Skip to main content

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 131))

Abstract

Chlorpyrifos is a member of the organophosphorus or organophosphate class of insecticides. This class has become one of the most widely used groups of pest control chemicals. In 1989 nearly 40% of the $6.2 billion global insecticide market was comprised of organophosphates (OPs) (Phillips and McDougall 1990). Although Clermont (1854) had first synthesized tetraethylpyrophosphate (TEPP), it was not until much later that the insecticidal properties of this OP were described (Schrader 1942). This milestone led to further synthetic work with insecticidal OPs and thus provided the impetus that would lead to the launch of an entirely new class of insecticides. Early OPs found to be efficacious for insect control and thus brought into widespread use included parathion (1944) and malathion (1952) (Matsumura 1985). These successes stimulated further discovery work on the part of synthetic chemists and entomologists within a number of research organizations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-All A, Khamis AE, Edrisha MS, Antonious GF (1990) Efficiency and persistence of certain insecticides on soybean and broadbean plants. Alexandria Sci Exch 11:1–17.

    CAS  Google Scholar 

  • Abdel-Megeed MI, Hussein EK, Gabir I, Abdel-Moati M (1981) Residues of Dursban as affected by different spraying techniques. Bull Entomol Soc Egypt 12: 93–98.

    Google Scholar 

  • Abdel-Mohymen MR, Abdel-Fattah MS, Nassar ME, Ghattas A, Radwan HSA, Sellem SA (1983) Bioresidual activity of fenvalerate and chlorpyrifos in soil as affected by insecticide concentration. Minufiya J Agric Res 7:345–353.

    Google Scholar 

  • Afifi FA, Kansouh ASH (1980) Dissipation and fate of chlorpyrifos and aldicarb in clay soil under laboratory conditions. Ain Shams Univ Fac Agric Res Bull 1401: 1–8.

    Google Scholar 

  • Agnihotri NP, Pandey SY, Jain HK, Srivastava KP (1981) Persistence, leaching and movement of chlorfenvinphos, chlorpyriphos, disulfoton, fensulfothion, monocrotophos and tetrachlorvinphos in soil. Ind J Agric Chem 14:27–31.

    CAS  Google Scholar 

  • Ahdaya SM, Monroe RJ, Guthrie FE (1981) Absorption and distribution of intubated insecticides in fasted mice. Pestic Biochem Physiol 16:38–46.

    CAS  Google Scholar 

  • Anderson DJ, Hites RA (1988) Chlorinated pesticides in indoor air. Environ Sci Technol 22:717–720.

    CAS  Google Scholar 

  • Andreev YB (1980) The behavior of basidin and Dursban in soil. In: Bobovnikova TI, Malakhov SG (eds) Migr zagryaz veshchestv pochvakh sopredel’nykh sredakh, tr vses soveshch, Gidrometeoizdat, Leningrad, 2nd ed. pp. 109–114 (Translation).

    Google Scholar 

  • Argauer RJ, Cantelo WW (1980) Stability of three ureide insect chitin-synthesis inhibitors in mushroom compost determined by chemical and bioassay techniques. J Econ Entomol 73:671–674.

    CAS  Google Scholar 

  • Asensio JS, Barrio CS, Galarreta J, Bernal JG (1991) Study of the decay of diazinon and chlorpyrifos in apple samples, using gas chromatography. Food Chem 42: 213–224.

    Google Scholar 

  • Atwood ST, Sheets TJ, Sutton RB, Leidy RB (1987) Stability of selected pesticide formulations and combinations in aqueous media. J Agric Food Chem 35:169–172.

    CAS  Google Scholar 

  • Bakke JE, Feil VJ, Price CE (1976) Rat urinary metabolites from O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate. J Environ Sci Hlth B11:225–230.

    CAS  Google Scholar 

  • Bakke JE, Price CE (1976) Metabolism of O,O-dimethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate in sheep and rats and of 3,5,6-trichloro-2-pyridinol in sheep. J Environ Sci Hlth B11:9–22.

    CAS  Google Scholar 

  • Barron MG, Wilga PC, Ball T (1990) Chlorpyrifos pharmacokinetics and metabolism following waterborne exposure in channel catfish. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Barron MG, Plakas SM, Wilga PC (1991) Chlorpyrifos pharmacokinetics and metabolism following intravascular and dietary administration in channel catfish. Toxicol Appl Pharmacol 108:474–482.

    PubMed  CAS  Google Scholar 

  • Batzer FR, Fontaine DD, White FH (1990) Aqueous photolysis of chlorpyrifos. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Bauriedel WR, McKellar RL, Miller JH (1976) A rotational crop study using 14C-labeled chlorpyrifos. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Bauriedel WR, Miller JH (1980) The metabolic fate of 14C-chlorpyrifos applied to an apple tree. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Bauriedel WR, Miller JH (1981) The metabolic fate of 14C-chlorpyrifos applied topically to soybeans. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Bauriedel WR (1986a) The early fate of 14C-chlorpyrifos applied to leaf surfaces of corn, soybean, and sugar beet. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Bauriedel WR (1986b) Fate of 14C-chlorpyrifos administered to laying hens. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Bauriedel WR, Miller JH (1986a) The metabolic fate of 14C-chlorpyrifos applied to field corn at planting (soil application) and in mid-season (foliar application). DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Bauriedel WR, Miller JH (1986b) The metabolic fate of 14C-chlorpyrifos applied to sugar beets at planting (soil application) and in mid-season (foliar application). DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Berisford CW, Brady UE, Ragenovich IR (1981) Residue studies. In: Hastings FL, Coster JE (eds) Field and laboratory evaluations of insecticides for southern pine beetle control. U.S. Dept Agriculture, Southern Forest Experiment Station, Forest Service, SE-21, pp 11–12, 27, 32, 33.

    Google Scholar 

  • Berisford CW, Dalusky MJ, Bush PB, Taylor JW, Berisford YC (1991) Efficacy, persistence, ground deposition, and human exposure of polymer-encapsulated lindane and chlorpyrifos used for control of the southern pine beetle. Phytoprotection 72:15–20.

    CAS  Google Scholar 

  • Bidlack HD (1976) Degradation of 14C-labeled 3,5,6-trichloro-2-pyridinol in 15 select agricultural soils. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Bidlack HD (1979) Degradation of chlorpyrifos in soil under aerobic, aerobic/anaerobic, and anaerobic conditions. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Bidlack HD (1980) Aerobic degradation rate of 3,5,6-trichloro-2-pyridinol in various soils as affected by concentration or by the use of acetone as a solvent. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Blair EH, Kauer KC, Kenaga EE (1963) Synthesis and insecticidal activity of O-methyl O-(2,4,5-trichlorophenyl) phosphoramidothioates and related compounds. J Agric Food Chem 11:237–240.

    CAS  Google Scholar 

  • Blair EH, Wasco JL, Kenaga EE (1965) Synthesis and insecticidal activity of methyl 2,4,5-trichlorophenyl phosphoramidates. J Agric Food Chem 13:383–385.

    Google Scholar 

  • Blair EH, Kauer KC, Kenaga EE (1966) Synthesis and insecticidal activity of O-alkyl O-(2,4,5-trichlorophenyl) phosphoramidates. J Agric Food Chem 14:298–301.

    CAS  Google Scholar 

  • Blanchet PF, St.-George A (1982) Kinetics of chemical degradation of organophosphorus pesticides; hydrolysis of chlorpyrifos and chlorpyrifos-methyl in the presence of copper (II). Pestic Sci 13:85–91.

    CAS  Google Scholar 

  • Boreham S, Birch P (1990) Changes in the macro-invertebrate benthos of a rural Essex clay stream following pollution by the pesticide Dursban. London Nat 69: 79–84.

    Google Scholar 

  • Bowman BT, Sans WW (1979) The aqueous solubility of twenty-seven insecticides and related compounds. J Environ Sci Hlth B14:625–634.

    CAS  Google Scholar 

  • Bowman BT, Sans WW (1983a) Further water solubility determinations of insecticidal compounds. J Environ Sci Hlth B18:221–227.

    CAS  Google Scholar 

  • Bowman BT, Sans WW (1983b) Determination of octanol-water partioning coefficients (K ow ) of 61 organophosphorus and carbamate insecticides and their relationship to respective water solubility (S) values. J Environ Sci Hlth B18:667–683.

    CAS  Google Scholar 

  • Bowman BT, Sans WW (1985a) Effect of temperature on the water solubility of insecticides. J Environ Sci Hlth B20:625–631.

    CAS  Google Scholar 

  • Bowman BT, Sans WW (1985b) Partitioning behavior of insecticides in soil-water systems: I. Adsorbent concentration effects. J Environ Qual 14:265–269.

    CAS  Google Scholar 

  • Brady UE, Berisford CW, Hall TL, Hamilton JS (1980) Efficacy and persistence of chlorpyrifos, chlorpyrifos-methyl, and lindane for preventive and remedial control of the southern pine beetle. J Econ Entomol 73:639–641.

    CAS  Google Scholar 

  • Brady UE, Tippins R, Perry J, Young JR, Wauchope RD (1991) Chlorpyrifos exposure of workers entering sweet corn after chemigation. Bull Environ Contam Toxicol 46:343–350.

    PubMed  CAS  Google Scholar 

  • Braness GA, Bennett GW (1990) Residual effectiveness of insecticides for control of German cockroaches (Dictyoptera: Blattellidae) in food-handling establishments. J Econ Entomol 83:1907–1911.

    PubMed  CAS  Google Scholar 

  • Branson DR, Litchfield NH (1971) Absorption, excretion and distribution of O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate in rats. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Braun HE, Frank R (1980) Organochlorine and organophosphorus insecticides: their use in eleven agricultural watersheds and their loss to stream waters in southern Ontario, Canada, 1975–1977. Sci Total Environ 15:169–192.

    CAS  Google Scholar 

  • Braun HE, Ritcey GM, Frank R, McEwen FL, Ripley BD (1980) Dissipation rates of insecticides in six minor vegetable crops grown on organic soils in Ontario, Canada. Pestic Sci 11:605–616.

    CAS  Google Scholar 

  • Brazner JC, Heinis LJ, Jensen DA (1989) A littoral enclosure for replicated field experiments. Environ Toxicol Chem 8:1209–1216.

    CAS  Google Scholar 

  • Brazner JC, Kline ER (1990) Effects of chlorpyrifos on the diet and growth of larval fathead minnows, Pimephales promelas, in littoral enclosures. Can J Fish Aquat Sci 47:1157–1165.

    Google Scholar 

  • Brewer BS (1987) The degradation of three chlorpyrifos and two diazinon formulations when exposed to north central Texas environmental conditions. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Brock TCM, Crum SJH, van Wijngaarden R, Budde BJ, Tijink J, Zuppelli A, Leeuwangh P (1992) Fate and effects of the insecticide Dursban 4E in indoor Elodea-dominated and macrophyte-free freshwater model ecosystems. Arch Environ Contam Toxicol 23:69–84.

    PubMed  CAS  Google Scholar 

  • Brust HF (1964) A summary of chemical and physical properties of O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Brust HF (1966) A summary of chemical and physical properties of Dursban. Down to Earth 22(3):21–22.

    CAS  Google Scholar 

  • Bush PB, Taylor JW, McMahon CK, Neary DG (1987) Residues of lindane and chlorpyrifos in firewood and woodsmoke. J Entomol Sci 22:131–139.

    CAS  Google Scholar 

  • Bysshe SE (1990) Bioconcentration factor in aquatic organisms. In: Lyman WJ, Reehl WF, Rosenblatt DH (eds) Handbook of chemical property estimation methods. ACS, Washington, DC, vol 5, pp. 1–30.

    Google Scholar 

  • Camazano MS, Martin MJS (1983) Montmorillonite-catalyzed hydrolysis of phosmet. Soil Sci 136:89–93.

    Google Scholar 

  • Chakrabarti A, Gennrich SM (1987) Vapor pressure of chlorpyrifos. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Chambers JE, Redwood WT, Trevathan CA (1983) Disposition and metabolism of [14C]chlorpyrifos in the black imported fire ant, Solenopsis richteri Forel. Pestic Biochem Physiol 19:115–121.

    CAS  Google Scholar 

  • Chang VCS, Lange WH (1967) Laboratory and field evaluation of selected pesticides for control of red crayfish in California rice fields. J Econ Entomol 61: 473–477.

    Google Scholar 

  • Chapman RA, Harris CR (1980) Persistence of chlorpyrifos in a mineral and an organic soil. J Environ Sci Hlth B15:39–46.

    CAS  Google Scholar 

  • Chapman RA, Cole CM (1982) Observations on the influence of water and soil pH on the persistence of insecticides. J Environ Sci Hlth B17:487–504.

    CAS  Google Scholar 

  • Chapman RA, Harris C (1984) The chemical stability of formulations of some hydrolyzable insecticides in aqueous mixtures with hydrolysis catalysts. J Environ Sci Hlth B19:397–407.

    CAS  Google Scholar 

  • Chapman RA, Harris CR, Svec HJ, Robinson JR (1984) Persistence and mobility of granular insecticides in an organic soil following furrow application for onion maggot control. J Environ Sci Hlth B19:259–270.

    CAS  Google Scholar 

  • Chapman RA, Chapman PC (1986) Persistence of granular and EC formulations of chlorpyrifos in a mineral and an organic soil incubated in open and closed containers. J Environ Sci Hlth B21:447–456.

    CAS  Google Scholar 

  • Chen ZM, Zabik MJ, Leavitt RA (1984) Comparative study of thin film photodegradative rates for 36 pesticides. Ind Eng Chem Prod Res Dev 23:5–11.

    CAS  Google Scholar 

  • Chen ZM (1985) Comparative study on photodegradative rates of 35 pesticides. Huanjing Kexue Xuebao 5:70–84.

    CAS  Google Scholar 

  • Cheng T, Bodden RM, Puhl RJ, Bauriedel WR (1989) Absorption, distribution, and metabolism of [14C]chlorpyrifos applied dermally to goats. J Agric Food Chem 37:1018–1111.

    Google Scholar 

  • Chiou CT, Freed VH, Schmedding DW, Kohnert RL (1977) Partition coefficient and bioaccumulation of selected organic chemicals. Environ Sci Technol 11:475–478.

    CAS  Google Scholar 

  • Chopra NM, Zuniga TH (1990) The fate of chlorpyrifos on tobacco during smoking. Beitr Tabakforsch Int 14:387–391.

    CAS  Google Scholar 

  • Christakakis V (1974) Loss of chlorpyrifos on painted wood surfaces under simulated field conditions. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Cink JH, Coats JR (1992) The effect of concentration, temperature, and soil moisture on the degradation of chlorpyrifos (Dursban TC) in an urban Iowa soil. In: Racke KD, Leslie AR (eds) Fate and significance of pesticides in urban environments. ACS, Washington, DC, ACS Symp Series (in press).

    Google Scholar 

  • Claborn HV, Kunz SE, Mann HD (1970) Residues of Dursban in the body tissues of turkeys confined in pens containing treated soil. J Econ Entomol 63:422–424.

    CAS  Google Scholar 

  • Clements RO, Bale JS (1988) The short-term effects on birds and mammals of the use of chlorpyrifos to control leatherjackets in grassland. Ann Appl Biol 112: 41–47.

    CAS  Google Scholar 

  • Clermont A (1854) Ann Chim 91:375.

    Google Scholar 

  • Cohen SZ, Nickerson S, Maxey R, Dupuy A, Senita JA (1990) A ground water monitoring study for pesticides and nitrates associated with golf courses on Cape Cod. Ground Water Monit Rev 10:160–173.

    CAS  Google Scholar 

  • Cowgill UM, Gowland RT, Ramirez CA, Fernandez V (1991) The history of a chlorpyrifos spill: Cartegena, Colombia. Environ Int 17:61–71.

    CAS  Google Scholar 

  • Cripe GM, Hansen DJ, Macauley SF, Forester J (1985) Effects of diet quantity on sheepshead minnows (Cyprinodon variegatus) during early life-stage exposures to chlorpyrifos. Environ Res Lab, Gulf Breeze, FL, EPA/600/D-85/117.

    Google Scholar 

  • Crummett WB (1963) O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate hydrolysis rate. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Cryer SA (1992) A method for evaluating kinetic and non-equilibrium sorption models: preliminary results using chlorpyrifos pesticide formulations in Cecil soil. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Currie KL, McDonald EC, Chung LTK, Higgs AR (1990) Concentrations of diazinon, chlorpyrifos, and bendiocarb after application in offices. Am Ind Hyg Assoc J 51:23–27.

    PubMed  CAS  Google Scholar 

  • Davis AC, Kuhr RJ (1976) Dissipation of chlorpyrifos from muck soil and onions. J Econ Entomol 69:665–666.

    CAS  Google Scholar 

  • Davis RW, Kamble ST (1992) Distribution of sub-slab insected Dursban TC (chlorpyrifos) in a loamy sand soil when used for subterranean termite control. Bull Environ Contam Toxicol 48:585–591.

    PubMed  CAS  Google Scholar 

  • Dawson J (1989) The determination of the solubility of chlorpyrifos in water according to EEC/OECD guidelines (flask method). DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • De Bruijn J, Busser F, Seinen W, Hermens J (1989) Determinations of octanol/water partition coefficients for hydrophobic organic chemicals with the slow-stirring method. Environ Toxicol Chem 8:499–512.

    Google Scholar 

  • Del Vecchio V, Leoni V, Puccetti G (1970) La contaminazaione da pesticidi dei principali bacini idrografici italiani durante. Nuovi Ann Ig Microbiol 21:381.

    PubMed  Google Scholar 

  • Dilling WL, Lickly LC, Lickly TD, Murphy PG, Mckellar RL (1984) Organic photochemistry. 19. Quantum yields for O,O-diethyl O-(3,5,6-trichloro-2-pyridinyl) phosphorothioate (chlorpyrifos) and 3,5,6-trichloro-2-pyridinol in dilute aqueous solutions and their environmental phototransformation rates. Environ Sci Technol 18:540–543.

    CAS  Google Scholar 

  • Dishburger HJ, Rice JR (1967) Dursban residues in water, soil-silt and oysters following aerial application of a granular formulation for mosquito control. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Dishburger HJ, Rice JR, McGregor WS, Pennington J (1969) Residues of Dursban insecticide in tissues from turkeys confined on soil treated for chigger control. J Econ Entomol 62:181–183.

    CAS  Google Scholar 

  • Dishburger HJ, McKellar RL, Pennington JY, Rice JR (1977) Determination of residues of chlorpyrifos, its oxygen analogue, and 3,5,6-trichloro-2-pyridinol in tissues of cattle fed chlorpyrifos. J Agric Food Chem 25:1325–1329.

    PubMed  CAS  Google Scholar 

  • Downey JR (1987) Henry’s law constant for chlorpyrifos in water. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Drummond JN (1986) Solubility of chlorpyrifos in various solvents. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Drummond JN, Hemmer NJ (1988) The chemical stability of emulsified chlorpyrifos. Down to Earth 44(1):6–7.

    Google Scholar 

  • Dutta DN, Goswami MM (1982) Dissipation of Dursban residues from mustard (Brassica sp.) crop. J Res Assam Agric Univ 3:186–189.

    Google Scholar 

  • Eaton J, Arthur J, Hermanutz R, Kiefer R, Mueller L, Anderson R, Erickson R, Nordling B, Rogers J, Pritchard H (1985) Biological effects of continuous and intermittent dosing of outdoor experimental streams with chlorpyrifos. In: Bahner RC, Hansen DJ (eds) 8th Symp aquatic toxicology and hazard assessment. ASTM, Philadelphia, PA, pp 85–118.

    Google Scholar 

  • El-Sayed MM, Dogheim SMA, Abul-Ghar MR, Zidan ZH (1975) Persistence of monocrotophos, Dursban and Gardona residues on snap beans (Phaseolus vulgaris L.) and okra fruit (Hibiscus esculentus L.) in Egypt. Bull Entomol Soc Egypt 9:49–59.

    CAS  Google Scholar 

  • Elhag FA, Yule WN, Marshall WD (1989) Persistence and degradation of PP993 pyrethroid, fonofos, and chlorpyrifos in a Quebec cornfield’s soil. Bull Environ Contam Toxicol 42:172–176.

    PubMed  CAS  Google Scholar 

  • Eto M (1974) Organophosphorus pesticides: Organic and biological chemistry. CRC Press, Cleveland, OH, pp 62–64.

    Google Scholar 

  • Felsot A, Dahm PA (1979) Sorption of organophosphorus and carbamate insecticides by soil. J Agric Food Chem 27:557–563.

    CAS  Google Scholar 

  • Felsot AS (1985) Early contributions of insect toxicology to the evolution of environmental toxicology. Ill Natur Hist Sury Bull 33:199–218.

    Google Scholar 

  • Fenske RA, Elkner KP (1990) Multi-route exposure assessment and biological monitoring of urban pesticide applicators during structural control treatments with chlorpyrifos. Toxicol Ind Hlth 6:349–371.

    CAS  Google Scholar 

  • Fenske RA, Black KG, Elkner KP, Chorng-Li L, Methner MM, Soto R (1990) Potential exposure and health risks of infants following indoor residential pesticide applications. Am J Public Hlth 80:689–693.

    CAS  Google Scholar 

  • Fermanich KJ, Daniel TC (1991) Pesticide mobility and persistence in microlysimeter soil columns from a tilled and no-tilled plot. J Environ Qual 20:195–202.

    CAS  Google Scholar 

  • Fontaine DD, Teeter D (1987) Photodegradation of chlorpyrifos in the vapor phase. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Fontaine DD, Wetters JH, Weseloh JW, Stockdale GD, Young JR, Swanson ME (1987) Field dissipation and leaching of chlorpyrifos. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Fontaine DD (1989) Modeling the field dissipation and leaching of chlorpyrifos in the Midwest corn market. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Frank R (1981) Pesticides and PCB in the Grand and Saugeen River basins. J Great Lakes Res 7:440–454.

    CAS  Google Scholar 

  • Frank R, Braun HE, Chapman N, Burchat C (1991) Degradation of parent compounds of nine organophosphorus insecticides in Ontario surface and ground waters under controlled conditions. Bull Environ Contam Toxicol 47:347–380.

    Google Scholar 

  • Freed VH, Chiou CT, Schmedding DW (1979) Degradation of selected organophosphate pesticides in water and soil. J Agric Food Chem 27:706–708.

    CAS  Google Scholar 

  • Garg AK, Sethi GR (1980) Persistence of insecticide residues in paddy soil. Ind J Plant Protec 8:157–163.

    CAS  Google Scholar 

  • Getzin LW, Rosefield I (1968) Organophosphorus insecticide degradation by heat-labile substances in soil. J Agric Food Chem 16:598–601.

    CAS  Google Scholar 

  • Getzin LW (1981a) Degradation of chlorpyrifos in soil: Influence of autoclaving, soil moisture, and temperature. J Econ Entomol 74:158–162.

    CAS  Google Scholar 

  • Getzin LW (1981b) Dissipation of chlorpyrifos from dry soil surfaces. J Econ Entomol 74:707–713.

    CAS  Google Scholar 

  • Getzin LW (1985) Factors influencing the persistence and effectiveness of chlorpyrifos in soil. J Econ Entomol 78:412–418.

    CAS  Google Scholar 

  • Glas RD (1981) The metabolic fate of 14C-chlorpyrifos fed to lactating goats. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Glotfelty DE, Majewski JS, Seiber JN (1990) Distribution of several organophosphorus insecticides and their oxygen analogues in a foggy atmosphere. Environ Sci Technol 24:353–357.

    CAS  Google Scholar 

  • Goh KS, Edmiston S, Maddy KT, Meinders DD, Margetich S (1986a) Dissipation of dislodgeable residue of chlorpyrifos and dichlorvos on turf. Bull Environ Contam Toxicol 37:27–32.

    PubMed  CAS  Google Scholar 

  • Goh KS, Edmiston S, Maddy KT, Margetich S (1986b) Dissipation of dislodgeable foliar residue for chlorpyrifos and dichlorvos treated lawn: Implication for safe reentry. Bull Environ Contam Toxicol 37:33–40.

    PubMed  CAS  Google Scholar 

  • Gold RE, Howell HN, Jordan EA (1992) The impact of foam application technology on the subsurface distribution of chlorpyrifos termiticide. In: Racke KD, Leslie AR (eds) Fate and significance of pesticides in urban environments. ACS, Washington, DC, ACS Symp Series (in press).

    Google Scholar 

  • Gonzalez, RH (1989) Management of kiwifruit pests in Chile: 1. Degradation of residues of the insecticides chlorpyrifos and phosmet. Revista Fruticola 10:35–43.

    Google Scholar 

  • Goodman LR, Hansen DJ, Middaugh DP, Cripe GM, Moore JC (1985a) Method for early life-stage toxicity tests using three Atherinid fishes and results with chlorpyrifos. In: Cardwell RD, Purdy R, Bahner RC (eds) 7th Symp aquatic toxicology and hazard, ASTM, Philadelphia, PA, STP 854, pp 145–154.

    Google Scholar 

  • Goodman LR, Hansen DJ, Cripe GM, Middaugh DP, Moore JC (1985b) A new early life-stage toxicity test using the California grunion (Leuresthes tenuis) and results with chlorpyrifos. Ecotoxicol Environ Saf 10:12–21.

    PubMed  CAS  Google Scholar 

  • Gray HE (1965) Dursban … a new organo-phosphorus insecticide. Down to Earth 21(3):2, 26–27.

    Google Scholar 

  • Gross LL (1990) USDA Forest Service pesticide background statement: Chlorpyrifos. Washington, DC. (draft).

    Google Scholar 

  • Gutenmann WH, St. John LE, Lisk DJ (1968) Metabolic studies with O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate (Dursban) insecticide in a lactating cow. J Agric Food Chem 16:45–47.

    CAS  Google Scholar 

  • Hallberg GR, Libra RD, Long KR, Splinter RC (1987) Pesticides, groundwater, and rural drinking water quality in Iowa. In: Pesticides in groundwater: A health concern for the Midwest. Freshwater Foundation and U.S. EPA, Navarre, MN, pp 83–104.

    Google Scholar 

  • Hallberg GR (1989) Pesticide pollution of groundwater in the humid United States. Agric Ecosys Environ 26:299–367.

    CAS  Google Scholar 

  • Halvorson GA, Doll EC, Hofmann LL (1990) Vegetative reestablishment on mined lands. North Dakota State Univ Land Reclam Res Ctr Ann Rept, pp 141–164.

    Google Scholar 

  • Hamaker JW (1974) Adsorption of 3,5,6-trichloro-2-pyridinol. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Hamaker JW (1977) Physical properties of 2-methoxy-3,5,6-trichloropyridine and some environmental consequences. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Hansen DJ, Goodman LR, Crip GM, Macauley SF (1986) Early life-stage test methods for Gulf Toadfish (Opsanus beta) and results using chlorpyrifos. Ecotoxicol Environ Safety 11:15–22.

    PubMed  CAS  Google Scholar 

  • Harris CR, Svec HJ (1968) Toxicological studies on cutworms. I. Laboratory studies on the toxicity of insecticides to the dark-sided cutworm. J Econ Entomol 61: 788–793.

    CAS  Google Scholar 

  • Harris CR, Svec HJ, Sans WW (1968) Toxicological studies on cutworms. II. Field studies on control of the dark-sided cutworm with soil insecticides. J Econ Entomol 61:961–965.

    CAS  Google Scholar 

  • Harris CR (1969) Laboratory studies on the persistence of biological activity of some insecticides in soil. J Econ Entomol 62:1437–1441.

    PubMed  CAS  Google Scholar 

  • Harris CR, Svec HJ, Sans WW (1969) Toxicological studies on cutworms. V. Field studies on the control the dark-sided cutworm by treatment of the rye crop grown in rotation with tobacco. J Econ Entomol 62:1441–1444.

    CAS  Google Scholar 

  • Harris CR, Svec HJ, Sans WW (1971) Toxicological studies on cutworms. VII. Microplot field experiments on the effectiveness of four insecticides applied as rye cover crop and soil treatments for control of the dark-sided cutworm. J Econ Entomol 64:493–496.

    CAS  Google Scholar 

  • Harris CR, Svec HJ, Sans WW (1973) Toxicological studies on cutworms. X. Laboratory and field microplot studies on effectiveness and persistence of some experimental insecticides used to control the black cutworm in organic soil. J Econ Entomol 66:203–207.

    PubMed  CAS  Google Scholar 

  • Harris CR, Chapman RA, Miles JRW (1977) Insecticide residues in soils on fifteen farms in southwestern Ontario: 1964–1974. J Environ Sci Hlth B12:163–174.

    CAS  Google Scholar 

  • Harris CR, Chapman RA, Tolman JH, Moy P, Henning K, Harris C (1988) A comparison of the persistence in a clay loam of single and repeated annual applications of seven granular insecticides used for corn rootworm control. J Environ Sci Hlth B23:1–32.

    CAS  Google Scholar 

  • Harrison SA, Watschke TL, Mumma RO, Jarrett AR, Hamilton GW (1992) Nutrient and pesticide concentrations in water from chemically-treated turfgrass. In: Racke KD, Leslie AR (eds) Fate and significance of pesticides in urban environments. ACS, Washington, DC, ACS Symp Series (in press).

    Google Scholar 

  • Havens PL, Rase HF (1991) Detoxification of organophosphorus pesticide solutions. In: Tedder DW, Pohland FG (eds) Emerging technologies in hazardous waste management II. ACS, Washington, DC, pp 261–281.

    Google Scholar 

  • Hedlund RT (1972) Determination of the bioconcentration potential of 3,5,6-trichloro-2-pyridinol. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Hedlund RT (1973) Bioconcentration of chlorpyrifos by mosquito fish in a flowing system. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Hegazy ME, El-Sisi AG, Abu-Zahw MM, Diab MM (1990) Persistence of Dursban and efficiency of some suggested methods to remove it from water. Ann Agric Sci 35:1057–1063.

    Google Scholar 

  • Hemingway J, Callaghan A, Amin AM (1990) Mechanisms of organophosphate and carbamate resistance in Culex quinquefasciatus from Saudi Arabia. Med Vet Entomol 4:275–282.

    PubMed  CAS  Google Scholar 

  • Hetzel GH, Mullins DE, Young RW, Simonds JM (1989) Disposal of dilute and concentrated agricultural pesticides using absorption and chemical and microbial degradation. In: Weigmann DL (ed) Proc Nat Res Cont pesticides in terrestrial and aquatic environments, Virginia Water Resources Res Ctr, Blacksburg, VA, pp 239–248.

    Google Scholar 

  • Hirakoso S (1969) Inactivating effects of micro-organisms on insecticidal activity of Dursban. Jap J Exp Med 39:17–20.

    PubMed  CAS  Google Scholar 

  • Hofmann LL, Knighton RE, Fleeker JR (1991) Pesticide mobility in irrigated northern Great Plains soils. Agron Abstr : 44.

    Google Scholar 

  • Holland PT, McGhie TK, Malcolm CP (1984) Residual life of pesticides on kiwifruit. In: Proc New Zealand Weed Pest Cont Conf, vol 37, pp. 136–141.

    Google Scholar 

  • Howell JF, George DA (1984a) Residues of chlorpyrifos and its pyridinol metabolite in apples, on twig bark, and in undertree debris. U.S. Dept Agriculture, Agricultural Res Serv, Beltsville, MD, ARS-9, pp 1–12.

    Google Scholar 

  • Howell JF, George DA (1984b) Efficacy and persistence of chlorpyrifos residues on peaches for control of San Jose scale (Homoptera: Diaspididae). J Econ Entomol 77:534–536.

    CAS  Google Scholar 

  • Hughes DN, Boyer MG, Papst MH, Fowle CD (1980) Persistence of three organophosphorus insecticides in artificial ponds and some biological implications. Arch Environ Contam Toxicol 9:269–279.

    PubMed  CAS  Google Scholar 

  • Hummel RA, Crummet WB (1964) Solubility of ethel (O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate in various solvents. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Hurlbert SH, Mulla MS, Keith JO, Westlake WE, Dusch ME (1970) Biological effects and persistence of Dursban in freshwater ponds. J Econ Entomol 63:43–52.

    PubMed  CAS  Google Scholar 

  • Hurto KA, Prinster MG (1992) Dissipation of foliar dislodgeable residues of chlorpyrifos, DCPA, diazinon, isofenphos, and pendimethalin. In: Racke KD, Leslie AR (eds) Fate and significance of pesticides in urban environments. ACS, Washington, DC, ACS Symp Series (in press).

    Google Scholar 

  • Hutacharern C, Knowles CO (1975) Metabolism of chlorpyrifos-14C in the eastern subterranean termite. Bull Environ Contam Toxicol 13:351–356.

    PubMed  CAS  Google Scholar 

  • Iijima T, Tanaka M, Higaki M (1991) Persistence and residual activity of organophosphorous termiticides in soil and prevention against the degradation of chlorpyrifos. Proc Int Res Group Wood Preserv 22:1–10 (IRG/WP/1518).

    Google Scholar 

  • Iosson DI (1984) Leaching of chlorpyrifos in standard German soil 2:2 following 30 days of ageing using the BBA protocol Merkblatt 36/37. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Ivashina SA (1986) Interaction of Dursban with soil micro-organisms. Agrokhimia 8:75–76 (translation).

    Google Scholar 

  • Ivey MC, Mann HD, Oehler DD, Claborn HV, Eschle JL, Hogan BF (1972) Chlorpyrifos and its oxygen analogue in the body tissues of dipped cattle. J Econ Entomol 65:1647–1649.

    PubMed  CAS  Google Scholar 

  • Ivey MC, Palmer JS (1979) Chlorpyrifos and 3,5,6-trichloro-2-pyridinol: Residues in body tissues of swine treated with chlorpyrifos for hog louse and itch mite control. J Econ Entomol 72:837–838.

    PubMed  CAS  Google Scholar 

  • Ivey MC (1979) Chlorpyrifos and 3,5,6-trichloro-2-pyridinol: Residues in the body tissues of cattle wearing chlorpyrifos-impregnated plastic ear tags. J Econ Entomol 72:909–911.

    PubMed  CAS  Google Scholar 

  • Ivey MC, Palmer JS (1981) Chlorpyrifos and 3,5,6-trichloro-2-pyridinol: Residues in the body tissues of sheep treated with chlorpyrifos for sheep ked control. J Econ Entomol 74:136–137.

    PubMed  CAS  Google Scholar 

  • Iwata Y, O’Neal JR, Barkley JH, Dinoff TM, Dusch E (1983) Chlorpyrifos applied to California citrus: Residue levels on foliage and on and in fruit. J Agric Food Chem 31:603–610.

    PubMed  CAS  Google Scholar 

  • Jackson MD, Lewis RG (1981) Insecticide concentrations in air after application of pest control strips. Bull Environ Contam Toxicol 27:122–125.

    PubMed  CAS  Google Scholar 

  • Jain HK, Agnihotri NP (1986) The persistence of insecticides in soil. In: Proc Symp Pestic Resid Environ Pollut, Sanatan Dharm College, Muzaffarnagar, India, pp 1–14.

    Google Scholar 

  • Jarvinen AW, Nordling BR, Henry ME (1983) Chronic toxicity of Dursban (chlorpyrifos) to the fathead minnow (Pimephales promelas) and the resultant acetylcholinesterase inhibition. Ecotoxicol Environ Saf 7:423–434.

    PubMed  CAS  Google Scholar 

  • Jensen DJ, Genwright RD (1980) The stability of chlorpyrifos on carpet sprayed with Dursban 4E insecticide. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Jitsunari F, Asakawa F, Nakajima T, Shimada J, Ogata M (1989) Determination of 3,5,6-trichloro-2-pyridinol in the urine of termite control workers using chlorpyrifos. Acta Med Okayama 43:299–306.

    PubMed  CAS  Google Scholar 

  • Johnson JC, Bowman MC, Leuck DB (1969) Responses of cows fed silages containing Dursban residues. J Dairy Sci 52:1253–1258.

    CAS  Google Scholar 

  • Jones AS, Hastings FL (1981) Soil microbe studies. In: Hastings FL, Coster JE (eds) Field and laboratory evaluations of insecticides for southern pine beetle control. U.S. Dept Agriculture, Southern Forest Experiment Station, Forest Service, SE-21, pp 13–14, 35.

    Google Scholar 

  • Kanazawa J (1989) Relationship between the soil sorption constants for pesticides and their physicochemical properties. Environ Toxicol Chem 8:477–484.

    CAS  Google Scholar 

  • Karageorgiev D (1987) A study on the dynamics of chlorpyrifos decomposition in some fruits. Pochvozn Agrokhim Rastit Zasht 22:108–112.

    Google Scholar 

  • Kard BM, McDaniel CA (1992) Field evaluation of the persistence and efficacy of pesticides used for termite control. In: Racke KD, Leslie AR (eds) Fate and significance of pesticides in urban environments. ACS, Washington, DC, ACS Symp Series (in press).

    Google Scholar 

  • Kenaga EE (1962) Evaluation of some pyridyl phosphates as insecticides. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Kenaga EE, Whitney WK, Hardy JL, Doty AE (1965) Laboratory tests with Dursban insecticide. J Econ Entomol 58:1043–1050.

    CAS  Google Scholar 

  • Kenaga EE (1971) Some physical, chemical, and insecticidal properties of some O,O-dialkyl O-(3,5,6-trichloro-2-pyridyl) phosphates and phosphorothioates. Bull World Hlth Org 44:225–228.

    CAS  Google Scholar 

  • Kenaga EE (1974) Evaluation of the safety of chlorpyrifos to birds in areas treated for insect control. Residue Rev 50:1–41.

    CAS  Google Scholar 

  • Kenaga EE (1977) Development of the insecticide chlorpyrifos and evaluation of its environmental hazards. PhD diss, Tokyo Agricultural Univ, Tokyo, Japan.

    Google Scholar 

  • Kenaga EE (1980) Predicted bioconcentration factors and soil sorption coefficients of pesticides and other chemicals. Ecotoxicol Environ Safety 4:26–38.

    PubMed  CAS  Google Scholar 

  • Kenaga EE, Goring CAI (1980) Relationship between water solubility, soil sorption, octanol-water partitioning, and concentration of chemicals in biota. In: Eaton JG, Parrish PR, Hendricks AC (eds) Aquatic Toxicology, ASTM STP 707, ASTM, Philadelphia, PA, pp 78–115.

    Google Scholar 

  • Khoo BK, Sherman M (1981) Metabolism of chlorpyrifos by normal and defaunated Formosan subterranean termites. J Econ Entomol 74:681–687.

    CAS  Google Scholar 

  • Kladivko EJ, van Scoyoc GE, Monke EJ, Oates KM, Pask W (1991) Pesticide and nutrient movement in subsurface tile drains on a silt loam soil in Indiana. J Environ Qual 20:264–270.

    CAS  Google Scholar 

  • Klisenko MA, Pis’mennaya MV (1979). Photochemical transformations of organophosphorus pesticides in air. Gig Tr Prof Zabol 3:56–58 (translation).

    Google Scholar 

  • Knuth ML, Heinis LJ (1992) Dissipation and persistence of chlorpyrifos within littoral enclosures. J Agric Food Chem 40:1257–1263.

    CAS  Google Scholar 

  • Koehler PG, Patterson RS (1991) Residual efficacy of chlorpyrifos and diazinon formulations for German cockroaches (Orthoptera: Blattellidae) on panels placed in commercial food preparation areas. J. Entomol Sci 26:59–63.

    CAS  Google Scholar 

  • Kollig HP, Kitchens BE (1990) Problems associated with published environmental fate data. Toxicol Environ Chem 28:95–103.

    CAS  Google Scholar 

  • Kuhr RJ, Tashiro H (1978) Distribution and persistence of chlorpyrifos and diazinon applied to turf. Bull Environ Contam Toxicol 20:652–656.

    PubMed  CAS  Google Scholar 

  • Lal S, Lal R (1987) Bioaccumulation, metabolism, and effects of DDT, fenitrothion, and chlorpyrifos on Saccharomyces cerevisiae. Arch Environ Contam Toxicol 16:753–757.

    PubMed  CAS  Google Scholar 

  • Lal S, Saxena DM, Lal R (1987a) Uptake, metabolism and effects of DDT, fenitrothion and chlorpyrifos on Tetrahymena pyriformis. Pestic Sci 21:181–191.

    CAS  Google Scholar 

  • Lal S, Lal R, Saxena DM (1987b) Bioconcentration and metabolism of DDT, fenitrothion and chlorpyrifos by the blue-green algae Anabaena sp. and Aulosira fertilissima. Environ Pollut 46:187–196.

    PubMed  CAS  Google Scholar 

  • Lanza CM, Tomaselli F, Russo C, Nicolosi-Asmundo C (1986) Pesticide residues of treatment for Dacus oleae control. 1st: Decay of two insecticides on olives. Ind Aliment 25:122–124.

    CAS  Google Scholar 

  • Laskowski DA, Comeaux LB, Bidlack HD (1977) Aerobic soil decomposition of 14C-labeled 3,5,6-trichloro-2-methoxypyridine. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Lee HK, Lee YD, Shin YH (1984) A survey on pesticide residues in paddy soils. Nongsa Sihom Yongu Pogo 26:99–104.

    CAS  Google Scholar 

  • Leeuwangh P (1989) Ecotoxicologisch onderzoek in laboratorium en proefsloten voor de risico-analyse van bestrijdingsmiddelen. Gewasbescherming 20:51–61.

    Google Scholar 

  • Leidy RB, Wright CG, Dupree HE (1991) Applicator exposure to airborne concentrations of a termiticide formulation of chlorpyrifos. Bull Environ Contam Toxicol 47:177–183.

    PubMed  CAS  Google Scholar 

  • Leidy RB, Wright CG, Dupree HE (1992) Exposure levels to indoor pesticides. In: Racke KD, Leslie AR (eds) Fate and significance of pesticides in urban environments. ACS, Washington, DC, ACS Symp Series (in press).

    Google Scholar 

  • Leistra M, Boesten JJTI (1989) Pesticide contamination of groundwater in western Europe. Agric Ecosys Environ 26:369–389.

    CAS  Google Scholar 

  • Lemmon CR, Pylypiw HM (1992) Degradation of diazinon, chlorpyrifos, isofenphos, and pendimethalin in grass and compost. Bull Environ Contam Toxicol 48:409–415.

    PubMed  CAS  Google Scholar 

  • Leoni V, Puccetti G (1978) Stato di inquinamento da pesticidi del fiume Tevere e del suo bacino imbrifero. Ist di Ricerca sulle Acque 27:329.

    Google Scholar 

  • Leoni V, Hollick CB, D’Alessandro de Luca E, Collison RJ, Merolli S (1981) The soil degradation of chlorpyrifos and the significance of its presence in the superficial water in Italy. Agrochimica 25:414–426.

    CAS  Google Scholar 

  • Leshchev VV, Kan PT, Talanov GA (1972) Dynamics of the accumulation of diazinon and Dursban residues in calves and sheep. Khim Sel Khoz 10:704–706.

    CAS  Google Scholar 

  • Leuck DB, Bowman MC, Beck EW (1968) Dursban insecticide persistence in grass and corn forage. J Econ Entomol 61:689–690.

    CAS  Google Scholar 

  • Lindsay WL (1979) Chemical equilibria in soils. Wiley, New York, p 223.

    Google Scholar 

  • Long T (1989) Groundwater contamination in the vicinity of agrichemical mixing and loading facilities. In: Proc Ill Agric Pestic Conf, Univ Ill Cooperative Extension Service, pp 139–149.

    Google Scholar 

  • Lores EM, Sovocool GW, Herless RL, Wilson NK, Moseman RF (1978) A new metabolite of chlorpyrifos: Isolation and identification. J Agric Food Chem 26: 118–122.

    PubMed  CAS  Google Scholar 

  • Lu P-Y, Metcalf RL (1975) Environmental fate and biodegradability of benzene derivatives as studied in a model aquatic ecosystem. Environ Hlth Persp 10:269–284.

    CAS  Google Scholar 

  • Ludwig PD, Dishburger HJ, McNeill JC, Miller WO, Rice JR (1968). Biological effects and persistence of Dursban insecticide in a salt-marsh habitat. J Econ Entomol 61:626–633.

    CAS  Google Scholar 

  • Luke BG, Dahl CJ (1976) Detection of O,O-diethyl O-(2,5-dichlorophenyl) phosphorothioate and O,O-diethyl O-(3,6-dichloro-2-pyridyl) phosphorothioate in meat fat. J Assoc Offic Anal Chem 59:1081–1087.

    CAS  Google Scholar 

  • Lungle ML (1988) Studies of the dissipation and effects of chlorpyrifos in microcosms. PhD diss, Univ Guelph, Ontario, Canada.

    Google Scholar 

  • Macalady DL, Wolfe NL (1983) New perspectives on the hydrolytic degradation of the organophosphorothioate insecticide chlorpyrifos. J Agric Food Chem 31: 1139–1147.

    CAS  Google Scholar 

  • Macalady DL, Wolfe NL (1985) Effects of sediment sorption and abiotic hydrolysis. 1. Organophosphorothioate esters. J Agric Food Chem 33:167–173.

    CAS  Google Scholar 

  • Macek KJ, Walsh DF, Hogan JW, Holz DD (1972) Toxicity of the insecticide Dursban to fish and aquatic invertebrates in ponds. Trans Am Fish Soc 3:420–427.

    Google Scholar 

  • Majewski MS, Glotfelty DE, Seiber JN (1989) A comparison of the aerodynamic and the theoretical-profile shape methods for measuring pesticide evaporation from soil. Atmos Environ 23:929–938.

    CAS  Google Scholar 

  • Majewski MS, Glotfelty DE, Paw KT, Seiber JN (1990) A field comparison of several methods for measuring pesticide evaporation rates from soil. Environ Sci Technol 24:1490–1497.

    CAS  Google Scholar 

  • Mann HD, Ivey MC, Kunz SE, Hogan BF (1973) Chlorpyrifos, its oxygen analogue, and 3,5,6-trichloro-2-pyridinol: Residues in the body tissues of turkeys confined in pens on treated soil. J Econ Entomol 66:715–717.

    PubMed  CAS  Google Scholar 

  • Marganian VM, Wall WJ (1972) Dursban and diazinon residues in biota following treatment of intertidal plots on Cape Cod, 1967–69. Pestic Monit J 6:160–165.

    PubMed  CAS  Google Scholar 

  • Marshall WK, Roberts JR (1978) Ecotoxicology of chlorpyrifos. Nat Res Council Canada, Ottawa, Ontario, Publ. No 16079.

    Google Scholar 

  • Matsumura F (1985) Toxicology of insecticides, 2nd ed, Plenum Press, New York, p 46.

    Google Scholar 

  • Mauldin J, Jones S, Beal R (1987) Viewing termiticides. Pest Cont 55:46–59.

    Google Scholar 

  • McCall PJ, Laskowski DA, Swann RL, Dishburger HJ (1980) Measurement of sorption coefficients of organic chemicals and their use in environmental fate analysis. Proc Assoc Offic Anal Chem 94:89–109.

    Google Scholar 

  • McCall PJ, Oliver GR, McKellar RL (1984) Modeling the runoff potential and behavior of chlorpyrifos in a terrestrial-aquatic watershed. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • McCall PJ (1985a) Column leaching and sorption studies with chlorpyrifos. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • McCall PJ (1985b) Chlorpyrifos aged soil column leaching study. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • McCall PJ, Swann RL, Bauriedel WR (1985) Volatility characteristics of chlorpyrifos from soil and corn. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • McCall PJ (1986a) Hydrolysis of chlorpyrifos in dilute aqueous solution. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • McCall PJ (1986b) Photodegradation of chlorpyrifos in aqueous buffer. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • McCall PJ (1987) Soil adsorption properties of 14C-chlorpyrifos. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • McDonald G, Buchanan GA, Griffiths GR (1983) Insecticide application and degradation in Sultana grapes grown for drying. Pestic Sci 14:528–536.

    CAS  Google Scholar 

  • McDonald RA, Karris GC, Chakrabarti A (1985a) The melting behavior, heat of melting, specific heat capacity, thermal conductivity, and vapor pressure of a recrystallized Dursban insecticide. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • McDonald IA, Howes DA, Gillis NA (1985b) The determination of the physicochemical parameters of chlorpyrifos. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • McKellar RL, Wetters JH, Dishburger HJ (1972) Residues of chlorpyrifos and 3,5,6-trichloro-2-pyridinol in soil from corn fields treated with Dursban insecticides. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • McKellar RL, Dishburger HJ, Rice JR, Craig LF, Pennington J (1976) Residues of chlorpyrifos, its oxygen analogue, and 3,5,6-trichloro-2-pyridinol in milk and cream from cows fed chlorpyrifos. J Agric Food Chem 24:283–286.

    PubMed  CAS  Google Scholar 

  • McKenna DP, Bicki TJ, Dey WS, Roy WR, Miller MV, Coleman DD, Chou SFJ, Valkenburg J (1989) Persistence and mobility of selected pesticides in loessial soils of Illinois. Ill Dept Energy and Natural Resources, Springfield, IL, ILENR/RE-EH-89/22.

    Google Scholar 

  • Megahed HS, Steurbaut W, Dejonckheere W (1987) Influence of the presence of soybean oil-surfactant combinations on the rainfastness and the photodegradation of insecticide deposits. Med Facul Landbouww Rijkuniv Gent 52:713–719.

    Google Scholar 

  • Meikle RW, Youngson CR (1971) Hydrolysis rate of Dowco 179 in water. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Meikle RW, Hedlund RT (1973) Preliminary estimate of the degradation rate of chlorpyrifos in soil obtained by computer simulation of a simplified kinetic model. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Meikle RW, Youngson CR (1978) The hydrolysis rate of chlorpyrifos, O-O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate, and its dimethyl analog, chlorpyrifos-methyl, in dilute aqueous solution. Arch Environ Contam Toxicol 7:13–22.

    PubMed  CAS  Google Scholar 

  • Meikle RW, Hamaker JW (1981) The physical properties of 3,5,6-trichloro-2-pyridinol (Dowco 463X) and some environmental consequences. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Meikle RW, Kurihara NH, deVries DH (1983) Chlorpyrifos: The photodecomposition rates in dilute aqueous solution and on a surface, and the volatilization rate from a surface. Arch Environ Contam Toxicol 12:189–193.

    CAS  Google Scholar 

  • Mestres R, Chevallier C, Cornet R (1971) Penetration of insecticides in submerged soils. Part 1: Laboratory study of penetration of Dursban. Tray Soc Pharm Montpellier 31:109–124 (translation).

    CAS  Google Scholar 

  • Mestres R, Coste Cm, Cooper JF (1979) Study of the residues of pesticides in the region of the Pond of Canet in Roussillon. Tray Soc Pharm Montpellier 39:307–322 (translation).

    CAS  Google Scholar 

  • Metcalf RL (1974) A laboratory model ecosystem to evaluate compounds producing biological magnification. Essays Toxicol 5:17–28.

    CAS  Google Scholar 

  • Miles JRW, Harris CR, Moy P (1978) Insecticide residues in organic soil of the Holland Marsh, Ontario, Canada, 1972–75. J Econ Entomol 71:97–101.

    CAS  Google Scholar 

  • Miles JRW, Tu CM, Harris CR (1979) Persistence of eight organophosphorus insecticides in sterile and non-sterile mineral and organic soils. Bull Environ Contam Toxicol 22:312–318.

    PubMed  CAS  Google Scholar 

  • Miles JRW, Harris CR, Tu CM (1983) Influence of temperature on the persistence of chlorpyrifos and chlorfenvinphos in sterile and natural mineral and organic soils. J Environ Sci Hlth. B18:705–712.

    CAS  Google Scholar 

  • Miles JRW, Harris CR, Tu CM (1984) Influence of moisture on the persistence of chlorpyrifos and chlorfenvinphos in sterile and natural mineral and organic soils. J Environ Sci Hlth. B19:237–243.

    CAS  Google Scholar 

  • Miller TA, Nelson LL, Young WW, Roberts LW, Roberts DR, Wilkinson RN (1973). Polymer formulations of mosquito larvicides. I. Effectiveness of polyethylene and polyvinyl chloride formulations of chlorpyrifos applied to artificial field pools. Mosq News 33:148–155.

    CAS  Google Scholar 

  • Miller TP, Gold RE (1983) Sorption of 14C-labelled chlorpyrifos (Killmaster II) by German cockroaches (Orthoptera: Blattellidae). J Econ Entomol 76:1211–1215.

    CAS  Google Scholar 

  • Miller GC, Zepp RG (1983) Extrapolating photolysis rates from the laboratory to the environment. Residue Rev 85:89–110.

    CAS  Google Scholar 

  • Miller TP, Gold RE, Ball HJ (1983) Tissue analysis and hemolymph translocation of [14C]chlorpyrifos sorbed from treated surfaces by American cockroaches. Pestic Biochem Physiol 20:19–24.

    CAS  Google Scholar 

  • Mingelgrin U, Saltzman S, Yaron B (1977) A possible model for the surface-induced hydrolysis of organophosphorus pesticides on kaolinite clays. Soil Sci Soc Am J 41:519–523.

    CAS  Google Scholar 

  • Mortland MM, Raman KV (1967) Catalytic hydrolysis of some organic phosphate pesticides by copper (II). J Agric Food Chem 15:163–167.

    CAS  Google Scholar 

  • Mulla MS, Norland RL, Westlake WE, Dell B, St.-Amant J (1973) Aquatic midge larvicides, their efficacy and residues in water, soil, and fish in a warm-water lake. Environ Entomol 2:58–65.

    CAS  Google Scholar 

  • Munnecke DM, Hsieh DPH (1975) Development of microbial systems for the disposal of concentrated pesticide suspensions. Med Facul Landbouww Rijksuniv Gent 40:1237–1247.

    CAS  Google Scholar 

  • Murphy PG, Lutenske NE (1986) Bioconcentration of chlorpyrifos in rainbow trout (Salmo gairdneri Richardson). DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Naffziger DH, Sprenkel RJ, Mattler MP (1985) Indoor environmental monitoring of Dursban L.O. following broadcast application. Down to Earth 41(1):1–4.

    Google Scholar 

  • Natale OE, Gomez CE, Pechen de D’Angelo AM, Soria CA (1988) Waterborne pesticides in the Negro River basin (Argentina). In: Abbou R (ed) Hazardous waste detection control and treatment, Amsterdam, pp 879–907.

    Google Scholar 

  • Neary DG, Bush PB, McMahon CK, Cantrell RL, Taylor JW (1988) Persistence of nine forest pesticides in the surface horizon of a typic quartzipsamment soil of the Ocala National Forest. Soil Crop Sci Soc Florida Proc 47:127–134.

    CAS  Google Scholar 

  • Neely WB, Branson DR, Blau GE (1974) Partition coefficient to measure bioconcentration potential of organic chemicals in fish. Environ Sci Technol 8: 1113–1115.

    CAS  Google Scholar 

  • Neely WB, Blau GE (1977) The use of laboratory data to predict the distribution of chlorpyrifos in a fish pond. In: Khan SU (ed) Pesticides in aquatic environments, Plenum Press, New York, pp 145–163.

    Google Scholar 

  • Nelson JH, Evans ES (1973). Field evaulation of the larvicidal effectiveness, effects on nontarget species and environmental residues of a slow-release polymer formulation of chlorpyrifos. March–Oct 1973. Army Environ Hygeine Agency, Aberdeen, MD, AD/A-002 054.

    Google Scholar 

  • Niemczyk HD, Filary Z (1988) Vertical movement and accelerated degradation of insecticides applied to turfgrass. Ohio Turf Found News (March):5–6.

    Google Scholar 

  • Niemczyk HD, Majchrzak J, Filary Z, Krueger HR (1988) Vertical mobility and accelerated degradation of insecticides applied to turfgrass. Proc Int Congr Entomol XVIII:468.

    Google Scholar 

  • Nolan RJ, Rick DL, Freshour NL, Saunders JH (1984) Chlorpyrifos: Pharmacokinetics in human volunteers. Toxicol Appl Pharmacol 73:8–15.

    PubMed  CAS  Google Scholar 

  • Nolan RJ, Dryzga MD, Kastl PE (1987) Chlorpyrifos: Distribution and metabolism in the Fischer 344 rat. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Novozhilov KV, Petrova TM, Andreev YB (1982) Degradation of Basidin and Dursban in Povolahya soils and their toxicity for click beetle larvae. Agrokhimiya 10:123–128 (translation).

    Google Scholar 

  • Odenkirchen EW, Eisler R (1988) Chlorpyrifos hazards to fish, wildlife, and invertebrates: A synoptic review. U.S. Fish and Wildlife Service, Washington, DC, Biol Rept 85(1.13).

    Google Scholar 

  • Okuda I, Nishimura T, Kado M (1972) Organic phosphates. Chem Abstr 77:151944.

    Google Scholar 

  • Oliver GR (1984) Modeling the leaching potential of chlorpyrifos and the 3,5,6-trichloro-2-pyridinol metabolite in three Florida citrus soils. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Oliver GR (1985) Evaluation of the runoff potential of chlorpyrifos in Florida citrus groves. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Oliver GR, McCall PJ, Blau GE, Laskowski DA (1985) Modeling the runoff probability of chlorpyrifos in two cornbelt environments. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Oliver GR, McKellar RL, Woodburn KB, Eger JE, McGee GG, Ordiway TR (1987) Field dissipation and leaching study for chlorpyrifos in Florida citrus. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Olson KJ (1962) Results of range finding toxicological test on: O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Osman AZ, Bahiv ME, Fakhr IMI, Zayed SAD (1982) 14C-Dursban residues in milk and meat of lactating goats. Isotope Rad Res 14:63–69.

    CAS  Google Scholar 

  • Ozkan HE, Reichard DL, Niemczyk HD, Klein MG, Krueger HR (1990) A subsurface point injector applicator for turfgrass insecticides. Appl Eng Agric 6: 5–8.

    Google Scholar 

  • Packard SR (1987) Determination of the water solubility of chlorpyrifos. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Papendick RI, Campbell GS (1980) Theory and measurement of water potential. In: Parr JF, Gardner WR, Elliott LF (eds) Water potential relations in soil microbiology. Soil Science Soc America, Madison, WI, pp 1–22.

    Google Scholar 

  • Parsons DW, Witt JM (1988) Pesticides in groundwater in the United States of America: A report of a 1988 survey of state lead agencies. Oregon State Univ Extension Serv, Corvallis, OR, p 8.

    Google Scholar 

  • Petrova TM, Novozhilov KV (1980) IV. Migration of pesticides in the soil-plant system. Behavior of insecticides in the soil-plant system. In: Bobovnikova TI, Malakhov SG (eds) Migr zagryaz veshchestv pochvakh sopredel’nykh sredakh, tr vses soveshch, Gidrometeoizdat, Leningrad, 2nd ed., pp 136–143 (translation).

    Google Scholar 

  • Petrova, TM (1985) Hydrolytic degradation of insecticides. Agrokhimia 8:93–99 (translation).

    Google Scholar 

  • Phillips M, McDougall J (1990) Reference volume of the agrochemical service: Update of the agrochemical products section parts 1 and 2. County NatWest Woodmac (April). p. 33.

    Google Scholar 

  • Pike KS, Getzin LW (1981) Persistence and movement of chlorpyrifos in sprinkler-irrigated soil. J Econ Entomol 74:385–388.

    CAS  Google Scholar 

  • Pionke HB, Glotfelty DE, Lucas AD, Urban JB (1988) Pesticide contamination of groundwaters in the Mahantango Creek watershed. J Environ Qual 17:76–84.

    CAS  Google Scholar 

  • Pionke HB, Glotfelty DE (1989) Nature and extent of groundwater contamination by pesticides in an agricultural watershed. Water Res 23:1031–1037.

    CAS  Google Scholar 

  • Powell PK (1990) Penetration and permanence of an organophosphate and a pyrethroid in structural wood for insect control. PhD diss, Virginia Polytechnic Inst and State Univ.

    Google Scholar 

  • Powlson DS (1975) Effects of biocidal treatments on soil organisms. In: Walker N (ed) Soil microbiology. Wiley, New York, pp 193–223.

    Google Scholar 

  • Racke KD, Coats JR (1988) Comparative degradation of organophosphorus insecticides in soil: Specificity of enhanced microbial degradation. J Agric Food Chem 36:193–199.

    CAS  Google Scholar 

  • Racke KD, Coats JR, Titus KR (1988) Degradation of chlorpyrifos and its hydrolysis product, 3,5,6-trichloro-2-pyridinol, in soil. J Environ Sci Hlth B23: 527–539.

    CAS  Google Scholar 

  • Racke KD, Coats JR (1990) Enhanced biodegradation of insecticides in Midwestern corn soils.In: Racke KD, Coats JR (eds) Enhanced biodegradation of pesticides in the environment. ACS Symp Series 426, Washington, DC, pp 68–81.

    Google Scholar 

  • Racke KD, Laskowski DA, Schultz MR (1990) Resistance of chlorpyrifos to enhanced biodegradation in soil. J Agric Food Chem 38:1430–1436.

    CAS  Google Scholar 

  • Racke KD, Robbins ST (1991) Factors affecting the degradation of 3,5,6-trichloro-2-pyridinol in soil. In: Somasundaram L, Coats JR (eds) Pesticide transformation products: Fate and significance in the environment. ACS, Symp Series 459, Washington, DC, pp 93–107.

    Google Scholar 

  • Racke KD, Kesterson AL, Jackson SB (1991) Laboratory volatility of chlorpyrifos from soil. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Racke KD, Lubinski RN (1992) Factors affecting the abiotic hydrolysis of chlorpyrifos in soil. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Racke KD, Lubinski RN, Fontaine DD, Miller JR, McCall PJ, Oliver GR (1992) Comparative fate of chlorpyrifos insecticide in urban and agricultural environments. In: Racke KD, Leslie AR (eds) Fate and significance of pesticides in urban environments. ACS, Washington, DC, ACS Symp Series (in press).

    Google Scholar 

  • Rao BN, Sultan MA, Reddy KN (1987) Residues of chlorpyrifos on paddy. Pesticides 21:31–33.

    Google Scholar 

  • Raven PJ (1988) Ecological effects of a major insecticide pollution on an Essex river. London Nat 67:75–85.

    Google Scholar 

  • Raven PJ, George JJ (1989) Recovery by riffle macroinvertebrates in a river after a major accidental spillage of chlorpyrifos. Environ Pollut 59:55–70.

    PubMed  CAS  Google Scholar 

  • Rawn GP, Webster GRB, Findlay GM (1978) Effect of pool bottom substrate on residues and bioactivity of chlorpyrifos, against larvae of Culex tarsalis. Can Entomol 110:1269–1276.

    CAS  Google Scholar 

  • Raymond M, Fournier D, Bride JM, Cuany A, Berge J, Magnin M, Pasteur N (1986) Identification of resistance mechanisms in Culex pipiens (Diptera: Culicidae) from southern France: Insensitive acetylcholinesterase and detoxifying enzymes. J Econ Entomol 79:1452–1458.

    PubMed  CAS  Google Scholar 

  • Read DC (1976) Comparisons of residual toxicities of twenty-four registered or candidate pesticides applied to field microplots of soil by different methods. J Econ Entomol 69:429–437.

    CAS  Google Scholar 

  • Reimer GJ, Webster GRB (1980) Loss of chlorpyrifos in pond water: Examination of results using three simple mathematical models. J Environ Sci Hlth B15:559–569.

    CAS  Google Scholar 

  • Rigterink RH (1966) O-pyridyl phosphates and phosphorothioates. U.S. Patent 3,244,586.

    Google Scholar 

  • Rigterink RH, Kenaga EE (1966) Synthesis and insecticidal activity of some O,O-dialkyl O-(3,5,6-trihalo-2-pyridyl) phosphates and phosphorothioates. J Agric Food Chem 14:304–306.

    Google Scholar 

  • Riskallah MR, El-Sayed MM, Hegazy ME, Takla NS, Hindi SA (1981) Further studies on the stability of leptophos and the persistence of chlorpyriphos in water under laboratory conditions. Agric Res Rev 59:187–197.

    CAS  Google Scholar 

  • Riskallah MR, El-Sayed MM, Hegazy ME, Takla NS, Hindi SA (1983) Studies on the stability of leptophos and the persistence of chlorpyrifos in water under laboratory ditions. Int Pest Cont (July/Aug):110–112.

    Google Scholar 

  • Ritcey G, McEwen FL, Braun HE, Frank R (1991) Persistence and biological activity of residues of granular insecticides in organic soil and onions with furrow treatment for control of the onion maggot (Diptera: Anthomyiidae). J Econ Entomol 84:1339–1343.

    CAS  Google Scholar 

  • Ritter WF (1990) Pesticide contamination of ground water in the United States — a review. J Environ Sci Hlth B25:1–29.

    CAS  Google Scholar 

  • Roberts DR, Roberts LW, Miller TA, Nelson LL, Young WW (1973b). Polymer formulations of mosquito larvicides. III. Effects of a polyethylene formulation of chlorpyrifos on non-target populations naturally infesting artificial field pools. Mosq News 33:165–172.

    CAS  Google Scholar 

  • Roberts LW, Roberts DR, Miller TA, Nelson LL, Young WW (1973a). Polymer formulations of mosquito larvicides. II. Effects of a polyethylene formulation of chlorpyrifos on Culex populations naturally infesting artificial field pools. Mosq News 33:155–161.

    CAS  Google Scholar 

  • Robertson AS (1990) A look at the efficacy and residual effects of termiticides. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Ross J, Thongsinthusak T, Fong HR, Margetich S, Krieger R (1990) Measuring potential dermal transfer of surface pesticide generated from indoor fogger use: An interim report. Chemosphere 20:349–360.

    CAS  Google Scholar 

  • Rouchaud J, Metsue M, Gustin F, van de Steene F, Pelerents C, Benoit F, Ceustermans N, Gillet J, Vanparys L (1989) Soil and plant biodegradation of chlorpyrifos in fields of cauliflower and Brussels sprouts crops. Toxicol Environ Chem 23:215–226.

    CAS  Google Scholar 

  • Rouchaud J, Gustin F, van de Steene F, Pelerents C, Benoit F, Ceustermans N, Vanparys L, Seutin E, de Proft M, Gillet L (1990) Plant absorption and metabolism of the soil applied chlorpyrifos, chlorfenvinphos and carbofuran insecticides in cabbage and sugar beet crops. Med Fac Landbouww Rijksuniv Gent 55:1291–1300.

    CAS  Google Scholar 

  • Rouchaud J, Gustin F, van de Steene F, Pelerents C, Vanparys L, Gillet J, Benoit F, Ceustermans N (1991a) Transport of the insecticides chlorpyrifos, chlorfenvinphos, carbofuran, carbosulfan, and furathiocarb from soil into the foliage of cauliflower and Brussels sprouts plants grown in the field. Toxicol Environ Chem 30:79–94.

    CAS  Google Scholar 

  • Rouchaud J, Gustin F, Vanparys L (1991b) Influence of slurry and ammonium nitrate fertilizations on soil and plant metabolism of chlorpyrifos in field cauliflower. Bull Environ Contam Toxicol 46:705–712.

    PubMed  CAS  Google Scholar 

  • Rouchaud J, Gustin F, Gillet J, Benoit F, Ceustermans N, van de Steene F, Pelerents C (1991c) Chlorpyrifos soil and plant metabolisms in cauliflower crops grown on cow manure and composts soil fertilized fields. Toxicol Environ Chem 33:31–43.

    CAS  Google Scholar 

  • Rouchaud J, Gustin F, Benoit F, Ceustermans N, Vanparys L, Gillet J, van de Steene F, Pelerents C (1991d) Influences of slurry, cow manure, city refuse and mushroom cultivation composts fertilizers onto chlorpyrifos, chlorfenvinphos and carbofuran soil and plant metabolisms in cauliflower crops. Med Fac Landbouww Rijksuniv Gent 56:915–924.

    CAS  Google Scholar 

  • Roulston WJ, Schuntner CA, Schnitzerling HJ, Wilson JT, Wharton RH (1977) Characterization of three strains of organophosphorus-resistant cattle ticks (Boophilus microplus) from Bajool, Tully and Ingham. Aust J Agric Res 28: 345–354.

    CAS  Google Scholar 

  • Saltzman S, Brates N (1990) Effects of pesticides and CO2 stress on ammonium oxidation in soil. J Environ Sci Hlth B25:689–711.

    CAS  Google Scholar 

  • Sauer TJ, Daniel TC (1987) Effect of tillage system on runoff losses of surface-applied pesticides. Soil Sci Soc Am J 51:410–415.

    CAS  Google Scholar 

  • Sauer TJ, Fermanich KJ, Daniel TC (1990) Comparison of the pesticide root zone model simulated and measured pesticide mobility under two tillage conditions. J Environ Qual 19:727–734.

    CAS  Google Scholar 

  • Schaefer CH, Dupras EF (1969) The effects of water quality, temperature and light on the stability of organophosphorus larvicides used for mosquito control. Proc Calif Mosq Cont Assoc 37:67–75.

    CAS  Google Scholar 

  • Schaefer CH, Dupras EF (1970) Factors affecting the stability of Dursban in polluted waters. J Econ Entomol 63:701–705.

    PubMed  CAS  Google Scholar 

  • Schmimmel SC, Garnas RL, Patrick JM, Moore JC (1983) Acute toxicity, bioconcentration, and persistence of AC 222,705, benthiocarb, chlorpyrifos, fenvalerate, methyl parathion, and permethrin in the estuarine environment. J Agric Food Chem 31:104–113.

    Google Scholar 

  • Schrader G (1942) German Patent 750,577.

    Google Scholar 

  • Sears MK, Chapman RA (1979) Persistence and movement of four insecticides applied to turfgrass. J Econ Entomol 72:272–274.

    CAS  Google Scholar 

  • Sears MK, Bowhey C, Braun H, Stephenson GR (1987) Dislodgeable residues and persistence of diazinon, chlorpyrifos, and isofenphos following their application to turfgrass. Pestic Sci 20:223–231.

    CAS  Google Scholar 

  • Sethunathan N, Pathak MD (1972) Increased biological hydrolysis of diazinon after repeated application in rice paddies. J Agric Food Chem 20:586–589.

    PubMed  CAS  Google Scholar 

  • Shaaban AM, Zidan ZH, Sobeiha AMK, El-Zemaity MS (1981) Some factors influencing the persistence of certain pesticides in soil and water. Bull Entomol Soc Egypt, Econ Ser 12:137–144.

    Google Scholar 

  • Shah PV, Monroe RJ, Guthrie FE (1981) Comparative rates of dermal penetration of insecticides in mice. Toxicol Appl Pharmacol 59:414–423.

    PubMed  CAS  Google Scholar 

  • Shah PV, Fisher HL, Sumler MR, Monroe RJ, Chernoff N, Hall LL (1987) Comparison of the penetration of 14 pesticides through the skin of young and adult rats. J Toxicol Environ Hlth 21:353–366.

    CAS  Google Scholar 

  • Shaker N, Abo-Donia S, El-Shaheed YA, Ismail A (1988) Effect of lactic acid bacteria and heat treatments on pesticides contaminated milk. Egypt J Dairy Sci 16:309–317.

    CAS  Google Scholar 

  • Sharom MS, Miles JRW, Harris CR, McEwen FL (1979) Behaviour of some insecticides in soil and their persistence in the aquatic system. In: Kwee LT, Soon LG, Ibrahim AG, Vargehese G, Singh G, Hai TC, Kwee LT, Soon LG, Ibrahim AG, Hai TC (eds) Strategies in plant protection. In: Proc MAPPS Seminar, Malaysian Plant Protection Soc, MARDI, Kuala Lumpur, Malaysia, pp 117–137.

    Google Scholar 

  • Sharom MS, Miles JRW, Harris CR, McEwen FL (1980) Persistence of 12 insecticides in water. Water Res 14:1089–1093.

    CAS  Google Scholar 

  • Siefert RE, Lozano SJ, Brazner JC, Knuth ML (1989) Littoral enclosures for aquatic field testing of pesticides: Effects of chlorpyrifos on a natural system. Misc Pub Entomol Soc Am 75:57–73.

    Google Scholar 

  • Siegfried BD, Scott JO, Roush RT, Zeichner BC (1990) Biochemistry and genetics of chlorpyrifos resistance in the German cockroach, Blattella germanica (L). Pestic Biochem Physiol 38:110–121.

    CAS  Google Scholar 

  • Smith GN, Watson BS (1964) Uptake and translocation of ethel-36Cl in plants. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Smith GN (1966a) Ultraviolet light decomposition studies with Dursban and 3,5,6-trichloro-2-pyridinol. J Econ Entomol 61:793–799.

    Google Scholar 

  • Smith GN (1966b) Basic studies on Dursban insecticide. Down to Earth 22(2): 3–7.

    CAS  Google Scholar 

  • Smith GN, Watson BS, Fischer FS (1966a) The metabolism of [14C]O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate (Dursban) in fish. J Econ Entomol 59:1464–1475.

    PubMed  CAS  Google Scholar 

  • Smith GN, Watson BS, Sebold FM (1966b) Volatilization of O,O-diethyl O-3,5,6-trichloro-2-pyridinyl phosphorothioate 36Cl. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Smith GN, Watson BS, Fischer FS (1967a) Investigations on Dursban insecticide: uptake and translocation of [36Cl] O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate and [14C] O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate by beans and corn. J Agric Food Chem 15:127–131.

    CAS  Google Scholar 

  • Smith GN, Watson BS, Fischer FS (1967b) Investigations on Dursban insecticide: Metabolism of [36Cl] O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate in rats. J Agric Food Chem 15:132–138.

    CAS  Google Scholar 

  • Smith GN (1972) Dehalogenation of chlorpyrifos in Australian cattle dip solutions. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Smith GN, Taylor Y (1972) Photodecomposition of Dowco 179 (O,O-diethyl-O,3,5,6-trichloro-2-pyridyl phosphorothioate) in the aerodynamotron. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Smith GN, Taylor Y, Watson BS (1972) Ecological studies on chlorpyrifos. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Smith JL, Rust MK (1991) Vapor activity of insecticides used for subterranean termite (Isoptera: Rhinotermitidae) control. J Econ Entomol 84:181–184.

    CAS  Google Scholar 

  • Somasundaram L, Racke KD, Coats JR (1987) Effect of manuring on the persistence and degradation of soil insecticides. Bull Environ Contam Toxicol 39:579–586.

    CAS  Google Scholar 

  • Somasundaram L, Coats JR, Racke KD (1989) Degradation of pesticides in soil as influenced by the presence of hydrolysis metabolites. J Environ Sci Hlth B24: 457–478.

    CAS  Google Scholar 

  • Somasundaram L, Coats JR, Racke KD, Shanbhag VM (1991) Mobility of pesticides and their hydrolysis metabolites in soil. Environ Toxicol Chem 10:185–194.

    CAS  Google Scholar 

  • Spacie A, Hamelink JL (1985) Bioaccumulation. In: Rand GM, Petrocelli SR (eds) Fundamentals of aquatic toxicology: Methods and applications. Hemisphere Publ, New York, p 497.

    Google Scholar 

  • Spalding RF, Snow DD (1988) Soluble pesticide levels in the Platte River basin of Nebraska. In: Proc Agricultural Impacts on Ground Water Conf. Assoc Ground Water Sci Eng, Des Moines, IA, pp 211–233.

    Google Scholar 

  • Spalding RF, Snow DD (1989) Stream levels of agrichemicals during a spring discharge event: Chemosphere 19:1129–1140.

    Google Scholar 

  • Spalding RF, Burbach ME, Exner ME (1989) Pesticides in Nebraska’s ground water. Ground Water Monit Rev 9:126–133.

    CAS  Google Scholar 

  • Spencer WF, Cliath MM, Blair JW, LeMert RA (1985) Transport of pesticides from irrigated fields in surface runoff and tile drain waters. U.S. Dept ARS, Conserv Rept No 31.

    Google Scholar 

  • Srivastava KP, Jotwani MG (1980) Persistence and residues of some recently developed insecticides used on sorghhum for the control of major pests. J Entomol Res 4:129–138.

    CAS  Google Scholar 

  • Stehl RH (1966) Partition coefficients of Dursban and oxydursban between water and n-octanol. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Steinberg SM, Pignatello JJ, Sawhney BL (1987) Persistence of 1,2-dibromoethane in soils: entrapment in intraparticle micropores. Environ Sci Technol 21:1201–1207.

    CAS  Google Scholar 

  • Stephan CE, Larson LJ, Hyland JL, Hillman RE, Hansen DJ (1986) Ambient water quality criteria for chlorpyrifos — 1986. U.S. EPA, Washington, DC, EPA 440/5-86-005.

    Google Scholar 

  • Stevenson FJ (1972) Organic matter reactions involving herbicides in soil. J Environ Qual 1:333–343.

    CAS  Google Scholar 

  • Suett DL, Padbury CE (1982) Incorporation and stability of chlorfenvinphos, chlorpyrifos, diazinon and phorate in peat blocks. Pestic Sci 13:229–245.

    CAS  Google Scholar 

  • Sultatos LG, Cost LG, Murphy SD (1982) Factors involved in the differential acute toxicity of the insecticides chlorpyrifos and methyl chlorpyrifos in mice. Toxicol Appl Pharmacol 65:144–152.

    PubMed  CAS  Google Scholar 

  • Sultatos LG, Murphy SD (1983a) Hepatic microsomal detoxification of the organophosphates paraoxon and chlorpyrifos oxon in the mouse. Drug Metab Dispos 11:232–238.

    PubMed  CAS  Google Scholar 

  • Sultatos LG, Murphy SD (1983b) Kinetic analyses of the microsomal biotransformation of the phosphorothioate insecticides chlorpyrifos and parathion. Fund Appl Toxicol 3:16–21.

    CAS  Google Scholar 

  • Sultatos, LG, Shao M, Murphy SD (1984a) The role of hepatic biotransformation in mediating the acute toxicity of the phosphorothioate insecticide chlorpyrifos. Toxicol Appl Pharmacol 73:60–68.

    PubMed  CAS  Google Scholar 

  • Sultatos LG, Basker KM, Shao M, Murphy SD (1984b) The interaction of the phosphorothioate insecticides chlorpyrifos and parathion and their oxygen analogues with bovine serum albumin. Mol Pharamcol 26:99–104.

    CAS  Google Scholar 

  • Sultatos LG, Minor LD, Murphy SD (1985) Metabolic activation of phosphorothioate pesticides: Role of the liver. J Pharmacol Exp Therap 232:624–628.

    CAS  Google Scholar 

  • Sultatos LG (1988) Factors affecting the hepatic biotransformation of the phosphorothioate pesticide chlorpyrifos. Toxicology 51:191–200.

    PubMed  CAS  Google Scholar 

  • Sultatos LG (1991) Metabolic activation of the organophosphorus insecticides chlorpyrifos and fenitrothion by perfused rat liver. Toxicology 68:1–9.

    PubMed  CAS  Google Scholar 

  • Sunaga M, Yoshida M, Hata I (1989) Metabolism and urinary excretion of chlorpyrifos in rats. Nippon Eiseigaku Zasshi 43:1124–1129.

    PubMed  CAS  Google Scholar 

  • Szeto SY, Mackenzie JR, Vernon RS (1988) Comparative persistence of chlorpyrifos in a mineral soil after granular and drench applications. J Environ Sci Hlth B23: 541–557.

    CAS  Google Scholar 

  • Szeto SY, Price PM (1991) Persistence of pesticide residues in mineral and organic soils in the Fraser Valley of British Columbia. J Agric Food Chem 39:1679–1684.

    CAS  Google Scholar 

  • Tashiro H, Kuhr RJ (1978) Some factors influencing the toxicity of soil applications of chlorpyrifos and diazinon to European chafer grubs. J Econ Entomol 71: 904–907.

    CAS  Google Scholar 

  • Taylor AG (1990) Pesticide monitoring: Illinois EPA’s summary of results 1985–1989. Illinois EPA, Springfield, IL, EPA/WPC/90-297.

    Google Scholar 

  • Tetreault GE (1985) Metabolism of carbaryl, chlorpyrifos, DDT, and parathion in the European corn borer: Effects of microsporidiosis on toxicity. PhD diss, Univ Illinois at Urbana-Champaign.

    Google Scholar 

  • Thiegs BJ (1964) Decomposition and leaching of Ethel 36Cl in soil. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Thiegs BJ (1966) Degradation of [14C] Dursban in soil. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Thoma K, Nicholson BC (1989) Pesticide losses in runoff from a horticultural catchment in south Australia and their relevance to stream and reservoir water quality. Environ Technol Lett 10:117–129.

    CAS  Google Scholar 

  • Thompson AR, Sans WW (1974) Effects of soil insecticides in southwestern Ontario on non-target invertebrates: earthworms in pasture. Environ Entomol 3:305–308.

    CAS  Google Scholar 

  • Tinsley IJ (1979) Chemical concepts in pollutant behavior. Wiley, New York, pp 13–32.

    Google Scholar 

  • Townsend LR, Specht HB (1975) Organophosphorus and organochlorine pesticide residues in soils and uptake by tobacco plants. Can J Plant Sci 55:835–842.

    CAS  Google Scholar 

  • Tsuda T, Aoki S, Kojima M, Fujita T (1992) Accumulation and excretion of pesticides used in golf courses by carp (Cyprinus carpio) and willow shiner (Gnathopogon caerulescens). Comp Biochem Physiol 101C:63–66.

    CAS  Google Scholar 

  • Tsunoda K, Yoshimura K, Nishimoto K (1989) Effect of accelerated ageing on the termiticidal performance of organophosphates. II. Soil burial. Material und Organismen 24:17–25.

    CAS  Google Scholar 

  • Vaccaro JR (1980) Exposures of pesticide applicators to airborne chlorpyrifos during application of liquid Dursban insecticide to turf and plants. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Vaccaro JR (1982) Dursban TC: Toxicological and industrial hygiene considerations. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Vaccaro J, Bohl R, Skowronski B, Morabito P (1987) Airborne chlorpyrifos concentrations measured during and following applications of Dursban TC insecticide to residential dwellings. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Vaccaro JR (1992) Risks associated with exposure to chlorpyrifos and chlorpyrifos formulation components. In: Racke KD, Leslie AR (eds) Fate and significance of pesticides in urban environments. ACS, Washington, DC, ACS Symp Series (in press).

    Google Scholar 

  • van de Steene F, de Smet G, Verstraeten R (1989) Doeltreffendheid tegen de koolvlieg, Delia brassicae B. en mikrobiuele afbraak van chloorfenvinfos, chloorpyrifos en trichloronaat. Revue de l’Agric 42:445–459.

    Google Scholar 

  • van de Steene F, Melkebeke T, Verstraeten R (1990) Breakdown of carbofuran, chlorpyrifos, fonofos, and bromofos-ethyl applied to soil from four regions of Belgium. Med Fac Landbouww Rijksuniv Gent 55:107–115.

    Google Scholar 

  • van Wijngaarden R, Leeuwangh P (1989) Relation between toxicity in laboratory and pond: An ecotoxicological study with chlorpyrifos. Med Fac Landbouww Rijksuniv Gent 54:1061–1069.

    Google Scholar 

  • Veierov D, Berlinger MJ, Fenigstein A (1988a) The residual behaviour of fenpropathrin and chlorpyrifos applied as aqueous emulsions or oil solutions to greenhouse tomato leaves. Med Fac Landbouww Rijksuniv Gent 53:1535–1541.

    CAS  Google Scholar 

  • Veierov D, Fenigstein A, Melamed-Madjar V, Klein M (1988b) Effects of concentration and application method on decay and residual activity of foliar chlorpyrifos. J Econ Entomol 81:621–627.

    CAS  Google Scholar 

  • Visi G (1984) Investigation of the reduction in concentration of plant protection agents in aquarium model systems. Novenyvedelem 20:358–363 (translation).

    CAS  Google Scholar 

  • Vrochinskii KK (1976) Model of an aquatic ecosystem as a test for determining the extent to which a pesticide is harmful to a water body. Izv Gos Nauchno-Issled Inst Ozern Rechn Rybn Khoz 109:88–93.

    CAS  Google Scholar 

  • Wade LL (1968) The efficacy and stability of Dursban insecticide in dipping vat for control of the southern cattle tick. J Econ Entomol 61:908–909.

    PubMed  CAS  Google Scholar 

  • Waite DT, Grover R, Westcott ND, Sommerstad H, Kerr L (1992) Pesticides in ground water, surface water and spring runoff in a small Saskatchewan watershed. Environ Toxicol Chem 11:741–748.

    CAS  Google Scholar 

  • Walia S, Dureja P, Mukerjee SK (1988a) New photodegradation products of chlorpyrifos and their detection on glass, soil, and leaf surfaces. Arch Environ Contam Toxicol 17:183–188.

    CAS  Google Scholar 

  • Walia S, Dureja P, Mukerjee SK (1988b) Superoxide mediated novel transformations of the insecticide O,O-diethyl-O-(3,5,6-trichloro-2-pyridyl) phosphorothioate (chlorpyrifos). Toxicol Environ Chem 18:21–29.

    CAS  Google Scholar 

  • Walker WW, Cripe CR, Pritchard PH, Bourquin AW (1988) Biological and abiotic degradation of xenobiotic compounds in in vitro estaurine water and sediment/water system. Chemosphere 17:2255–2270.

    CAS  Google Scholar 

  • Ware GW, Estesen B, Buck NA (1978) Dislodgeable insecticidal residues on cotton. Bull Environ Contam Toxicol 20:24–27.

    PubMed  CAS  Google Scholar 

  • Wass MN, Branson DR (1970) Comparative metabolism of insecticides. II. The fate of O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate in Madeira cockroaches. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Watschke TL, Mumma RO (1989) The effect of nutrients and pesticides applied to turf on the quality of runoff and percolating water. Pennsylvania State Univ, University Park, PA, Environ Resources Res Inst Publ No ER-8904.

    Google Scholar 

  • Wauchope RD (1978) The pesticide content of surface water draining from agricultural fields — a review. J Environ Qual 7:459–472.

    CAS  Google Scholar 

  • Wauchope RD, Young JR, Chalfant RB, Marti LR, Sumner HR (1991) Deposition, mobility and persistence of sprinkler-irrigation-applied chlorpyrifos on corn foliage and in soil. Pestic Sci 32:235–243.

    CAS  Google Scholar 

  • Welling W, de Vries JW (1992) Bioconcentration kinetics of the organophosphorus insecticide chlorpyrifos in guppies (Poecilia reticulata). Ecotoxicol Environ Saf 23:64–75.

    PubMed  CAS  Google Scholar 

  • Wetters JH (1983) Deposition pattern of residues in field corn and soil following a foliar application of Lorsban 4E insecticide from a center pivot irrigation system. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Wetters JH, McKellar RL, Ordiway TR, Miller PW (1985) Dislodgeable residues of chlorpyrifos on turf grasses following application of Dursban 4E insecticide or Dursban 50W insecticide. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Wetzel RG (1975) Limnology. W.B. Saunders, Philadelphia, PA, p 263.

    Google Scholar 

  • Whitlaw JT, Evans ES (1968) Selected plastic formulations for use as mosquito larvicides. J Econ Entomol 61:889–892.

    PubMed  CAS  Google Scholar 

  • Whitney WK (1967) Laboratory tests with Dursban and other insecticides in soil. J Econ Entomol 60:68–74.

    CAS  Google Scholar 

  • Whitten CJ, Bull DL (1974) Comparative toxicity, absorption, and metabolism of chlorpyrifos and its dimethyl homologue in methyl parathion-resistant and -susceptible tobacco budworms. Pestic Biochem Physiol 4:266–274.

    CAS  Google Scholar 

  • Wijngaarden R, Leeuwangh P (1989) Relation between toxicity in laboratory and pond: An ecotoxicological study with chlorpyrifos. Med Fac Landbouww Rijksuniv Gent 54:1061–1069.

    Google Scholar 

  • Winterlin W, Seiber JN, Craigmill A, Baier T, Woodrow J, Walker G (1989) Degradation of pesticide waste taken from a highly contaminated soil evaporation pit in California. Arch Environ Contam Toxicol 18:734–747.

    CAS  Google Scholar 

  • Wolf DC, Dao TH, Scott HD, Lavy TL (1989) Influence of sterilization methods on selected soil microbiological, physical, and chemical properties. J Environ Qual 18:39–44.

    CAS  Google Scholar 

  • Wood RJ, Pasteur N, Sinegre G (1984) Carbamate and organophosphate resistance in Culex pipiens L. (Diptera: Culicidae) in southern France and the significance of Est-3A. Bull Entomol Res 74:677–687.

    CAS  Google Scholar 

  • Wright CG, Leidy RB, Dupree HE (1991) Chlorpyrifos in the air and soil of houses four years after its application for termite control. Bull Environ Contam Toxicol 46:686–689.

    PubMed  CAS  Google Scholar 

  • Yackovich PR, Miller JH (1984) Photodegradation of chlorpyrifos on Commerce soil surface. DowElanco, Indianapolis, IN (unpublished report).

    Google Scholar 

  • Yaron B (1978) Some aspects of surface interactions of clays with organophosphorus pesticides. Soil Sci 125: 210–216.

    CAS  Google Scholar 

  • Yonce CE, Brady UE (1984) Efficacy and persistence of chlorpyrifos for control of Synanthedon pictipes on peach trees. J Agric Entomol 1:106–110.

    CAS  Google Scholar 

  • Yoshioka S, Fuse G, Enoki A (1991) Termiticidal efficacy of organophosphates (I): Degradation of organophosphates in soil. Mem Fac Agric Kinki Univ 24:29–36 (translation).

    Google Scholar 

  • Zepp RG, Schlotzhauer PF (1983) Influence of algae on photolysis rates of chemicals in water. Environ Sci Technol 17:462–468.

    CAS  Google Scholar 

  • Zidan ZH, Shaaban AM, Sobeiha AK, El-Zemaity MS (1981) Degradation of Dursban and Temik in water, soil extracts and soils under laboratory conditions. Bull Entomol Soc Egypt, Econ Ser 12:179–187.

    Google Scholar 

  • Zidan ZH, Shaaban AM, El-Zemaity MS, Sobeiha AMK (1984) Some factors influencing the adsorption of certain pesticides on different soils. Bull Entomol Soc Egypt 12:129–136.

    Google Scholar 

  • Zitko V, McLeese DW (1980) Evaluation of hazards of pesticides used in forest spraying to the aquatic environment. Canadian Tech Rept Fisheries and Aquatic Sciences 985, St. Andrews, New Brunswick.

    Google Scholar 

  • Zulkifli M, Tejada AW, Magallona ED (1983) The fate of BPMC and chlorpyrifos in some components of paddy rice ecosystem. Phil Entomol 6:555–565.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Racke, K.D. (1993). Environmental Fate of Chlorpyrifos. In: Ware, G.W. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 131. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4362-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4362-5_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8747-6

  • Online ISBN: 978-1-4612-4362-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics