Skip to main content

The Influence of Macropores on the Transport of Dissolved and Suspended Matter Through Soil

  • Conference paper
Book cover Advances in Soil Science

Part of the book series: Advances in Soil Science ((SOIL,volume 3))

Abstract

This article is concerned with the predominantly vertical movement of water through soils that to some degree have a network of large channels (macropores) and the consequences of this movement for the convective transport of solutes and suspended matter. Beven and Germann (1982) have reviewed the experimental evidence indicating that infiltration and redistribution of water in soils containing macropores are not adequately described by theories that treat the soil as a homogeneous medium conforming to Darcian principles of water flow. Such theories, developed for the mixing of solutions in hallow tubes (Taylor, 1953) and porous rock strata (Brigham et al., 1961), have been applied to miscible displacement experiments with columns of sand, resins, glass beads, or finely sieved and repacked soil. The underlying assumptions are that an unreactive solute moves through the medium at the same velocity as the water and all the analysis and interpretation of these experiments have been reviewed several times (Gardner, 1965; Biggar and Nielsen, 1967; Biggar and Nielsen, 1980; Wagenet, 1983) and will not be repeated here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, I., C.A. Parker, and I.D. Sills. 1979. Changes in the abundance of large soil animals and physical properties of soils following cultivation. Austr. J. Soil Res.17: 343 – 353.

    Article  Google Scholar 

  • Addiscott, T.M. 1977. A simple computer model for leaching in structured soils. J. Soil Sci.28: 554 – 563.

    Article  Google Scholar 

  • Addiscott, T.M. 1984. Modelling the interaction between solute leaching and intraped diffusion in clay soils. In: J. Bouma and P.A.C. Raats (eds.), Water and solute movement in heavy clay soils, ILRI Publ. No. 37, Wageningen pp. 279 – 292.

    Google Scholar 

  • Addiscott, T.M., and D. Cox. 1976. Winter leaching of nitrate from autumn-applied calcium nitrate, ammonium sulphate, urea and sulphur-coated urea in bare soil. J. Agr. Sci., Camb. 87: 381 – 389.

    Article  Google Scholar 

  • Addiscott, T.M., D.A. Rose, and J. Bolton. 1978. Chloride leaching in the Rothamsted drain gauges: influence of rainfall pattern and soil structure. J. Soil Sci.29: 305 – 314.

    Article  Google Scholar 

  • Anderson, J.L., and J. Bouma. 1973. Relationships between saturated hydraulic conductivity and morphometric data of an argillic horizon. Soil Sci. Soc. Am. Proc. 37: 408 – 413.

    Article  Google Scholar 

  • Aubertin, G.M. 1971. The nature and extent of macropores in forest soils and their influence on subsurface water movement. USDA For. Serv. Res. Paper NE-192. Barraclough, D., M. J. Hyden, and G.P. Davies. 1983. Fate of fertilizer nitrogen applied to grassland. I. Field leaching results. J. Soil Sci. 34: 483 – 497.

    Google Scholar 

  • Beven, K., and P. Germann. 1981. Water flow in soil macropores. II. A combined flow model. J. Soil Sci. 32: 15 – 30.

    Article  Google Scholar 

  • Beven, K., and P. Germann. 1982. Macropores and water flow in soils. Water Resour. Res. 18: 1311 – 1325.

    Google Scholar 

  • Biggar, J.W., and D.R. Nielsen. 1962. Miscible displacement. II. Behaviour of tracers. Soil Sci. Soc. Am. Proc. 26: 125 – 128.

    Article  Google Scholar 

  • Biggar, J.W., and D.R. Nielsen. 1967. Miscible displacement and leaching phenomena. In: R.M. Hagan, H. R. Haise, and T.W. Edminster (eds.), Irrigation of agricultural lands. Agron. Monog. No. 11. American Society of Agronomy, Madison. pp. 254 – 274.

    Google Scholar 

  • Biggar, J.W., and D.R. Nielsen. 1976. Spatial variability of the leaching characteristics of a field soil. Water Resour. Res.12: 78 – 84.

    Article  Google Scholar 

  • Biggar, J.W., and D.R. Nielsen. 1980. Mechanisms of chemical movement in soils. In: A. Banin and U. Kafkafi (eds.), Agrochemicals in soils. Pergamon, Oxford. pp. 213 – 227.

    Google Scholar 

  • Birch, H.F. 1958. The effect of soil drying on humus decomposition and nitrogen availability. Plant Soil 10: 9 – 31.

    Article  Google Scholar 

  • Blackmore, A.V. 1976. Salt sieving within clay soil aggregates. Austr. J. Soil Res.14: 149 – 158.

    Article  Google Scholar 

  • Blake, G., E. Schlichting, and U. Zimmerman. 1973. Water recharge in a soil with shrinkage cracks. Soil Sci. Soc. Am. J.37: 669 – 672.

    Article  Google Scholar 

  • Bouma, J. 1981. Soil morphology and preferential flow along macropores. Agr. Water Manage. 3: 235 – 250.

    Article  Google Scholar 

  • Bouma, J., and J.L. Anderson. 1977. Water and chloride movement through soil columns simulating pedal soils. Soil Sci. Soc. Am. J.41: 766 – 770.

    Article  Google Scholar 

  • Bouma, J., and L.W. Dekker. 1978. A case study on infiltration into dry clay soil. I. Morphological observations. Geoderma20: 27 – 40.

    Article  Google Scholar 

  • Bouma, J., and J.H.M. Wosten. 1979. Flow patterns during extended saturated flow in two undisturbed swelling clay soils with different macrostructures. Soil Sci. Soc. Am. J.43: 16 – 22.

    Google Scholar 

  • Bouma, J., J.W. Dekker, and C.J. Muilwijk. 1981. A field method for measuring short-circuiting in clay soils. J. Hydrol. 52: 347 – 354.

    Article  Google Scholar 

  • Bouma, J., C. Belmans, L.W. Dekker, and W.J.M. Jeurissen. 1983. Assessing the suitability of soils with macropores for subsurface liquid waste disposal. J. Environ. Qual.12: 305 – 10.

    Article  Google Scholar 

  • Bresler, E., and G. Dagan. 1979. Solute dispersion in unsaturated heterogeneous soil at field scale. II. Applications. Soil Sci. Soc. Am. J. 43: 467 – 472.

    Article  Google Scholar 

  • Brewer, R. 1964. Fabric and mineral analysis of soils. John Wiley and Sons, New York.

    Google Scholar 

  • Brigham, W.E., P.W. Reed, and J.N. Dew. 1961. Experiments on mixing during miscible displacement in porous media. Soc. of Petrol. Eng. J. 1: 1 – 8.

    Google Scholar 

  • Bullock, P., and A.J. Thomasson. 1979. Rothamsted studies of soil structure. II. Measurement and characterization of macroporosity by image analysis and comparison with data from water retention measurements. J. Soil Sci. 30: 391 – 414.

    Article  Google Scholar 

  • Burns, I.G. 1974. A model for predicting the redistribution of salts applied to fallow soils after excess rainfall or evaporation. J. Soil Sci. 25: 165 – 178.

    Article  Google Scholar 

  • Cameron, K.C., and A. Wild. 1982a. Comparative rates of leaching of chloride, nitrate and tritiated water under field conditions. J. Soil Sci. 33: 649 – 657.

    Article  Google Scholar 

  • Cameron, K.C., and A. Wild. 1982b. Prediction of solute leaching under field conditions: an appraisal of three methods. J. Soil Sci. 33: 659 – 669.

    Article  Google Scholar 

  • Cassel, D.K., M.T. van Genuchten, and P.J. Wierenga. 1975. Predicting anion movement in disturbed and undisturbed soils. Soil Sci. Soc. Am. Proc. 39: 1015 – 1019.

    Article  Google Scholar 

  • Cassel, D.K., T.H. Kruegar, F.W. Schroer, and E.B. Norum. 1974. Solute movement through disturbed and undisturbed soil cores. Soil Sci. Soc. Am. Proc.38: 36 – 40.

    Article  Google Scholar 

  • Childs, E.C. 1969. An introduction to the physical basis of soil water phenomena. John Wiley and Sons, New York.

    Google Scholar 

  • Cunningham, RK., and G.W. Cooke. 1958. Soil nitrogen. II. Changes in levels of inorganic nitrogen in a clay loam soil caused by fertilizer application, by leaching and uptake by grass. J. Sci. Food Agr.9: 317 – 324.

    Article  Google Scholar 

  • Darrah, P.R., P.H. Nye, and R.E. White. 1983. Diffusion of NH4+ and N03 mineralized from organic N in soil. J. Soil Sci. 34: 69 – 707.

    Article  Google Scholar 

  • Davidson, J.M., P.S.C. Rao and P. Nkedi-kizza. 1983. Physical processes influencing water and solute transport in soils. In: D.W. Nelson, D.E. Elrick and K.K. Tanji (eds.) Chemical mobility and reactivity in soil systems. SSSA Spec. Publ. No. 11, pp 35 – 47.

    Google Scholar 

  • Dixon, R.M., and D.R. Linden. 1972. Soil air pressure and water infiltration under border irrigation. Soil Sci. Soc. Am. Proc. 36: 948 – 953.

    Google Scholar 

  • Ehlers, W. 1975. Observations on earthworm channels and infiltration on tilled and untilled loess soils. Soil Sci. 119: 242 – 249.

    Article  Google Scholar 

  • Elprince, A.M., and P.R. Day. 1977. Fitting solute breakthrough equations to data using two adjustable parameters. Soil Sci. Soc. Am. J.41: 39 – 41.

    Google Scholar 

  • Foster, I.D.L., and D.E. Walling. 1978. The effects of the 1976 drought and autumn rainfall on stream solute levels. Earth Surf. Process.3: 393 – 406.

    Article  Google Scholar 

  • Gardner, W.R. 1965. Movement of nitrogen in soil. In: W.V. Bartholomew and F.E. Clark (eds.), Soil nitrogenAm. Soc. Agron. Monogr. No. 10, American Society of Agronomy, Madison. pp. 550 – 572.

    Google Scholar 

  • Garwood, E.A., and K.C. Tyson. 1977. High loss of nitrogen in drainage from soil under grass following a prolonged period of low rainfall. J. Agr. Sci., Camb.89: 767 – 768.

    Article  Google Scholar 

  • Gaudet, J.P., H. Jegat, G. Vachaud, and P.J. Wierenga. 1977. Solute transfer, with exchange between mobile and stagnant water, through unsaturated sand. Soil Sci. Soc. Am. J. 41: 665 – 671.

    Google Scholar 

  • Germann, P., and K. Beven. 1981. Water flow in soil macropores. I. An experimental approach. J. Soil Sci. 32: 1 – 13.

    Article  Google Scholar 

  • Godwin, R.J., G. Spoor, and P. Leeds-Harrison. 1981. An experimental investigation into the force mechanics and resulting soil disturbance of mole ploughs. J. Agr. Eng. Res.26: 477 – 497.

    Article  Google Scholar 

  • Green, R.D., and G.P. Askew. 1965. Observations on the biological development of macropores in soils of Romney Marsh. J. Soil Sci.16: 342 – 349.

    Article  Google Scholar 

  • Hagedorn, C., E.L. McCoy, and T.M. Rahe. 1981. The potential for ground-water contamination from septic effluents. J. Environ. Qual.10: 1 – 8.

    Article  Google Scholar 

  • Hall, D.G.M., M.J. Reeve, A.J. Thomasson, and V.F. Wright. 1977. Water retention, porosity and density of field soils. S.S.E. W. Tech. Monogr. No.9, Harpenden.

    Google Scholar 

  • Hargreaves, L. 1983. The sources and sinks of inorganic phosphorus in a stream flowing from a calcareous soil. DPhil. thesis, University of Oxford.

    Google Scholar 

  • Hewitt, J.S., and A.R. Dexter. 1980. Effects of tillage and stubble management on the structure of a swelling soil. J. Soil Sci.31: 203 – 215.

    Article  Google Scholar 

  • Hoogmoed, W.B., and J. Bouma. 1980. A simulation model for predicting infiltration into cracked clay soil. Soil Sci. Soc. Am. J.44: 458 – 461.

    Article  Google Scholar 

  • Jensen, J.R. 1983. Chloride dispersion in packed columns during saturated steady flow. J. Soil Sci.34: 249 – 262.

    Article  Google Scholar 

  • Jury, W.A. 1982. Simulation of solute transport using a transfer function model. Water Resour. Res.18: 363 – 368.

    Article  Google Scholar 

  • Jury, W.A. 1983. Chemical transport modelling: current approaches and unresolved problems in: D.W. Nelson, D.E. Elrick and K.K. Tanji (eds.) Chemical mobility and reactivity in soil systems. SSSA Spec. Publ. No. 11, pp. 49–64.

    Google Scholar 

  • Jury, W.A., L.H. Stolzy, and P. Shouse. 1982. A field test of the transfer function model for predicting solute transport. Water Resour. Res.18: 369 – 375.

    Article  Google Scholar 

  • Kanchanasut, P., D.R. Scotter, and R.W. Tillman. 1978. Preferential solute movement through larger soil voids. II. Experiments with saturated soil. Austr. J. Soil Res.16: 269 – 276.

    Article  Google Scholar 

  • Kissel, D.E., J.T. Ritchie, and E. Burnett. 1973. Chloride movement in undisturbed clay soil. Soil Sci. Soc. Am. Proc.37: 21 – 24.

    Article  Google Scholar 

  • Kneale, W.R, and RE. White. 1984. The movement of water through cores of dry (cracked) clay loam grassland topsoil. J. Hydrol. 67: 361 – 365.

    Article  Google Scholar 

  • Lawes, J.B., J.H. Gilbert, and R Warington. 1882. On the amount and composition of the rain and drainage waters collected at Rothamsted. William Clowes and Sons, London.

    Google Scholar 

  • Leeds-Harrison, P., G. Spoor, and R.J. Godwin. 1982. Water flow to mole drains. J. Agr. Eng. Res.27: 81 – 91.

    Article  Google Scholar 

  • Letey, J., J.W. Blair, D. Devitt, L.J. Lund, and P. Nash. 1977. Nitrate-nitrogen in effluent from agricultural tile drains in California. Hilgardia45: 289 – 319.

    Google Scholar 

  • Macduff, J.H., and R.E. White. 1984. Components of the nitrogen cycle measured for cropped and grassland soil-plant systems. Plant Soil76: 35 – 47.

    Article  Google Scholar 

  • McIntyre, D.S., J. Loveday, and C.L. Watson. 1982a. Field studies of water and salt movement in an irrigated swelling clay soil. I. Infiltration during ponding. Austr. J. Soil Res.20: 81 – 90.

    Article  Google Scholar 

  • McIntyre, D.S., J. Loveday, and C.L. Watson. 1982b. Field studies of water and salt movement in an irrigated swelling clay soil. III. Salt movement during ponding. Austr. J. Soil Res.20: 101 – 105.

    Article  Google Scholar 

  • McMahon, M.A., and G.W. Thomas. 1974. Chloride and tritiated water flow in disturbed and undisturbed soil cores. Soil Sci. Soc. Am. Proc.38: 727 – 732.

    Article  Google Scholar 

  • Mansell, R.S., H.M. Selim, P. Kanchanasut, J.M. Davidson, and J.G.A. Fiskell. 1977. Experimental and simulated transport of phosphorus through sandy soils. Water Resour. Res.13: 189 – 194.

    Article  Google Scholar 

  • Martin, R.P., and R.E. White. 1982. Automatic sampling of stream water during storm events in small remote catchments. Earth Surf. Proc. and Land.7: 5361.

    Google Scholar 

  • Miller, R.J., D.R. Neelson, and J.W. Biggar. 1965. Chloride displacement in Panoche clay loam in relation to water movement and distribution. Water Resour. Res.1: 63 – 73.

    Article  Google Scholar 

  • Nielsen, D.R, J.W. Biggar, and P.J. Wierenga. 1982. Nitrogen transport processes in soil. In: F.J. Stevenson (ed.), Nitrogen in agricultural soils. Am. Soc. Agron. Monogr. No. 22. AmericanSociety of Agronomy, Madison. pp. 423 – 448.

    Google Scholar 

  • Omoti, U., and A. Wild. 1979. Use of fluorescent dyes to mark the pathways of solute movement through soils under leaching conditions. 2. Field experiments. Soil Sci. 128: 93 – 104.

    Google Scholar 

  • Passioura, J.B. 1971. Hydrodynamic dispersion in aggregated media. I. Theory. Soil Sci. 111: 339 – 344.

    Article  Google Scholar 

  • Passioura, J.B., and D.A. Rose. 1971. Hydrodynamic dispersion in aggregated media. 2. Effects of velocity and aggregate size. Soil Sci. 111: 345 – 351.

    Article  Google Scholar 

  • Quisenberry, V.L., and RE. Phillips. 1976. Percolation of surface-applied water in the field. Soil Sci. Soc. Am. J.40: 484 – 489.

    Google Scholar 

  • Quisenberry, V.L., and RE. Phillips. 1978. Displacement of soil water by simulated rainfall. Soil Sci. Soc. Am. J.42: 675 – 679.

    Google Scholar 

  • Raats, P.A.C. 1978. Convective transport of solutes by steady flows. I. General theory. Agr. Water Manage.1: 201 – 218.

    Article  Google Scholar 

  • Rahe, T.H., C. Hagedorn, E.L. McCoy, and G.F. Kling. 1978. Transport of antibiotic resistant Escherichia colithrough a western Oregon hillslope soil under conditions of saturated flow. J. Environ. Qual.7: 487 – 494.

    Article  Google Scholar 

  • Rao, P.S.C., D.E. Rolston, R.E. Jessup, and J.M. Davidson. 1980. Solute transport in aggregated porous media: theoretical and experimental evaluation. Soil Sci. Soc. Am. J.44: 1139 – 1146.

    Google Scholar 

  • Reeves, M.J. 1980. Recharge of the English Chalk. A possible mechanism. Eng. Geol. 14: 231 – 240.

    Google Scholar 

  • Ringrose-Voase, A.J. and Bullock, P. 1984. The automatic recognition and measurement of soil pore types by image analysis and computer programs. J. Soil Sci. 35: 673 – 684.

    Article  Google Scholar 

  • Ritchie, J.T., D.E. Kissel, and E. Burnett. 1972. Water movement in undisturbed swelling clay soil. Soil Sci. Soc. Am. Proc.36: 874 – 879.

    Article  Google Scholar 

  • Rose, C.W., F.W. Chichester, J.R. Williams, and J.T. Ritchie. 1982. Application of an approximate analytic method of computing solute profiles with dispersion in soils. J. Environ. Qual.11: 151 – 155.

    Article  Google Scholar 

  • Rose, D.A. 1973. Some aspects of the hydrodynamic dispersion of solutes in porous materials. J. Soil Sci.24: 284 – 295.

    Article  Google Scholar 

  • Schumacher, W. 1864. Die physik des Bodens. Berlin.

    Google Scholar 

  • Scotter, D.R. 1978. Preferential solute movement through larger soil voids. I. Some computations using simple theory. Austr. J. Soil Res.16: 257 – 267.

    Article  Google Scholar 

  • Shaffer, K.A., D.D. Fritton, and D.E. Baker. 1979. Drainage water sampling in a wet, dual-pore soil system. J. Environ. Qual.8: 241 – 246.

    Article  Google Scholar 

  • Shainberg, 1., and J.D. Oster. 1978. Quality of irrigation water. Inter. Irrig. Information Centre, Publ. No.2, Bet-Dagan.

    Google Scholar 

  • Shuford, J.W., D.R. Fritton, and D.E. Baker. 1977. Nitrate-nitrogen and chloride movement through undisturbed field soil. J. Environ. Qual.6: 255 – 259.

    Article  Google Scholar 

  • Skopp, J., W.R Gardner, and E.J. Tyler. 1981. Solute movement in structured soils: two region model with small interaction. Soil Sci. Soc. Am. J.45: 837 – 842.

    Google Scholar 

  • Smettem, K.RJ., and S.T. Trudgill. 1983. An evaluation of some fluorescent and non-fluorescent dyes in the identification of water transmission routes in soils. J. Soil Sci. 34: 45 – 56.

    Article  Google Scholar 

  • Smettem, K.RJ., S.T. Trudgill, and A.M. Pickles. 1983. Nitrate loss in soil drainage waters in relation to by-passing flow and discharge on an arable site. J. Soil Sci. 34: 499 – 509.

    Article  Google Scholar 

  • Smiles, D.E., and B.N. Gardiner. 1982. Hydrodynamic dispersion during unsteady unsaturated water flow in a clay soil. Soil Sci. Soc. Am. J. 46: 9 – 14.

    Article  Google Scholar 

  • Smiles, D.E., J.R. Philip, J.H. Knight, and D.E. Elrick. 1978. Hydrodynamic dispersion during absorption of water by soil. Soil Sci. Soc. Am. J. 43: 229 – 234.

    Article  Google Scholar 

  • Smith, M.S., G.W. Thomas, R.E. White, and D. Ritonga. 1985. Transport of Escherichia colithrough intact and disturbed columns of soil. J. Environ. Qual.14: 87 – 91.

    Article  Google Scholar 

  • Taylor, G.L. 1953. Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. Roy. Soc. 219: 186 – 203.

    Google Scholar 

  • Tiedje, J.M., A.J. Sexstone, T.B. Parkin, N.P. Revsbech, and D.R Shelton. 1984. Anaerobic processes in soil. Plant Soil 76: 197 – 212.

    Article  Google Scholar 

  • Thomas, G.W., and B.J. Barfield. 1974. The unreliability of tile effluent for monitoring subsurface nitrate-nitrogen losses from soils. J. Environ. Qual.3: 183 – 185.

    Article  Google Scholar 

  • Thomas, G.W., and R.E. Phillips. 1979. Consequences of water movement in macropores. J. Environ. Qual.8: 149 – 152.

    Article  Google Scholar 

  • Thomas, G.W., R.E. Phillips, and V.L. Quisenberry. 1978. Characterization of water displacement in soils using simple chromatographic theory. J. Soil Sci.29: 32 – 37.

    Article  Google Scholar 

  • Topp, G.C., and J.L. Davis. 1981. Detecting infiltration of water through soil cracks by time-domain reflectometry. Geoderma26: 13 – 23.

    Article  Google Scholar 

  • Tyler, D.D., and G.W. Thomas. 1981. Chloride movement in undisturbed soil columns. Soil Sci. Soc. Am. J.45: 459 – 461.

    Google Scholar 

  • Van der Pol, R.M.P., P.J. Wierenga, and D.R. Nielsen. 1977. Solute movement in a field soil. Soil Sci. Soc. Am. J. 41: 10 – 13.

    Google Scholar 

  • van Genuchten, M.T., and P.J. Wierenga. 1976. Mass transfer in sorbing porous media. 1. Analytical solutions. Soil Sci. Soc. Am. Proc. 40: 473 – 480.

    Article  Google Scholar 

  • Wagenet, R.J. 1983. Principles of salt movement in soils. In: D.W. Nelson, D.E. Elrick and K.K. Tanji (Eds.) Chemical Mobility and Reactivity in Soil Systems. SSSA Spec. Publ. No. 11 pp 123 – 140.

    Google Scholar 

  • Wagenet, R.J. 1983. Principles of salt movement in soils. In: D.W. Nelson, D.E. Elrick and K.K. Tanji (Eds.) Chemical Mobility and Reactivity in Soil Systems. SSSA Spec. Publ. No. 11 pp 123 – 140.

    Google Scholar 

  • White, R.E. 1985b. Transport of chloride and non-diffusible solutes in soils. Irrig. Sci. 6: 3 – 10.

    Google Scholar 

  • White, RE., G.W. Thomas, and M.S. Smith. 1984. Modelling water flow through undisturbed soil cores using a transfer function model derived from 3HOH and Cl transport. J. Soil Sci. 35: 159 – 168.

    Article  Google Scholar 

  • White, R.E., S.R. Wellings, and J.P. Bell. 1983. Seasonal variations in nitrate leaching in structured clay soils under mixed land use. Agr. Water Manage. 7: 391 – 410.

    Article  Google Scholar 

  • Wild, A. 1972. Nitrate leaching under bare fallow at a site in northern Nigeria. J. Soil Sci. 23: 315 – 324.

    Article  Google Scholar 

  • Wild, A., and I.A. Babiker. 1976. The asymmetric leaching patterns of nitrate and chloride in a loamy sand under field conditions. J. Soil Sci. 27: 460 – 466.

    Article  Google Scholar 

  • Wild, A., and K.C. Cameron. 1980. Soil nitrogen and nitrate leaching. In: P.B. Tinker (ed.), Soils and agriculture. Critical Reports on Applied Chemistry. Vol. 2. Blackwell Scientific Publications, Oxford. pp. 35 – 70.

    Google Scholar 

  • Wilkins, D.E., W.F. Buchele, and W.G. Lovely. 1977. A technique to index soil pores and aggregates larger than 20 gm. Soil Sci. Soc. Am. J. 41: 139 – 140.

    Google Scholar 

  • Williams, U.B. 1976. The chemical composition of rain, land drainage and bore hole water from Rothamsted, Broom’s Barn, Saxmundham and Woburn Experimental Stations. In: Agriculture and water quality. M.A.F.F. Tech. Bull. No. 32. H.M.S.O., London. pp. 174 – 200.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag New York Inc.

About this paper

Cite this paper

White, R.E. (1985). The Influence of Macropores on the Transport of Dissolved and Suspended Matter Through Soil. In: Stewart, B.A. (eds) Advances in Soil Science. Advances in Soil Science, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5090-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5090-6_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9559-4

  • Online ISBN: 978-1-4612-5090-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics