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" ... The principal means for ascertaining truth - induction and analogy -
are based on probabilities; so that the entire system of human knowledge 
is connected with the theory (of probability) ... " 

Pierre Simon de Laplace, 
A Philosophical Essay on Probability, 1816. 

" Nature permits us to calculate only probabilities, yet science has not 
collapsed." 

Richard P. Feynman, 
QED: The Strange Theory of Light and Matter, 1985. 



Preface 

This monograph considers engineering systems with random parame
ters. Its context, format, and timing are correlated with the intention 
of accelerating the evolution of the challenging field of Stochastic 
Finite Elements. The random system parameters are modeled as 
second order stochastic processes defined by their mean and covari
ance functions. Relying on the spectral properties of the covariance 
function, the Karhunen-Loeve expansion is used' to represent these 
processes in terms of a countable set of un correlated random vari
ables. Thus, the problem is cast in a finite dimensional setting. 
Then, various spectral approximations for the stochastic response of 
the system are obtained based on different criteria. Implementing 
the concept of Generalized Inverse as defined by the Neumann Ex
pansion, leads to an explicit expression for the response process as a 
multivariate polynomial functional of a set of un correlated random 
variables. Alternatively, the solution process is treated as an element 
in the Hilbert space of random functions, in which a spectral repre
sentation in terms of the Polynomial Chaoses is identified. In this 
context, the solution process is approximated by its projection onto 
a finite subspace spanned by these polynomials. 

The concepts presented in this monograph can be construed as ex
tensions of the spectral formulation of the deterministic finite element 
method to the space of random functions. These concepts are further 
elucidated by applying them to problems from the field of structural 
mechanics. The corresponding results are found in agreement with 
those obtained by a Monte-Carlo simulation solution of the problems. 
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