Skip to main content

Interaction of Hemoglobin with Nitric Oxide and Carbon Monoxide: Physiological Implications

  • Chapter
Blood Substitutes

Abstract

Hemoglobin-mediated cytotoxicity and constriction of blood vessels represent serious obstacles in the development of acellular hemoglobin derivatives to be used as artificial oxygen carriers. The principal property of hemoglobin that may potentially lead to vasoconstriction in vivo is its interaction with the endothelium-derived relaxing factor (EDRF), a local regulator of blood pressure that has been identified as nitric oxide (NO). EDRF-NO, which is synthesized in endothelial cells from L-arginine by NO synthase, mediates vascular smooth muscle relaxation by activation of the heme-dependent enzyme guanylate cyclase. It appears that cell-free hemoglobin injected into the vascular circulation may rapidly extra-vasate to the surrounding tissues, where it binds NO more avidly than oxygen, blocking the vasorelaxant properties of EDRF. In addition, since NO mediates important regulatory processes in the cell, the inactivation of NO functions by the use of hemoglobin preparations may significantly alter the hemostasis of vascular endothelium and other tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, N.G., Y. Lavrovsky, M.L. Schwartzman, RA Stoltz, R.D. Lever, M.E. Gerritsen, S. Shibahara, and A. Kappas. Transfec-tion of the human heme oxygenase gene into rabbit coronary microvessel endothelial cells: protective effect against heme and hemoglobin toxicity. Proc. Natl. Acad. Sci. USA 92: 6798–6802, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Abraham, N.G., J.H.C. Lin, M.L. Schwartzman, R.D. Levere, and S. Shibahara. The physiological significance of heme oxygenase. Int. J. Biochem. 20: 543–558, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Balla, G., H.S. Jacob, J. Balla, M. Rosenberg, K. Nath, F. Apple, J. W. Eaton, and G.M. Vercellotti. Ferritin: a cytoprotective antioxidant stratagem of endothelium. J. Biol. Chem. 267: 18148–18153, 1992.

    PubMed  CAS  Google Scholar 

  • Balla, J., H.S. Jacob, G. Balla, K. Nath, J.W. Eaton, and G.M. Vercellotti. Endothelial-cell heme uptake from heme proteins: induction of sensitization and desensitization to oxidant damage. Proc. Natl. Acad. Sci. USA 90: 9285–9289, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Balla, J., KA Nath, G. Balla, M.B. Juckett, H.S. Jacob, and G.M. Vercellotti. Endothelial cell heme oxygenase and ferritin induction in rat lung by hemoglobin in vivo. Am. J. Physiol. 268: L321-L327, 1995.

    CAS  Google Scholar 

  • Beckman, J.S., T.W. Beckman, J. Chen, PA Marshall, and BA Freeman. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. USA 87: 1620–1624, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Bredt, D.S., and S.H. Snyder. Isolation of nitric oxide synthase, a calmodulin-requiring enzyme. Proc. Natl. Acad. Sci. USA 87: 682–685, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Brune, B., and V. Ullrich. Inhibition of platelet aggregation by carbon monoxide is mediated by activation of guanylate cyclase. Mot. Pharmacol. 32: 497–504, 1988.

    Google Scholar 

  • Coburn, R.F., W.J. Williams, P. White, and S.B. Kahn. The production of carbon monoxide from hemoglobin in vivo. J. Clin. Invest. 46: 346–356, 1967.

    Article  CAS  Google Scholar 

  • Cruse, I., and M.D. Maines. Evidence suggesting that the two forms of heme oxygenase are products of different genes. J. Biol. Chem. 263: 3348–3353, 1988.

    PubMed  CAS  Google Scholar 

  • Ewing, J.F., and M.D. Maines. Rapid induction of heme oxygenase-1 mRNA and protein by hyperthermia in rat brain: heme oxygenase-2 is not a heat shock protein. Proc. Natl. Acad. Sci. USA 88: 5364–5368, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Ewing, J.F., V.S. Raju, and M.D. Maines. Induction of heart heme oxygenase-1 (HSP32) by hyperthermia: possible role in stress-mediated elevation of cyclic 3’:5’-guanosine monophosphate. J. Pharmacol. Exp. Ther. 271: 408–414, 1994.

    PubMed  CAS  Google Scholar 

  • Gibson, Q.H. The direct determination of the velocity constant of the reaction Hb4(CO)3+CO -; Hb4(CO)4. J. Physiol. 134: 123–134, 1956.

    PubMed  CAS  Google Scholar 

  • Gibson, Q.H., and F.J.W. Roughton. The kinetics and equilibria of the reactions of nitric oxide with sheep hemoglobin. J. Physiol. 136: 507–526, 1957.

    PubMed  CAS  Google Scholar 

  • Griffith, T.M., D.H. Edwards, and D.J. Lewis. The nature of endothelium-derived vascular relaxant factor. Nature 329: 442–445, 1984.

    Article  Google Scholar 

  • Hess, J.R., V.W. Macdonald, and W.W. Brinkley. Systemic and pulmonary hypertension after resuscitation with cell-free hemoglobin. J. Appl. Physiol. 74: 1769–1778, 1993.

    PubMed  CAS  Google Scholar 

  • Ignarro, L. Biosynthesis and metabolism of endothelium-derived nitric oxide. Annu. Rev. Pharmacol. Toxicol. 30: 535–560, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Ignarro, L.J., G.M. Buga, and K.S. Wood. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. USA 84: 9265–9269, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, RA, M. Lavesa, B. Askari, N.G. Abraham, and A. Nas-jletti. A heme oxygenase product, presumably carbon monoxide, mediates a vasodepressor function in rats. Hypertension 25: 166–169, 1995.

    PubMed  CAS  Google Scholar 

  • Jornot, L., and A.F. Junod. Variable glutathione levels and expression of antioxidant enzymes in human endothelial cells. Am. J. Physiol. 264: L482-L489, 1993.

    PubMed  CAS  Google Scholar 

  • Keipert, P.E., A. Gonzales, C.L. Gomez, V.W. Macdonald, J.R. Hess, and R.M. Winslow. Acute changes in systemic blood pressure and urine output of conscious rats following exchange transfusion with diaspirin-crosslinked hemoglobin solution. Transfusion 33: 701–708, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Kelm, M., and J. Schrader. Control of coronary vascular tone by nitric oxide. Circ. Res. 66: 1561–1575, 1990.

    PubMed  CAS  Google Scholar 

  • Keyse, S.M., and R.M. Tyrrell. Induction of the heme oxygenase gene in human skin fibroblast by hydrogen peroxide and UVA (365 nm) radiation: evidence for the involvement of the hydroxyl radical. Carcinogenesis 11: 787–791, 1989.

    Article  Google Scholar 

  • Keyse, S.M., and R.M. Tyrrell Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite. Proc. Natl. Acad. Sci. USA 86: 99–103, 1989b.

    Article  PubMed  CAS  Google Scholar 

  • Kharitonov, V.G., V.S. Sharma, R.B. Pilz, D. Magde, and D. Koes-ling. Basis of guanylate cyclase activation by carbon monoxide. Proc. Natl. Acad. Sci. USA 92: 2568–2571, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Kida, Y., M. Maeda, S. Iwata, Y. Iwashita, K. Goto, and K. Nishi. Effects of pyridoxalated hemoglobin polyoxyethylene conjugate and other hemoglobin-related substances on arterial blood pressure in anesthetized and conscious rats. Artif. Organs 19: 117–128, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Kim Y.M., H.A.Bergonia, C. Muller, B.R. Pitt,W.D. Watkins,and J.R. Lancaster. Loss and degradation of enzyme-bound heme induced by cellular nitric oxide synthesis. J.Biol.Chem. 270: 5710–5713, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Kutty, R.K., G. Kutty, B. Wiggert, G.J. Chader, R.M. Darrow, and D.T. Organisciak. Induction of heme oxygenase 1 in the retina by intense visible light: suppression by the antioxidant dimethylthiourea. Proc. Natl. Acad. Sci. USA 92: 1177–1181, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Lu, D., N. Maulik, I.I. Moraru, D.L. Kreutzer, and D.K. Das. Molecular adaptation of vascular endothelial cells to oxidative stress. Am. J. Physiol. 264: C715-C722, 1993.

    PubMed  CAS  Google Scholar 

  • Macdonald, V.W. Methemoglobin-induced decrease of vascular reactivity to human stroma-free hemoglobin in isolated perfused rabbit hearts. In The Red Cell: Seventh Ann Arbor Conference (G. Brewer, Ed.). New York: Alan R. Liss, 1989, pp. 423–434.

    Google Scholar 

  • Macdonald, V.W., and R. Motterlini. Vasoconstrictor effects in isolated rabbit heart perfused with bis(3,5-dibromosalicyl)fumarate cross-linked hemoglobin (ococHb). Artif. Cells, Blood Substitutes, Immobil. Biotech. 22: 565–575, 1994.

    Article  CAS  Google Scholar 

  • Maines, M.D. Carbon monoxide: an emerging regulator of cGMP in the brain. Mol. Cell. Neurosci. 4: 389–397, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Maines, M.D., G.M. Trakshel, and R.K. Kutty. Characterization of two constitutive forms of rat liver microsomal heme oxygenase: only one molecular species of the enzyme is inducible. J. Biol. Chem. 261: 411–419, 1986.

    PubMed  CAS  Google Scholar 

  • Marks, G.S., J.F. Brien, K. Nakatsu, and B.E. McLaughlin. Does carbon monoxide have a physiological function? Trends. Pharmacol. Sci. 12: 185–188, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Marietta MA Nitric oxide synthase structure and mechanism. J. Biol. Chem. 268: 12231–12234, 1993.

    Google Scholar 

  • Michel, T., G.K. Li, and L. Buscono. Phosphorylation and subcellular translocation of human constitutive endothelial nitric oxide synthase. Proc. Natl. Acad. Sci. USA 90: 6252–6256, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Minowada, G., and W.J. Welch. Clinical implications of the stress response. J. Clin. Invest. 95: 3–12, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Moncada, S., R.M.J. Palmer, and EA Higgs. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43: 109–142, 1991.

    PubMed  CAS  Google Scholar 

  • Morita, T., MA Perrella, M.E. Lee, and S. Kourembanas. Smooth muscle cell-derived carbon monoxide is a regulator of vascular cGMP. Proc. Natl. Acad. Sci. USA 92: 1475–1479, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Morris, S.M., and T.R. Billiar. New insights into the regulation of inducible nitric oxide synthesis. Am. J. Physiol. 266: E829-E839, 1994.

    PubMed  CAS  Google Scholar 

  • Motterlini, R., R. Foresti, M. Intaglietta, K. Vandegriff, and R.M. Winslow. Oxidative-stress response in vascular endothelial cells exposed to acellular hemoglobin solutions. Am. J. Physiol. 269: H648-H655, 1995a.

    PubMed  CAS  Google Scholar 

  • Motterlini, R., R. Foresti, M. Intaglietta, and R.M. Winslow. NO-mediated activation of heme oxygenase: endogenous cytoprotection against oxidative stress to endothelium. Am. J. Physiol. (In press).

    Google Scholar 

  • Motterlini, R., R. Foresti, K. Vandegriff, and R.M. Winslow. The autoxidation of alpha-alpha cross-linked hemoglobin: a possible role in the oxidative stress to endothelium. Artif. Cells, Blood Substitutes, Im-mobil. Biotech. 23: 291–301, 1995c.

    Article  CAS  Google Scholar 

  • Motterlini, R., A. Gonzales, R. Foresti, K. Vandegriff, and R.M. Winslow. The supplementary role of heme oxygenase in the modulation of hypertensive responses in vivo. (In preparation).

    Google Scholar 

  • Motterlini, R., and V.W. Macdonald. Cell-free hemoglobin potentiates acetylcholine-induced coronary vasoconstriction in rabbit hearts. J. Appl. Physiol. 75: 2224–2233, 1993.

    PubMed  CAS  Google Scholar 

  • Motterlini, R., K. Vandegriff, and R. Winslow. Hemoglobin-NO interaction and its implications. Transf. Med. Rev. (In press).

    Google Scholar 

  • Neuzil, J., and R. Stocker. Bilirubin attenuates radical-mediated damage to serum albumin. FEBS Lett. 331: 281–284, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Neuzil, J., and R. Stocker. Free and albumin-bound bilirubin are efficient co-antioxidants for alpha-tocopherol, inhibiting plasma and low density lipoprotein lipid peroxidation. J. Biol. Chem. 269: 16712–16719, 1994.

    PubMed  CAS  Google Scholar 

  • Palmer, R.M.J., D.S. Ashton, and S. Moncada. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333: 664–666, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, R.M.J., A.G. Ferrige, and S. Moncada. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327: 524–526, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Raju, V.S., and M.D. Maines. Coordinated expression and mechanism of induction of HSP32 (heme oxygenase-1) mRNA by hypertermia in rat organs. Biochim. Biophys. Acta 1217: 273–280, 1994.

    PubMed  CAS  Google Scholar 

  • Rubanyi, G.M., J.C. Romero, and P.M. Vanhoutte. Flow-induced release of endothelium-derived relaxing factor. Am. J. Physiol. 250: HI 145-HI 149, 1986.

    Google Scholar 

  • Sacerdoti, D., B. Escalante, N.G. Abraham, J.C. McGiff, R.D. Lev-ere, and M.L. Schwartzman. Treatment with tin prevents the development of hypertension in spontaneously hypertensive rats. Science 243: 388–390, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Samaja, M., R. Motterlini, and E. Rovida. Enhanced oxidation of bis-(3,5-dibromosalicyl)fumarate ococ-cross-linked hemoglobin by free radicals generated by xanthine/xanthine oxidase. Artif. Cells, Blood Substitutes, Immobil. Biotech. 22: 517–524, 1994.

    Article  CAS  Google Scholar 

  • Savitsky, J.P., J. Doczi, J. Black, and J.D. Arnold. A clinical safety trial of stroma-free hemoglobin. Clin. Pharmacol. Ther. 23: 73–80, 1978.

    PubMed  CAS  Google Scholar 

  • Schmidt, H.H. NO, CO and OH. Endogenous soluble guanylyl cyclase-activating factors. FEBS Lett. 307: 102–107, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Stocker, R., Y. Yamamoto, A.F. McDonagh, A.N. Glazer, and B.N. Ames. Bilirubin is an antioxidant of possible physiological importance. Science 235: 1043–1046, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Stone, J.R., and MA Marietta. Soluble guanylate cyclase from bovine lung: activation with nitric oxide and carbon monoxide and spectral characterization of the ferrous states. Biochemistry 33: 5636–5640, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Stuehr, D.J., S.S. Gross, I. Sakuma, R. Levi, and C.F. Nathan. Activated murine macrophages secrete a metabolite of arginine with the bio-activity of endothelium-derived relaxing factor and the chemical reactivity of nitric oxide. J. Exp. Med. 169: 1011–1020, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Suematsu, M., S. Kashiwagi, T. Sano, N. Goda, Y. Shinoda, and Y. Ishimura. Carbon monoxide as an endogenous modulator of hepatic vascular perfusion. Biochem. Biophys. Res. Comm. 205: 1333–1337, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, A., A.E. McGarry, C.R. Valeri, and W. Lieberthal. Stroma-free hemoglobin increases blood pressure and GFR in the hypotensive rat: role of nitric oxide. Am. J. Physiol. 77: 2348–2354, 1994.

    CAS  Google Scholar 

  • Trakshel, G.M., and M.D. Maines. Multiplicity of heme oxygenase isozymes: HO-1 and HO-2 are different molecular species in rat and rabbit. J. Biol. Chem. 264: 1323–1328, 1989.

    PubMed  CAS  Google Scholar 

  • Udelsman R.,M.J. Blake, and N.J. Holbrook. Molecular response to surgical stress: specific and simultaneous heat shock protein induction in the adrenal cortex, aorta, and vena cava. Surgery 110: 1125–1131, 1991.

    PubMed  CAS  Google Scholar 

  • Umans J.G., and R. Levi. Nitric oxide in the regulation of blood flow and arterial pressure. Annu. Rev. Physiol. 57: 771–790, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Utz J. and V. Ullrich. Carbon monoxide relaxes ileal smooth muscle through activation of guanylate cyclase. Biochem. Pharmacol. 41: 1195–1201, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Verma, A., D.J. Hirsch, C.E. Glatt, G.V. Ronnett, and S.H. Snyder. Carbon monoxide: a putative neural messenger. Science 259: 381–384, 1993.

    CAS  Google Scholar 

  • Vogel W.M.,R.C. Dennis, G. Cassidy, C.S. Apstein, and C.R. Va-leri. Coronary constrictor effect of stroma-free hemoglobin solutions. Am. J. Physiol. 251: 413–420, 1986.

    Google Scholar 

  • Winslow, R. M. Hemoglobin-based Red Cell Substitutes. Baltimore: John Hopkins University Press, 1992.

    Google Scholar 

  • Zhuo M.,SA. Small, E.R. Kandel, and R.D. Hawkins. Nitric oxide and carbon monoxide produce activity-dependent long-term synaptic enhancement in hippocampus. Science 260: 1946–1949, 1993.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Boston

About this chapter

Cite this chapter

Motterlini, R. (1996). Interaction of Hemoglobin with Nitric Oxide and Carbon Monoxide: Physiological Implications. In: Winslow, R.M., Vandegriff, K.D., Intaglietta, M. (eds) Blood Substitutes. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4114-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4114-0_5

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8659-2

  • Online ISBN: 978-1-4612-4114-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics