Skip to main content

Estimating Soil Water Retention from Soil Physical Properties and Characteristics

  • Chapter
Book cover Advances in Soil Science

Part of the book series: Advances in Soil Science ((SOIL,volume 16))

Abstract

Soil and water are two fundamental resources of our agricultural environment. With the advent of new agricultural technologies, tremendous quantities of water and soluble chemicals are applied to soils each year. This enhanced use, or in some cases abuse, has endangered our soil and water resources. In addition, there are increased incidents of groundwater contamination, erosion, and contamination of surface waters from point and nonpoint sources. In response to these environmental concerns there has been an increased effort to develop improved agricultural management practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrol, LP. and J.P. Palta. 1969. A study of the effect of aggregate size and bulk density on moisture retention characteristics of selected soils, Agrochimica. 14: 157 – 163.

    Google Scholar 

  • Ahuja, L.R., J.W. Naney, and R.D. Williams. 1985. Estimating soil water characteristics from simpler properties or limited data. Soil Sci. Soc.49: 1100 – 1105.

    Article  Google Scholar 

  • Amemiya, M. 1965. The influence of aggregate size on soil moisture content-capillary conductivity relation. Soil Sci. Soc. Amer. Proc.29: 744 – 748.

    Article  Google Scholar 

  • Arya, L.M. and J.F. Paris. 1981. A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data. Soil Sci. Soc. Am. J.45: 1023 – 1030.

    Article  Google Scholar 

  • Babalola, O. 1978. Spatial variability of soil water proporties for a tropical soil of Nigeria. Soil Sci. 126: 269 – 279.

    Article  Google Scholar 

  • Baumer, O.W. 1990. Prediction of soil hydraulic parameters. Proceedings of International Workshop in Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils. USDA-ARS/University of California, Riverside, CA.

    Google Scholar 

  • Baumer, O.W. and B.R. Brasher. 1982. Prediction of water content at selected suctions. Am. Soc. Agri. Eng. Paper 82 – 2590.

    Google Scholar 

  • Beke, G.J. and M.J. MacCormick. 1985. Predicting volumetric water retention for subsoil materials from Colchester County, Nova Scotia. Can. J. Soil. Sci.65: 233 – 236.

    Article  Google Scholar 

  • Bhushan, L.S., S.B. Varade, and C.P. Gupta. 1973. Influence of tillage practices on clod size porosity and water retention. Indian J. Agric. Sci.43: 466 – 471.

    Google Scholar 

  • Biswas, T.D. and M.H. Ali. 1969. Retention and availability of soil water as influenced by soil organic carbon. Indian J. Agric. Sci.39: 582 – 583.

    CAS  Google Scholar 

  • Bloemen, G.W. 1977. Calculation of capillary conductivity and capillary rise from grain size distribution. I. Real and theoretical values of the exponent in a formula of Brooks and Corey for the calculation of hydraulic conductivities. ICW Wagenin- gen notano. 952. II. Assessment of the values of the exponent in a formula of Brooks and Corey for the calculation of hydraulic conductivity from grain size distribution. ICW Wageningen notano. 962. III. Air entry pressure and saturated conductivity calculated from grain size distribution and median grain size. ICW Wageningen notano. 990. IV. Capillary rise in soil types and soil profiles. ICW Wageningen notano. 1013.

    Google Scholar 

  • Bloemen, G.W. 1980. Calculation of hydraulic conductivities from texture and organic matter content. Z. Pflanzenernaehr. Boidenkd.143: 581 – 605.

    Article  Google Scholar 

  • Borg, H. 1982. Estimating soil hydraulic properties from texture data. PhD. Thesis, Washington State University, Pullman, WA.

    Google Scholar 

  • Brooks, R.H. and A.T. Corey. 1964. Hydraulic properties of porous media. Colorado State University Hydrol. Paper No. 3, pp. 27.

    Google Scholar 

  • Campbell, G.S. 1974. A simple method for determining unsaturated conductivity from moisture retention data. Soil Sci. 117: 311 – 314.

    Article  Google Scholar 

  • Campbell, G.S. and Sho Shizawa. 1990. Prediction of hydraulic properties of soils using particle size distribution and bulk density data. Proceedings of International Workshop in Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils. USDA-ARS/University of California, Riverside, CA.

    Google Scholar 

  • Cassel, D.K. 1983. Spatial and temporal variability of soil physical properties following tillage of Norfolk loamy sand. Soil Sci. Soc. Am. J.47: 196 – 201.

    Article  Google Scholar 

  • Cassel, D.K. and A. Bauer. 1975. Spatial variability in soils below depth of tillage. Bulk density and fifteen atmosphere percentage. Soil Sci. Am. Proc.39: 247 – 250.

    Article  Google Scholar 

  • Carsel, R.F. and R.S. Parrish. 1988. Developing joint probability distributions of soil water retention characteristics. Water Resources Res. 24(5)755–769.

    Google Scholar 

  • Chibber, R.K. 1964. Aggregate size distribution and water relationships amongst some typical Indian soils. Bull. Batn. Inst. Sci. India26: 148 – 156.

    Google Scholar 

  • Clapp, R.B. and G.M. Hornberger. 1978. Empirical equations for some hydraulic properties. Water Resourc. Res.15: 601 – 604.

    Article  Google Scholar 

  • Cosby, B.J., G.M. Hornberger, R.B. Clapp, and T.R. Ginn. 1984. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resourc. Res.20: 682 – 690.

    Article  Google Scholar 

  • Courtin, P., M.C. Feller and K. Klinka. 1983. Internal variability in some properties of disturbed soils in S.W. British Columbia, Canada. J. Soil Sci.63: 529 – 539.

    CAS  Google Scholar 

  • Croney, D. and J.D. Coleman. 1954. Soil structure in relation to soil suction. J. Soil Sci.5: 75 – 85.

    Article  Google Scholar 

  • Dane, J.H. and W.E. Puckett. 1990. Field soil hydraulic properties based on physical and mineralogical information. Proceedings of International Workshop in Indirect Methods for Estimating the Hydraulic Properties of U nsaturated Soils. USDA-ARS/ University of California, Riverside, CA.

    Google Scholar 

  • De Jong, R. 1982. Assessment of empirical parameters that describe soil water characteristics. Can. Agric. Eng.24: 65 – 70.

    Google Scholar 

  • De Jong, R. 1983. Soil water desorption curves estimated from limited data. Can. J. Soil Sci.63: 697 – 703.

    Article  Google Scholar 

  • De Jong, R., C.A., Campbell, and W. Nicholaichuk. 1983. Water retention equations and their relationship to soil organic matter and particle size distribution for disturbed samples. Can J. Soil Sci.63: 291 – 302.

    Google Scholar 

  • De Jong, R. and K. Loebel. 1982. Empirical relations between soil components and water retention at 1/3 and 15 atmospheres. Can. J. Soil Sci.62: 343 – 350.

    Article  Google Scholar 

  • El Ashkar, M.A., G.B. Bodman, and D.B. Peters. 1956. Sodium hyposulfite-soluble iron oxides and water retention by soils. Soil Sci. Soc. Amer. Proc.20: 352 – 365.

    Article  Google Scholar 

  • Gardner, W.R. 1968. Availability and measurement of soil water. In Water Deficits and Plant Growth, Vol. 1. Academic Press, New York, pp. 107 – 135.

    Google Scholar 

  • Ghosh, R.K. 1980. Estimation of soil-moisture characteristics from mechanical properties of soils. Soil Sci. 130: 60 – 63.

    Article  Google Scholar 

  • Gregson, K., D.J. Hector, and M. McGowan. 1987. A one parameter model for the soil water characteristic. J. Soil Sci.38: 483 – 486.

    Article  Google Scholar 

  • Gumma, G.A. 1978. Spatial variability of in situavailable water. Ph.D. Dissertation. Univ. of Arizona, Tucson, pp. 140.

    Google Scholar 

  • Gupta, S.C. and W.E. Larson. 1979. Estimating soil water retention characteristic from particle size distribution, organic matter percent and bulk density. Water Reourc. Res.15: 1633 – 1635.

    Article  Google Scholar 

  • Hall, D.G.M., M.J. Reeve, A.J. Thomasson, and V.F. Wright. 1977. Water retention, porosity, and density of field soils. Tech. Monograph no. 9. Rothamsted Exp. Stn., Harpenden, England.

    Google Scholar 

  • Hartge, K.H. 1969. Die Ermittlung der Wasserspannungskurve aus der Kornungs- summenkurve und dem Gesamtporenvolumen. Zeitschr.für Kulturtechn. und Flur- bereinigung10 (Heft 1): 20 – 29.

    Google Scholar 

  • Haverkamp R. and J.Y. Parlange. 1986. Predicting water retention curve from particle size distribution, organic matter and bulk density. Water Resourc. Res.15 (6): 1633 – 1635.

    Google Scholar 

  • Hill, J.N.S. and M.E. Summer. 1967. Effect of bulk density on moisture characteristics of soils. Soil Sci. 103: 234 – 8.

    Article  Google Scholar 

  • Hirschi, M.C. and I.D. Moore. 1980. Estimating soil hydraulic properties from soil texture. Am. Soc. Agric. Eng. Paper 80 – 2523.

    Google Scholar 

  • Hopmans, J.W. and J.H. Dane. 1985. Effect of temperature-dependent hydraulic properties on soil water movement. Soil Sci. Soc. Am. J.49 (1): 51 – 57

    Article  Google Scholar 

  • Hopmans, J.W. and J.H. Dane. 1986. Temperature dependence of soil hydraulic properties. Soil Sci. Soc. Am. J.50: 4 – 9.

    Article  Google Scholar 

  • International Workshop on Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils. 1989. University of California, Riverside, California.

    Google Scholar 

  • Kutilek, M. 1973. The influence of soil minerals and exchangeable cations on soil moisture potential. InX. Hadas et al. (Eds.). Physical Aspects of Soil Water and Salts in Ecosystems. Springer-Verlag, New York.

    Google Scholar 

  • Libardi, P.C., K. Reinhardt, D.R. Nielsen, and J.W. Biggar. 1980. Simple field methods for estimating soil hydraulics conductivity. Soil Sci. Soc. Am. J.44: 3 – 6.

    Article  Google Scholar 

  • Madankumar, N. 1985. Prediction of soil moisture characteristics from mechanical analysis and bulk density data. Agric. Water Manage.10: 305 – 312.

    Article  Google Scholar 

  • McBride, R.A. and E.E. Macintosh. 1984. Soil survey interpolations from water retention data: I. Development and validation of a water retention model. Soil Sci. Soc. Am. J.48: 1338 – 1343.

    Article  Google Scholar 

  • McCuen, R.H., W.J. Rawls, and D.L. Brakensiek. 1981. Statistical analysis of the Brooks-Corey and the Green-Ampt parameters across soil texture. Water Resources Research17 (4): 1005 – 1013.

    Article  Google Scholar 

  • McKeague, J.A. 1987. Estimating air porosity and available water capacity from soil morphology. Soil Sci. Soc. Am. J.51: 148 – 152.

    Article  Google Scholar 

  • Meng, T.P., H.M. Taylor, D.W. Fryrear, and J.F. Gomez. 1987. Models to predict water retention in semiarid soils. Soil Sci. Soc. Am. J.51: 1563 – 1565.

    Article  Google Scholar 

  • Mishra, S., J.C. Parker, and N. Singhal. 1989. Estimation of soil hydraulic properties and their uncertainty from particle size distribution. J. Hydrol.108: 1 – 18.

    Article  Google Scholar 

  • Mungare, T.S., A.K. Shingte, and K.S. Pharande. 1983. Relationship of available water capacity with some of the physical properties of soils. J. Maharashtra Agric. Univ.8 (1): 9 – 13.

    Google Scholar 

  • Nielsen, D.R., J.W. Biggar and K.T. Erh. 1973. Spatial variability of field measured soil water properties. Hilgardia42: 215 – 259.

    Google Scholar 

  • Oosterveld, M. and C. Chang. 1980. Empirical relations between laboratory determinations of soil texture and moisture retention. Can. Agric. Eng.22: 149 – 151.

    Google Scholar 

  • Pachepsky, Ya. A. 1989. The effect of the content of soil solutions and exchangeable cations on water retention and hydraulic conductivity of soils. Pochvovedenie No. 3:53–65, (in Russian).

    Google Scholar 

  • Pachepsky, Ya. A., E.V. Mironenko, and R.A. Shcherbakov. 1990. Prediction and use of soil hydraulic properties. Proceedings of International Workshop in Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils. USDA- ARS/ University of California, Riverside, CA.

    Google Scholar 

  • Peterson, G.W., R.L. Cunningham, and R.P. Matelski. 1968a. Moisture characteristics of Pennsylvania soils. I. Moisture retention as related to texture. Soil Sci. Soc. Am. Proc.32: 271 – 275.

    Article  Google Scholar 

  • Peterson, G.W., R.L. Cunningham, and R.P. Matelski. 1968b. Moisture characteristics of Pennsylvania soils: II. Soil factors affecting moisture retention within a textural class-silt loams. Soil Sci. Soc. Am. Proc.32: 866 – 870.

    Article  Google Scholar 

  • Puckett, W.E., J.H. Dane, and B.F. Hajek. 1985. Physical and mineralogical data to determine soil hydraulic properties. Soil Sci. Soc. Am. J.49: 831 – 836.

    Article  Google Scholar 

  • Rajkai, K. and G. Varallyay. 1990. Estimating soil water retention from simpler soil properties by regression techniques. Proceedings of International Workshop in Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils. USDA- ARS/University of California, Riverside, CA.

    Google Scholar 

  • Rawls, W.J. and D.L. Brakensiek. 1982. Estimating soil water retention from soil properties. J. Irrig. and Drainage Div. ASCE108: 166 – 171.

    Google Scholar 

  • Rawls, W.J. and D.L. Brakensiek. 1985. Prediction of soil water properties for hydro- logic modeling. InE.B. Jones and T.J. Ward (Eds.). Watershed Management in the Eighties. Proc. of Symp. sponsored by Comm. on Watershed Management, I & D Division, ASCE. ASCE Convention, Denver, CO, April 30-May 1, pp. 293 – 299.

    Google Scholar 

  • Rawls, W.J., D.L. Brakensiek, and K.E. Saxton. 1982. Estimation of soil water properties. Trans. ASAE25 (5): 1316 – 1220, 1328.

    Google Scholar 

  • Rawls, W.J., D.L. Brakensiek, and B. Soni. 1983. Agricultural management effects on soil water processes: Part I Soil water retention and Green-Ampt parameters. Transactions ASAE26 (6): 1747 – 1752.

    Google Scholar 

  • Reeve, M.J., P.D. Smith, and A.J. Thomasson. 1973. The effect of density on water retention properties of field soils. Soil Sci. 24: 335 – 367.

    Google Scholar 

  • Riley, H.C.F. 1979. Relationship between soil moisture holding properties and soil texture, organic matter content, and bulk density. Agric. Res. Exp.30: 379 – 398.

    Google Scholar 

  • Salter, P.J. and F. Haworth. 1961. The available water capacity of a sandy loam soil. I. The effects of farmyard manure and different primary cultivations. J. Soil Sci.12: 335 – 42.

    Article  Google Scholar 

  • Salter, P.J. and J.B. Williams. 1965a. The influence of texture on the moisture characteristics of soils. I. A critical comparison of techniques for determining the available water capacity and moisture characteristic curve of a soil. J. Soil Sci.16: 1 – 15.

    Article  Google Scholar 

  • Salter, P.J. and J.B. Williams. 1965b. The influence of texture on the moisture characteristics of soils. II. Available water capacity and moisture release characteristics. J. Soil Sci.16: 310 – 317.

    Article  Google Scholar 

  • Salter, P.J. and J.B. Williams. 1967. The influence of texture on the moisture characteristics of soils. IV. A method of estimating the available-water capacities of profiles in the field. J. Soil Sci.18: 174 – 81.

    Article  Google Scholar 

  • Salter, P.J. and J.B. Williams. 1969. The influence of texture on the moisture characteristics of soils. V. Relationships between particle-size composition and moisture contents at the upper and lower limits of available water. J. Soil Sci.20: 126 – 31.

    Article  Google Scholar 

  • Satterwhite, M.B. 1980. Evaluating soil moisture and textural relationships using regression analysis ETL-0226. U.S. Army Corps of Engineers, Fort Belvoir, VA, 31 p.

    Google Scholar 

  • Saxton, K.E., W.J. Rawls, J.S. Romberger, and R.I. Papendick. 1986. Estimating generalized soil water characteristics from texture. Soil Sci. Soc. Am. J.50 (4): 1031 – 1035.

    Article  Google Scholar 

  • Sharma, M.L. and G. Uehara. 1968. Influence of soil structure on water relations in low humic latosols. I. Water reflection. Soil Sci. Soc. Amer. Proc.32: 765 – 770.

    Article  Google Scholar 

  • Shayewich, D.F. and M.A. Zwarch. 1968. Relationships between soil physical constants and soil physical components of some Manitoba soils. Can. J. Soil Sci.48: 199 – 204.

    Article  Google Scholar 

  • Taylor, S.A. 1958. The activity of water in soils. Soil Sci. 86: 83 – 90.

    Article  CAS  Google Scholar 

  • Tyler, S.W. and S.W. Wheatcraft. 1990. Fractal processes in soil water retention. Water Reources Res. 26: 1047 – 1054.

    Article  Google Scholar 

  • van Genuchten, R. 1980. Predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. Proc.44: 892 – 898

    Article  Google Scholar 

  • Vereecken, H. 1988. Pedotransfer functions for the generation of hydraulic properties of Belgian soils. PhD thesis. Katholieke Universiteit Leuven, Leuven, Belgium, pp. 254.

    Google Scholar 

  • Vereecken, H. 1990. Derivation and validation of pedotransfer functions for soil hydraulic properties. Proceedings of International Workshop in Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils. USDA-ARS/University of California, Riverside, CA.

    Google Scholar 

  • Visser, W.C. 1966. Progress in the knowledge about the effect of soil moisture content on plant production. Inst. Land Water management, Wageningen, Netherlands, Tech. Bull. No. 45.

    Google Scholar 

  • Williams, J., P. Ross, and K. Bristow. 1990. Prediction of the Campbell water retention function from texture structure, and organic matter. Proceedings of International Workshop in Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils. USDA-ARS/University of California, Riverside, CA.

    Google Scholar 

  • Wösten, J.H.M. and M. Th. van Genuchten. 1988. Using texture and other soil properties to predict the unsaturated soil hydraulic functions. Soil Sci. Soc. Am. J.52: 1762 – 1770.

    Article  Google Scholar 

  • Wösten, J.H.M., M.H. Banninl, J.J. de Gruijter, and J. Bouma. 1986. A procedure to identify different groups of hydraulic conductivity and moisture retention curves for soil horizens. J. Hydrol86: 133 – 145.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Rawls, W.J., Gish, T.J., Brakensiek, D.L. (1991). Estimating Soil Water Retention from Soil Physical Properties and Characteristics. In: Stewart, B.A. (eds) Advances in Soil Science. Advances in Soil Science, vol 16. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3144-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3144-8_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7812-2

  • Online ISBN: 978-1-4612-3144-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics