V., Caniggia, I., Chumley, P. and Freeman, B.A., submitted 1993, Pulmonary alveolar epithelial inducible nitric oxide synthase gene expression: regulation by inflammatory mediators.

    Google Scholar 

  • Halliwell, B. and Gutteridge, J.M.C., 1990, The antioxidants of human extracellular fluids. Arch. Biochem. & Biophys. 280: 1–8.

    Google Scholar 

  • Huie, R.E. and Padmaja, S., 1993, The reaction of NO with superoxide. Free Rad. Res. Commun. 18: 195–199.

    Google Scholar 

  • Kubes, P. and Granger, D.N., 1992, Nitric oxide modulates microvascular permeability. Am. J. Physiol. 262: H611–H615.

    PubMed  CAS  Google Scholar 

  • Kubes, P., Suzuki, M. and Granger, D.N., 1991, Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc. Natl. Sci. USA 88: 4651–4655.

    Google Scholar 

  • Marklund, S.L., 1984a, Properties of extracellular superoxide dismutase from human lung. Biochem. J220:269– 272.

    Google Scholar 

  • Marklund, S.L., 1984b, Extracellular superoxide dismutase and other superoxide dismutase isoenzymes in tissues from nine mammalian species. Biochem. J. 222: 649–655.

    Google Scholar 

  • Marklund, S. and Karlsson, K., 1990, Extracellular superoxide dismutase, distribution in the body and therapeutic applications. In: Antioxidants in Therapy and Preventive Medicine, Emerit et al. (eds), Plenum Press, New York pp 1–4.

    Google Scholar 

  • Marklund, S.L., 1984, Extracellular superoxide dismutase in human tissues and human cell lines. J. Clin. Invest. 74: 1398–1403.

    Google Scholar 

  • Marklund, S.L., 1982, Human copper-containing superoxide dismutase of high molecular weight. Proc. Natl. Acad. Sci. USA 79: 7634–7638.

    Google Scholar 

  • Martin, W.J., 1984, Neutrophils kill pulmonary endothelial cells by a hydrogen peroxide-dependent pathway: An in vivo model of neutrophil-mediated lung injury. Am. Rev. Respir. Dis. 130: 209–213.

    Google Scholar 

  • McCord, J.M. and Fridovich, I., 1969, SOD: an enzymatic function for erythrocuprein chemocuprein. J. Biol. Chem. 244: 6049–6055.

    Google Scholar 

  • McCord, J.M., Boyle, J.A., Day Jr, E.D., Rizzolo, L.J. and Salin, M.L., 1977, A managanese-containing superoxide dismutase from human liver. In: Superoxide and Superoxide Dismutase, (A.M. Mitchelson, J.M. McCord and I. Fridovich, eds ), 129–138.

    Google Scholar 

  • Monboisse, J-C, Gardes-Albert, M., Randoux, A., Borel, J-P and Ferradini, C., 1988, Collagen degradation by superoxide anion in pulse and gamma radiolysis. Biochim. Biophys. Acta 965: 29–35.

    Google Scholar 

  • Oury, T.D., Chang, L, Marklund, S.L., Day, B.J. and Crapo, J.D., 1994, Immunocytochemical localization of extracellular superoxide dismutase in human lung. Lab Invest (in press).

    Google Scholar 

  • Oury, T.D., Ho, Y.S. Piantadosi, C.A., and Crapo, J.D., 1992, Extracellular superoxide dismutase, nitric oxide and central nervous system 02 toxicity. Proc. Natl. Acad. Sci. USA 89: 9715–9719.

    Google Scholar 

  • Oury, T.D., Piantadosi, C.A. and Crapo, J.D., 1993, Cold-induced brain edema in mice: Involvement of extracellular superoxide dismutase and nitric oxide. J. Biol. Chem., (in press).

    Google Scholar 

  • Pufahl, R.A., Nanjappan, P.G., Woodard, R.W. and MA Marietta, M.A., 1992, Mechanistic probes of N-hydroxylation of L-arginine by the inducible nitric oxide synthase from murine macrophages. Biochem. 31: 6822–6828.

    Article  CAS  Google Scholar 

  • Radi, R., Beckman, J.S. and Freeman, B.A., 1991, Peroxynitrite oxidation of sulfhydryls: the cytotoxic potential of endothelial–derived superoxide and nitric oxide. J. Biol. Chem. 266: 4244–4250.

    Google Scholar 

  • Radi, R, Beckman, J.S., Buch, K.M. and Freeman, B.A., 1991, Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch. Biochem. Biphys. 288: 481–487.

    Google Scholar 

  • Radomski, M.N., RMJ Palmer, R.M.J. and Moncada, S., 1990, Glucocorticoids inhibit the expression of an inducible, but not the constitutive, nitric oxide synthase in vascular endothelial cells. Proc. Natl. Acad. Sci. USA 37: 10043–10047.

    Google Scholar 

  • Sandström, J., Karlsson, K., Edlund, A. and Marklund, S.L., 1992, The heparin-binding domain of extracellular superoxide dismutase C and formation of variants with reduced affinity. J. Biol. Chem. 267: 18205–18209.

    Google Scholar 

  • Sandström, J, Karlsson, K., Edlund, A., and Marklund, S.L., 1993, Proteolytic modification of heparin-binding affinity of extracellular superoxide dismutase. Biochem. J. 290: 623–626.

    Google Scholar 

  • Sorsa, T., Saari, H., Konttinen, Y.T., Suomalainen, K., Lindy, S. and Uitto, V-J., 1989, Non-proteolytic activation of latent human neutrophil collagenase and its role in matrix destruction in periodontal diseases. Inter. J. Tissue React. 11: 153–159.

    Google Scholar 

  • Toda, N. and Okamura, T., 1992, Regulation of nitroxidergic nerves of arterial tone. News Physiol. Sci. 1: 148–152.

    Google Scholar 

  • Turrens, J.F., Freeman, B.A., Levitt, J.G. and Crapo, J.D., 1982, The effect of hyperoxia on superoxide production by lung submitochondrial particles. Arch. Biochem. Biophys. 217: 401–410.

    Google Scholar 

  • Turrens, J.R., Freeman, B.A. and Crapo, J.D., 1982, Hyperoxia increases H202 release by lung mitochondria and microsomes. Arch. Biochem. Biophys. 271: 411–421.

    Google Scholar 

  • White, K.A. and Marietta, M.A., 1992, Nitric oxide synthase is a P–450 type hemoprotein. Biochemistry 31: 6627–6631.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Day, B., Oury, T., Crapo, J.D. (1996). Interactions of Superoxide Dismutases with Nitric Oxide. In: Catravas, J.D., Callow, A.D., Ryan, U.S. (eds) Vascular Endothelium. NATO ASI Series, vol 281. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0355-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0355-8_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8013-9

  • Online ISBN: 978-1-4613-0355-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics