Skip to main content

Blood Substitute Oxygen Carriers Designed for Clinical Applications

  • Chapter
Blood Substitutes

Abstract

Until recently, the aim of red cell substitute design has been to simulate, as closely as possible, the properties of the human red blood cell. Current research suggests that duplication of the red cell may be an overly ambitious goal and each product under development has unique features which significantly affect the way in which they transport oxygen to tissue. Recognizing that human red cells are transfused for a wide variety of clinical indications, it is tempting to match the properties of red cell substitutes to various clinical settings. Doing so, while not precise at the moment, can help guide further research and development efforts and lead to more rational design of new products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bakker, J.C, GA. Berbers, W.K. Bleeker, P.J. denBoer, and P.T. Biessels. Preparation and characterization of crosslinked and polymerized hemoglobin solutions. Biomat. Artif. Cells Immobil. Biotech. 20: 233–241, 1992.

    CAS  Google Scholar 

  • Braun, R.D., RA. Linsenmeier, and T.K. Goldstick. New perfluorocarbon emulsion improves tissue oxygenation in cat retina. J. Appl. Physiol 72: 1960–1968, 1992.

    PubMed  CAS  Google Scholar 

  • Bauer, C, M. Forster, G. Gros, A. Mosca, M. Perrella, H.S. Rol-lema, and D.Vogel. Analysis of bicarbonate binding to crocodilian hemoglobin. J. Biol Chem. 256: 8429–8435, 1981.

    PubMed  CAS  Google Scholar 

  • Chang, T.M.S. Semi-permeable microcapsules. Science 146: 524–525, 1964.

    Article  PubMed  CAS  Google Scholar 

  • Clark, L.C., and F. Gollan. Survival of mammals breathing organic liquids equilibrated with oxygen at atmospheric pressure. Science 152: 1755–1756, 1966.

    Article  PubMed  CAS  Google Scholar 

  • Federspiel, W.J., and AS. Popel. A theoretical analysis of the effect of the particulate nature of blood on oxygen release in capillaries. Micro-vase. Res. 32: 164–189, 1986.

    Article  CAS  Google Scholar 

  • Fratantoni, J. Demonstration of the effiacy of a therapeutic agent. In Blood substitutes: Physiological basis of efficacy (R.M. Winslow, K.D. Vandegriff, and M. Intaglietta, Eds.) New York: Birkhauser, 1995, p. 20–24.

    Chapter  Google Scholar 

  • Fuhrman, B., L.J. Hernan, BA Holm, C.L. Leach, M.C. Papo, and D.M. Steinborn. Perfluorocarbon associated gas exchange (PAGE): Gas ventilation of the perfluorocarbon-filled lung. Artif. Cells, Blood Substitutes, Immobil. Biotech. 22: 1133–1140, 1994.

    Article  CAS  Google Scholar 

  • Gould, SA., A.L. Rosen, L.R. Sehgal, H.L. Sehgal, LA. Langdale, L.M. Krause, C.L. Rice, and W.H. Chamberlin. Fluosol-DA as a red-cell substitute in acute anemia. N. Engl J. Med. 314: 1653–1656, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Holcroft, J.W. Hypertonic saline/dextran in the treatment for hemorrhage. In Proceedings of the workshop on the assessment of plasma volume expanders. Bethesda, MD: CEBR, FDA, and NHLBI, NIH, 1991, pp. 133–147.

    Google Scholar 

  • Kaufman, R.J. Clinical development of perfluorocarbon-based emulsions as red cell substitutes. In Blood substitutes: Physiological basis of efficacy (R.M. Winslow, K.D. Vandegriff, and M. Intaglietta, Eds.) New York: Birkhauser, 1995, pp. 53–75.

    Chapter  Google Scholar 

  • Kluger, R., J. Wodzinska, R.T. Jones, C. Head, T.S. Fujita, and D.T. Shih. Three-point cross-linking: potential red cell substitutes from the reaction of trimesoyl tris(methyl phosphate) with hemoglobin. Biochem. 31: 7551–7559, 1992.

    Article  CAS  Google Scholar 

  • Kramer, G.C., P.R. Perron, D.C. Lindsey, H.S. Ho, RA. Gunther, WA. Boyle, and J.W. Holcroft. Small volume resuscitation with hypertonic saline dextran solution. Surgery 100: 239–247, 1986.

    PubMed  CAS  Google Scholar 

  • Looker, D., D. Abbott-Brown, P. Cozart, S. Durfee, S. Hoffman, A.J. Mathews, J. Miller-Roehrich, S. Shoemaker, S. Trimble, G. Fermi, N.H. Komiyama, K. Nagai and G.L. Stetler. A human recombinant haemoglobin designed for use as a blood substitute.Nature (Lond) 356: 258–260, 1992.

    CAS  Google Scholar 

  • Marini, MA, G.L. Moore, R.M. Fishman, R. Jesse, F. Medina, S.M. Snell, and A.I. Zegna. Reexamination of the polymerization of pyridoxylated hemoglobin with glutaraldehyde. Biopolymers 29: 871–882, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Mattrey, R. The potential role of perfluorochemicals (PFCs) in diagnostic imaging. Artif. Cells, Blood Substitutes, Immobil. Biotech. 22: 295–314, 1994.

    Article  CAS  Google Scholar 

  • Nho, K., D. Glower, S. Bredehoeft, H. Shankar, R. Shorr, and A. Abuchowski. PEG-bovine hemoglobin: safety in a canine dehydrated hypovolemic-hemorrhagic shock model. Biomat. Artif. Cells Immobil. Biotech. 20: 511–524, 1992.

    CAS  Google Scholar 

  • Rudolph, A.S. The freeze-dried preservation of liposome encapsulated hemoglobin: a potential blood sutstitute. Cryobiology 25: 277–284, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Rudolph, A.S. Encpsulation of hemoglobin in liposomes. In Blood substitutes: Physiological basis of efficacy (R.M. Winslow, K.D. Vandegriff, and M. Intaglietta, Eds.) New York: Birkhauser, 1995, pp. 90–104.

    Chapter  Google Scholar 

  • Spence, R., E.D. Norcross, J. Costabile, S. McCoy, A.C. Cernaianu, J.B. Alexander, M.J. Pello, U. Atabeck, and R.C. Camishion. Perfluorocarbons as blood substitues: The early years. Experience with Fluosol Da-20% in the 1980s. Artif. Cells, Blood Substitutes, Immobil. Biotech. 22: 955–964, 1994.

    Article  CAS  Google Scholar 

  • Tsai, A., H. Kerger, and M. Intaglietta. Microcirculatory consequences of blood substitution. In Blood substitutes: Physiological basis of efficacy (R.M. Winslow, K.D. Vandegriff, and M. Intaglietta, Eds.) New York: Birkhauser, 1995, pp. 155–174.

    Chapter  Google Scholar 

  • Vandegriff, K.D., D.F.H. Wallach, and R.M. Winslow. Encapsulation of hemoglobin in non-phospholipid vesicles. Artif. Cells, Blood Substitutes, Immobil. Biotech. 22(3):849–844, 1994.

    Article  CAS  Google Scholar 

  • Vandegriff, K.D., and R.M. Winslow. A theoretical analysis of oxygen transport: A new strategy for the design of hemoglobin-based red cell substitutes. In Blood substitutes: Physiological basis of efficacy (R.M. Winslow, K.D. Vandegriff, and M. Intaglietta, Eds.) New York: Birkhauser, 1995, pp. 143–154.

    Chapter  Google Scholar 

  • Walker, JA., R.H. Zaugg, R.Y. Walder, J.M. Steele, and I.M. Klotz. Diaspirins that cross-link B chains of hemoglobin: bis(3,5-dibromo- sali-cyl) succinate and bis(3,5-dibromosalicyl) fumarate. Biochemistry 18: 4265–4270, 1979.

    Article  Google Scholar 

  • Wall, T.C., R.M. Califf, J. Blankenship, J.D. Talley, M. Tannen-baum, M. Schwaiger, G. Gacioch, M.D. Cohen, M. Sanz, J.D. Leim-berger, and E.J. Topol. Intravenous Fluosol in the treatment of acute myocardial infarction. Results of the Thrombolysis and Angioplasty in Myocardial Infarction 9 Trial. TAMI 9 Research Group. Circulation 90: 114–120, 1994.

    PubMed  CAS  Google Scholar 

  • Wallach, D.F.H., and J.R. Philippot. New type of lipid vesicle: Novasomes(tm). In Liposome technology: Liposome preparation and related techniques (G. Gregoriadis, Ed.). Boca Raton: CRC Press, 1993, pp. 141–156.

    Google Scholar 

  • Winslow, R.M. Hemoglobin-based red cell substitutes. Baltimore: Johns Hopkins University Press, 1992.

    Google Scholar 

  • Winslow, R.M. A physiologic basis for the transfusion trigger. In Blood substitutes: Physiological basis of efficacy (R.M. Winslow, K.D. Vandegriff, and M. Intaglietta, Eds.) New York: Birkhauser, 1995, pp. 25–41.

    Chapter  Google Scholar 

  • Winslow, R.M., M. Samaja, and J.B. West. Red cell function at extreme altitude on Mount Everest. J. Appl. Physiol. 56: 109–116, 1984.

    PubMed  CAS  Google Scholar 

  • Winslow, R.M., M.L. Swenberg, J. Benson, M. Perrella, and L. Benazzi. Gas-exchange properties of goat hemoglobin A and C. J. Biol. Chem. 264: 4812–4817, 1989.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Boston

About this chapter

Cite this chapter

Winslow, R.M. (1996). Blood Substitute Oxygen Carriers Designed for Clinical Applications. In: Winslow, R.M., Vandegriff, K.D., Intaglietta, M. (eds) Blood Substitutes. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4114-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4114-0_4

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8659-2

  • Online ISBN: 978-1-4612-4114-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics