Skip to main content

Physiology of Thalamus and Cortex

  • Chapter

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 2))

Abstract

Study of the responses of auditory forebrain neurons offers an exciting opportunity to understand the representation of the acoustic environment at the highest levels of the auditory system. During the past decade, echolocating bats have proved to be a valuable model for understanding the processing of biosonar sounds in the cortex. Multiple auditory fields have been identified that contain neurons specialized for extracting a variety of types of biosonar information relating to target velocity, range, size, etc., and in each field the neurons are arranged to form an orderly place map. These elegant studies have been reviewed by Suga (1978, 1982, 1984, 1988).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles M, Goldstein Jr MH (1970) Functional architecture in cat primary auditory cortex: columnar organization and organization according to depth. J Neurophysiol 33:172–187.

    PubMed  CAS  Google Scholar 

  • Abeles M, Goldstein Jr MH (1972) Responses of single units in the primary auditory cortex of the cat to tones and to tone pairs. Brain Res 42:337–352.

    PubMed  CAS  Google Scholar 

  • Adrián HO, Lifschitz WM, Tavitas RJ, Galli FP (1966) Activity of neural units in medial geniculate body of cat and rabbit. J Neurophysiol 29:1046–1060.

    PubMed  Google Scholar 

  • Aitkin LM (1973) Medial geniculate body of the cat: responses to tonal stimuli of neurons in medial division. J Neurophysiol 36:275–283.

    PubMed  CAS  Google Scholar 

  • Aitkin LM (1990) The Auditory Cortex: Structural and Functional Bases of Auditory Perception. London: Chapman and Hall.

    Google Scholar 

  • Aitkin LM, Dunlop CW (1968) Interplay of excitation and inhibition in the cat medial geniculate body. J Neurophysiol 31:44–61.

    PubMed  CAS  Google Scholar 

  • Aitkin LM, Dunlop CW (1969) Inhibition in the medial geniculate body of the cat. Exp Brain Res 7:68–83.

    PubMed  CAS  Google Scholar 

  • Aitkin LM, Martin RL (1987) The representation of stimulus azimuth by high best-frequency azimuth-selective neurons in the central nucleus of the inferior colliculus of the cat. J Neurophysiol 57:1185–1200.

    PubMed  CAS  Google Scholar 

  • Aitkin LM, Prain SM (1974) Medial geniculate body: unit responses in the awake cat. J Neurophysiol 37:512–521.

    PubMed  CAS  Google Scholar 

  • Aitkin LM, Webster WR (1971) Tonotopic organization in the medial geniculate body of the cat. Brain Res 26:402–405.

    PubMed  CAS  Google Scholar 

  • Aitkin LM, Webster WR (1972) Medial geniculate body of the cat: organization and responses to tonal stimuli of neurons in ventral division. J Neurophysiol 35:365–380.

    PubMed  CAS  Google Scholar 

  • Aitkin LM, Dunlop CW, Webster WR (1966) Click-evoked response patterns of single units in the medial geniculate body of the cat. J Neurophysiol 29:109–123.

    PubMed  CAS  Google Scholar 

  • Aitkin LM, Gates GR, Phillips SC (1984) Responses of neurons in inferior colliculus to variations in sound-source azimuth. J Neurophysiol 52:1–17.

    PubMed  CAS  Google Scholar 

  • Aitkin LM, Irvine DRF, Webster WR (1984) Central neural mechanisms of hearing. In: Darian-Smith, I (ed) Handbook of Physiology—The Nervous System, Vol. III. Bethesda, MD: Am Physiol Soc, pp. 675–737.

    Google Scholar 

  • Aitkin LM, Calford MB, Kenyon CE, Webster WR (1981) Some facets of the organization of the principal division of the cat medial geniculate body. In: Syka J, Aitkin LM (eds) Neuronal Mechanisms of Hearing. New York: Plenum, pp. 163–181.

    Google Scholar 

  • Aitkin LM, Irvine DRF, Nelson JE, Merzenich MM, Clarey JC (1986a) Frequency representation in the auditory midbrain and forebrain of a marsupial, the northern native cat (Dasyurus hallucatus). Brain Behav Evol 29:17–28.

    PubMed  CAS  Google Scholar 

  • Aitkin LM, Merzenich MM, Irvine DRF, Clarey JC, Nelson JE (1986b) Frequency representation in auditory cortex of the common marmoset (Callithrix jacchus jacchus). J Comp Neurol 252:175–185.

    PubMed  CAS  Google Scholar 

  • Albert ML, Sparks R, von Stockert T, Sax D (1972) A case study of auditory agnosia: linguistic and non-linguistic processing. Cortex 8:427–443.

    PubMed  CAS  Google Scholar 

  • Allon N, Yeshurun Y (1985) Functional organization of the medial geniculate body’s subdivisions of the awake squirrel monkey. Brain Res 360:75–82.

    PubMed  CAS  Google Scholar 

  • Allon N, Yeshurun Y, Wollberg Z (1981) Responses of single cells in the medial geniculate body of awake squirrel monkeys. Exp Brain Res 41:222–232.

    PubMed  CAS  Google Scholar 

  • Altman JA (1978) Sound localization: neurophysiological mechanisms. In: Tonndorf J (ed) Translations of the Beltone Institute for Hearing Research, No. 30. Chicago: The Beltone Institute for Hearing Research.

    Google Scholar 

  • Altman JA, Syka J, Shmigidina GN (1970) Neuronal activity in the medial geniculate body of the cat during monaural and binaural stimulation. Exp Brain Res 10:81–93.

    PubMed  CAS  Google Scholar 

  • Andersen RA, Knight PL, Merzenich MM (1980) The thalamocortical and corticothalamic connections of AI, AII, and the anterior auditory field (AAF) in the cat: evidence for two largely segregated systems of connections. J Comp Neurol 194:663–701.

    PubMed  CAS  Google Scholar 

  • Andersen RA, Roth GL, Aitkin LM, Merzenich MM (1980) The efferent projections of the central nucleus and the pericentral nucleus of the inferior colliculus in the cat. J Comp Neurol 194:649–662.

    PubMed  CAS  Google Scholar 

  • Azuma M, Suzuki H (1984) Properties and distribution of auditory neurons in the dorsolateral prefrontal cortex of the alert monkey. Brain Res 298:343–346.

    PubMed  CAS  Google Scholar 

  • Barrett TW (1971) The response of auditory cortex neurons in cat to various parameters of acoustical stimulation. Brain Res 28:579–581.

    PubMed  CAS  Google Scholar 

  • Batkin S, Groth JR, Watson JR, Ansberry M (1970) Effects of auditory deprivation on the development of auditory sensitivity in albino rats. Electroenceph Clin Neurophysiol 28:351–359.

    PubMed  CAS  Google Scholar 

  • Batzri-Izraeli R, Kelly JB, Glendenning KK, Masterton RB, Wollberg Z (1990) Auditory cortex of the long-eared hedgehog (Hemiechinus auritus). I. Boundaries and frequency representation. Brain Behav Evol 36:237–248.

    PubMed  CAS  Google Scholar 

  • Beaton R, Miller JM (1975) Single cell activity in the auditory cortex of the unanesthetized, behaving monkey: correlation with stimulus controlled behavior. Brain Res 100:543–562.

    PubMed  CAS  Google Scholar 

  • Bender MB, Diamond SP (1965) An analysis of auditory perceptual defects with observations on the localization of dysfunction. Brain 88:675–686.

    Google Scholar 

  • Benevento LA, Coleman PD, Loe PR (1970) Responses of single cells in cat inferior colliculus to binaural click stimuli: combinations of intensity levels, time differences and intensity differences. Brain Res 17:387–405.

    PubMed  CAS  Google Scholar 

  • Benson DA, Hienz RD (1978) Single-unit activity in the auditory cortex of monkeys selectively attending left vs. right ear stimuli. Brain Res 159:307–320.

    PubMed  CAS  Google Scholar 

  • Benson DA, Teas DC (1976) Single unit study of binaural interaction in the auditory cortex of the chinchilla. Brain Res 103:313–338.

    PubMed  CAS  Google Scholar 

  • Benson DA, Hienz RD, Goldstein Jr MH (1981) Single-unit activity in the auditory cortex of monkeys actively localizing sound sources: spatial tuning and behavioral dependency. Brain Res 219:249–267.

    PubMed  CAS  Google Scholar 

  • Berkson G, Wasserman GA, Behrman RE (1974) Heart rate response to an auditory stimulus in premature infants. Psychophysiol 11:244–246.

    CAS  Google Scholar 

  • Berman AL, Jones EG (1982) The Thalamus and Basal Telencephalon of the Cat: A Cytoarchitectonic Atlas with Stereotaxic Coordinates. Madison: Univ. Wisconsin Press.

    Google Scholar 

  • Bisiach E, Cornacchia L, Sterzi R, Vallar G (1984) Disorders of perceived auditory lateralization after lesions of the right hemisphere. Brain 107:37–52.

    PubMed  Google Scholar 

  • Blatchley BJ, Brugge JF (1990) Sensitivity to binaural intensity and phase difference cues in kitten inferior colliculus. J Neurophysiol 64:582–597.

    PubMed  CAS  Google Scholar 

  • Bradner S, Redies H (1990) The projection from medial geniculate to Field AI in cat: organization in the isofrequency dimension. J Neurosci 10:50–61.

    Google Scholar 

  • Brown CH, Beecher MD, Moody DB, Stebbins WC (1978) Localization of pure tones by Old World monkeys. J Acoust Soc Am 63:1484–1492.

    Google Scholar 

  • Brugge JF (1982) Auditory cortical areas in primates. In: Woolsey CN (ed) Cortical Sensory Organization, Volume 3, Multiple Auditory Areas. Clifton, New Jersey: Humana Press, pp. 59–70.

    Google Scholar 

  • Brugge JF (1983) Development of the lower brainstem auditory nuclei. In: Romand R (ed) Development of Auditory and Vestibular Systems. New York: Academic Press, pp. 89–120.

    Google Scholar 

  • Brugge JF (1985) Patterns of organization in auditory cortex. J Acoust Soc Am 78:353–359.

    PubMed  CAS  Google Scholar 

  • Brugge JF (1988) Stimulus coding in the developing auditory system. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function: Neurobiological Bases of Hearing. New York: John Wiley and Sons, pp. 113–136.

    Google Scholar 

  • Brugge JF, Imig TJ (1978) Some relationships of binaural response patterns of single neurons to cortical columns and interhemispheric connections of auditory area AI of cat cerebral cortex. In: Naunton RF, Fernandez C (eds) Evoked Electrical Activity in the Auditory Nervous System. New York: Academic Press, pp. 487–503.

    Google Scholar 

  • Brugge JF, Merzenich MM (1973) Responses of neurons in auditory cortex of the macaque monkey to monaural and binaural stimulation. J Neurophysiol 36:1138–1158.

    PubMed  CAS  Google Scholar 

  • Brugge JF, Dubrovsky N, Rose JE (1964) Some discharge characteristics of single neurons in cats’ auditory cortex. Science 146:433–434.

    Google Scholar 

  • Brugge JF, Reale RA, Wilson GF (1988) Sensitivity of auditory cortical neurons of kittens to monaural and binaural high frequency sound. Hear Res 34:127–140.

    PubMed  CAS  Google Scholar 

  • Brugge JF, Dubrovsky NA, Aitkin LM, Anderson DJ (1969) Sensitivity of single neurons in auditory cortex of cat to binaural tonal stimulation; effects of varying interaural time and intensity. J Neurophysiol 32:1005–1024.

    PubMed  CAS  Google Scholar 

  • Brugge JF, Orman SS, Coleman JR, Chan JCK, Phillips DP (1985) Binaural interactions in cortical area AI of cats reared with unilateral atresia of the external ear canal. Hear Res 20:275–287.

    PubMed  CAS  Google Scholar 

  • Butler RA, Diamond IT, Neff WD (1957) Role of auditory cortex in discrimination of changes in frequency. J Neurophysiol 20:108–120.

    PubMed  CAS  Google Scholar 

  • Calford MB (1983) The parcellation of the medial geniculate body of the cat defined by the auditory response properties of single units. J Neurosci 3:2350–2364.

    PubMed  CAS  Google Scholar 

  • Calford MB, Pettigrew JD (1984) Frequency dependence of directional amplification at the cat’s pinna. Hear Res 14:13–19.

    PubMed  CAS  Google Scholar 

  • Calford MB, Tweedale R (1990) The capacity for reorganization in adult somatosensory cortex. In: Rowe M, Aitkin L (eds) Information Processing in Mammalian Auditory and Tactile Systems. New York: Alan R. Liss, pp. 221–236.

    Google Scholar 

  • Calford MB, Webster WR (1981) Auditory representation within principal division of cat medial geniculate body: an electrophysiological study. J Neurophysiol 45:1013–1028.

    PubMed  CAS  Google Scholar 

  • Celesia GG (1976) Organization of auditory cortical areas in man. Brain 99:403–414.

    PubMed  CAS  Google Scholar 

  • Celesia GG, Puletti F (1969) Auditory cortical areas of man. Neurology 19:211–220.

    PubMed  CAS  Google Scholar 

  • Celesia GG, Broughton RJ, Rasmussen T, Branch C (1968) Auditory evoked responses from the exposed human cortex. Electroenceph Clin Neurophysiol 12:458–466.

    Google Scholar 

  • Chocholle R, Chedru F, Botte MC, Chain F, Lhermitte F (1975) Etude psychoacoustique d’un cas de “surdité corticale.” Neuropsychologia 13:163–172.

    PubMed  CAS  Google Scholar 

  • Clarey JC, Barone P, Imig TJ (1990) Functional organization of sound direction and sound pressure level (SPL) in primary auditory cortex (AI) of cat. Soc Neurosci Abst 16 (1):719.

    Google Scholar 

  • Clements M, Kelly JB (1978) Auditory spatial responses of young guinea pigs (Cavia porcellus) during and after ear blocking. J Comp Physiol Psychol 92:34–44.

    PubMed  CAS  Google Scholar 

  • Clopton BM (1980) Neurophysiology of auditory deprivation. In: Golnin RJ (ed) Morphogenesis and Malformation of the Ear. New York: Alan R. Liss, pp. 271–288.

    Google Scholar 

  • Clopton BM, Silverman MS (1977) Plasticity of binaural interaction. II. Critical period and changes in midline response. J Neurophysiol 40:1275–1280.

    PubMed  CAS  Google Scholar 

  • Clopton BM, Silverman MS (1978) Changes in latency and duration of neural responding following developmental auditory deprivation. Exp Brain Res 32:39–47.

    PubMed  CAS  Google Scholar 

  • Colavita FB, Szeligo FV, Zimmer SD (1974) Temporal pattern discrimination in cats with insular-temporal lesions. Brain Res 79:153–156.

    PubMed  CAS  Google Scholar 

  • Coleman J, Blatchley BJ, Williams JE (1982) Development of the dorsal and ventral cochlear nuclei in rat and effects of acoustic deprivation. Dev Brain Res 4:119–123.

    Google Scholar 

  • Colombo M, D’Amato MR, Rodman HR, Gross CG (1990) Auditory association cortex lesions impair auditory short-term memory in monkeys. Science 247:336–338.

    PubMed  CAS  Google Scholar 

  • Cranford JL (1979) Detection versus discrimination of brief tones by cats with auditory cortex lesions. J Acoust Soc Am 65:1573–1575.

    PubMed  CAS  Google Scholar 

  • Cranford JL, Igarashi M (1977) Effects of auditory cortex lesions on temporal summation in cats. Brain Res 136:559–564.

    PubMed  CAS  Google Scholar 

  • Cranford JL, Igarashi M, Stramler JH (1976) Effect of auditory neocortex ablation on pitch perception in the cat. J Neurophysiol 39:143–152.

    PubMed  CAS  Google Scholar 

  • Creutzfeldt O, Hellweg F-C, Schreiner C (1980) Thalamocortical transformation of responses to complex auditory stimuli. Exp Brain Res 39:87–104.

    PubMed  CAS  Google Scholar 

  • de Ribaupierre F (1984) Functional organization of the medial geniculate body in cats. In: Bolis L, Keynes RD, Maddrell SHP (eds) Comparative Physiology of Sensory Systems. New York: Cambridge University Press, pp. 213–223.

    Google Scholar 

  • de Ribaupierre F, Toros A (1976) Single unit properties related to the laminar structure of the MGN. Exp Brain Res Suppl 1:503–505.

    Google Scholar 

  • de Ribaupierre F, Goldstein Jr MH, Yeni-Komshian G (1972a) Intracellular study of the cat’s primary auditory cortex. Brain Res 48:185–204.

    PubMed  Google Scholar 

  • de Ribaupierre F, Goldstein Jr MH, Yeni-Komshian G (1972b) Cortical coding of repetitive acoustic pulses. Brain Res 48:205–225.

    PubMed  Google Scholar 

  • de Ribaupierre F, Rouiller E, Toros A, de Ribaupierre Y (1980) Transmission delay of phase-locked cells in the medial geniculate body. Hear Res 3:65–77.

    PubMed  Google Scholar 

  • Diamond DM, Weinberger NM (1984) Physiological plasticity of single neurons in auditory cortex of the cat during acquisition of the pupillary conditioned response. II. Secondary field (AII). Behav Neurosci 98:189–210.

    PubMed  CAS  Google Scholar 

  • Diamond DM, Weinberger NM (1986) Classical conditioning rapidly induces specific changes in frequency receptive fields of single neurons in secondary and ventral ectosylvian auditory cortical fields. Brain Res 372:357–360.

    PubMed  CAS  Google Scholar 

  • Diamond DM, Weinberger NM (1989) Role of context in the expression of learning-induced plasticity of single neurons in auditory cortex. Behav Neurosci 103:471–494.

    PubMed  CAS  Google Scholar 

  • Diamond IT, Neff WD (1957) Ablation of temporal cortex and discrimination of auditory patterns. J Neurophysiol 20:300–315.

    PubMed  CAS  Google Scholar 

  • Diamond IT, Goldberg JM, Neff WD (1962) Tonal discrimination after ablation of auditory cortex. J Neurophysiol 25:223–235.

    PubMed  CAS  Google Scholar 

  • Dunlop CW, Itzkowic DJ, Aitkin LM (1969) Tone-burst response patterns of single units in the cat medial geniculate body. Brain Res 16:149–164.

    PubMed  CAS  Google Scholar 

  • Dunlop CW, Webster WR, Simons LA (1965) Effect of attention on evoked responses in the classical auditory pathway. Nature 206:1048–1050.

    PubMed  CAS  Google Scholar 

  • Earnest MP, Monroe PA, Yarnell MA (1977) Cortical deafness: demonstration of the pathologic anatomy by CT scan. Neurology 27:1172–1175.

    PubMed  CAS  Google Scholar 

  • Edeline JM (1990) Frequency-specific plasticity of single unit discharges in the rat medial geniculate body. Brain Res 529:109–119.

    PubMed  CAS  Google Scholar 

  • Edeline JM, Weinberger NM (1991) Subcortical adaptive filtering in the auditory system: associative receptive field plasticity in the dorsal medial geniculate body. Behav Neurosci 105:154–175.

    PubMed  CAS  Google Scholar 

  • Edeline JM, Neuenschwander-El Massioui N, Dutrieux G (1990) Frequency-specific cellular changes in the auditory system during acquisition and reversal of discriminative conditioning. Psychobiology 18:382–393.

    Google Scholar 

  • Ehret G (1983) Development of hearing and response behavior to sound stimuli: behavioral studies. In: Romand R (ed) Development of Auditory and Vestibular Systems. New York: Academic Press, pp. 211–237.

    Google Scholar 

  • Ehret G (1985) Behavioral studies on auditory development in mammals in relation to higher nervous system functioning. Acta Otolaryngol (Stockh) Suppl 421:31–40.

    CAS  Google Scholar 

  • Ehret G, Romand R (1981) Postnatal development of absolute auditory thresholds in kittens. J Comp Physiol Psychol 95:304–311.

    PubMed  CAS  Google Scholar 

  • Eisenman LM (1974) Neural encoding of sound location: an electrophysiological study in auditory cortex (AI) of the cat using free field stimuli. Brain Res 75:203–214.

    PubMed  CAS  Google Scholar 

  • Elberling C, Bak C, Kofoed B, Lebech J, Særmark K (1982) Auditory magnetic fields: source location and ‘tonotopical organization’ in the right hemisphere of the human brain. Scand Audiol 11:61–65.

    PubMed  CAS  Google Scholar 

  • Elliott DN, Trahiotis C (1972) Cortical lesions and auditory discrimination. Psychol Bull 77:198–222.

    PubMed  CAS  Google Scholar 

  • Erulkar SD, Rose JE, Davies PW (1956) Single unit activity in the auditory cortex of the cat. Bull Johns Hopkins Hosp 99:55–86.

    PubMed  Google Scholar 

  • Etholm B (1969) Evoked responses in the inferior colliculus, medial geniculate, and auditory cortex by single and double clicks in cats. Acta Otolaryngol 67:319–325.

    PubMed  CAS  Google Scholar 

  • Etholm B (1975) Inhibitory processes in the medial geniculate body. Acta Otolaryngol (Stockh) 80:323–334.

    CAS  Google Scholar 

  • Etholm B (1976) Activity of single medial geniculate units in response to single and double clicks. Acta Otolaryngol (Stockh) 81:91–101.

    CAS  Google Scholar 

  • Etholm B, Gjerstad LI, Skrede KK (1976) Size and duration of inhibition in the medial geniculate body of unanesthetized cats. Acta Otolaryngol (Stockh) 81:102–112.

    CAS  Google Scholar 

  • Evans EF (1968) Cortical representation. In: De Reuck AVS, Knight J (eds) Hearing Mechanisms in Vertebrates. Boston: Little Brown and Co., pp. 272–287.

    Google Scholar 

  • Evans EF (1974) Neural processes for the detection of acoustic patterns and for sound localization. In: Schmitt FO, Worden FG (eds) The Neurosciences: Third Study Program. Cambridge, Mass: MIT Press, pp. 131–145.

    Google Scholar 

  • Evans EF, Whitfield IC (1964) Classification of unit responses in the auditory cortex of the unanesthetized and unrestrained cat. J Physiol 171:476–493.

    PubMed  CAS  Google Scholar 

  • Evans EF, Ross HF, Whitfield IC (1965) The spatial distribution of unit characteristic frequency in the primary auditory cortex of the cat. J Physiol 179:238–247.

    PubMed  CAS  Google Scholar 

  • Evarts EV (1952) Effect of auditory cortex ablation on frequency discrimination in monkey. J Neurophysiol 15:443–448.

    PubMed  CAS  Google Scholar 

  • Fastl H, Hesse A, Schorer E, Urbas J, Müller-Preuss P (1986) Searching for neural correlates of the hearing sensation fluctuation strength in the auditory cortex of squirrel monkeys. Hear Res 23:199–203.

    PubMed  CAS  Google Scholar 

  • Feng AS, Rogowski BA (1980) Effects of monaural and binaural occlusion on the morphology of neurons in the medial superior olivary nucleus of the rat. Brain Res 189:530–534.

    PubMed  CAS  Google Scholar 

  • Foss I, Flottorp G (1974) A comparative study of the development of hearing and vision in various species commonly used in experiments. Acta Otolaryngol 77:202–214.

    PubMed  CAS  Google Scholar 

  • Funkenstein HH, Winter P (1973) Responses to acoustic stimuli of units in the auditory cortex of awake squirrel monkeys. Exp Brain Res 18:464–488.

    PubMed  CAS  Google Scholar 

  • Funkenstein HH, Nelson PG, Winter P, Wollberg Z, Newman JD (1971) Unit responses in auditory cortex of awake squirrel monkeys to vocal stimulation. In: Sachs MB (ed) Physiology of the Auditory System. Baltimore: National Educational Consultants, pp. 307–315.

    Google Scholar 

  • Fuster JM (1981) The prefrontal cortex in motor control. In: Brooks VB (ed) Handbook of Physiology: The Nervous System, Volume 2. New York: Oxford University Press, pp. 1149–1178.

    Google Scholar 

  • Fuster JM (1985) Temporal organization of behavior. Human Neurobiol 4:167–179.

    Google Scholar 

  • Fuster JM (1989) The Prefrontal Cortex: Anatomy, Physiology, and Neuropsychology of the Frontal Lobe, 2nd Ed. New York: Raven Press.

    Google Scholar 

  • Galaburda A, Sanides F (1980) Cytoarchitectonic organization of the human auditory cortex. J Comp Neurol 190:597–610.

    PubMed  CAS  Google Scholar 

  • Galambos R, Rose JE, Bromiley RB, Hughes JR (1952) Microelectrode studies on medial geniculate body of cat. II. Response to clicks. J Neurophysiol 15:359–380.

    PubMed  CAS  Google Scholar 

  • Gates GR, Aitkin LM (1982) Auditory cortex in the marsupial possum Trichosurus vulpecula. Hear Res 7:1–11.

    PubMed  CAS  Google Scholar 

  • Gerstein GL, Kiang NY-S (1964) Responses of single units in the auditory cortex. Exp Neurol 10:1–18.

    PubMed  CAS  Google Scholar 

  • Glaser EM (1971) Cortical responses of awake cat to narrow-band FM noise stimuli. J Acoust Soc Am 50:490–501.

    PubMed  CAS  Google Scholar 

  • Glass I, Wollberg Z (1979) Lability in the responses of cells in the auditory cortex of squirrel monkeys to species-specific vocalizations. Exp Brain Res 34:489–498.

    PubMed  CAS  Google Scholar 

  • Glass I, Wollberg Z (1983a) Responses of cells in the auditory cortex of awake squirrel monkeys to normal and reversed species-specific vocalizations. Hear Res 9:27–33.

    PubMed  CAS  Google Scholar 

  • Glass I, Wollberg Z (1983b) Auditory cortex responses to sequences of normal and reversed squirrel monkey vocalizations. Brain Behav Evol 22:13–21.

    PubMed  CAS  Google Scholar 

  • Goldberg JM, Brown PB (1969) Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J Neurophysiol 32:613–636.

    PubMed  CAS  Google Scholar 

  • Goldberg ME, Segraves MA (1987) Visual-spatial and motor attention in the monkey. Neuropsychologia 25:107–118.

    PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS (1987) Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In: Plum F (ed) Handbook of Physiology: The Nervous System, Volume 5. New York: Oxford University Press, pp. 373–417.

    Google Scholar 

  • Goldstein Jr MH, Abeles M (1975) Note on tonotopic organization of primary auditory cortex in the cat. Brain Res 100:188–191.

    PubMed  Google Scholar 

  • Goldstein Jr MH, Hall II JL, Butterfield BO (1968) Single-unit activity in the primary auditory cortex of unanesthetized cats. J Acoust Soc Am 43:444–455.

    PubMed  Google Scholar 

  • Goldstein Jr MH, Kiang NY-S, Brown RM (1959) Responses of the auditory cortex to repetitive acoustic stimuli. J Acoust Soc Am 31:356–364.

    Google Scholar 

  • Goldstein Jr MH, Abeles M, Daly RL, McIntosh J (1970) Functional architecture in cat primary auditory cortex: tonotopic organization. J Neurophysiol 33:188–197.

    PubMed  Google Scholar 

  • Goldstein MN, Brown M, Hollander J (1975) Auditory agnosia and cortical deafness: analysis of a case with three-year followup. Brain Lang 2:324–332.

    PubMed  CAS  Google Scholar 

  • Gottlieb Y, Vaadia E, Abeles M (1989) Single unit activity in the auditory cortex of a monkey performing a short term memory task. Exp Brain Res 74:139–148.

    PubMed  CAS  Google Scholar 

  • Graham J, Greenwood R, Lecky B (1980) Cortical deafness: a case report and review of the literature. J Neurol Sci 48:35–49.

    PubMed  CAS  Google Scholar 

  • Granier-Deferre C, Lecanuet J-P, Cohen H, Busnel M-C (1985) Feasibility of prenatal hearing test. Acta Otolaryngol (Stockh) Suppl 421:93–101.

    CAS  Google Scholar 

  • Gross NB, Lifschitz WS, Anderson DJ (1974) The tonotopic organization of the auditory thalamus of the squirrel monkey (Saimiri sciureus). Brain Res 65:323–332.

    PubMed  CAS  Google Scholar 

  • Hall II JL, Goldstein Jr MH (1968) Representation of binaural stimuli by single units in primary auditory cortex of unanesthetized cats. J Acoust Soc Am 43:456–461.

    PubMed  Google Scholar 

  • Hassmannová J, Myslivecek J (1967) Maturation of the primary cortical response to stimulation of medial geniculate body. Electroenceph Clin Neurophysiol 22:547–555.

    PubMed  Google Scholar 

  • Hécaen H, Albert ML (1978) Human Neuropsychology. New York: Wiley.

    Google Scholar 

  • Heffner H (1978) Effect of auditory cortex ablation on localization and discrimination of brief sounds. J Neurophysiol 41:963–976.

    PubMed  CAS  Google Scholar 

  • Heffner HE, Heffner RS (1984a) Sound localization in large mammals: localization of complex sounds by horses. Behav Neurosci 98:541–555.

    PubMed  CAS  Google Scholar 

  • Heffner HE, Heffner RS (1984b) Temporal lobe lesions and perception of species-specific vocalizations by macaques. Science 226:75–76.

    PubMed  CAS  Google Scholar 

  • Heffner HE, Heffner RS (1986a) Effect of unilateral and bilateral auditory cortex lesions on the discrimination of vocalizations by Japanese macaques. J Neurophysiol 56:683–701.

    PubMed  Google Scholar 

  • Heffner HE, Heffner RS (1986b) Hearing loss in Japanese macaques following bilateral auditory cortex lesions. J Neurophysiol 55:256–271.

    PubMed  CAS  Google Scholar 

  • Heffner HE, Heffner RS (1989) Effect of restricted cortical lesions on absolute thresholds and aphasia-like deficits in Japanese macaques. Behav Neurosci 103:158–169.

    PubMed  CAS  Google Scholar 

  • Heffner HE, Heffner RS (1990a) Role of primate auditory cortex in hearing. In: Stebbins WC, Berkley MA (eds) Comparative Perception-Volume II: Complex Signals. New York: Wiley, pp. 279–310.

    Google Scholar 

  • Heffner HE, Heffner RS (1990b) Effect of bilateral auditory cortex lesions on sound localization in Japanese macaques. J Neurophysiol 64:915–931.

    CAS  Google Scholar 

  • Heffner HE, Heffner RS (1990c) Effect of bilateral auditory cortex lesions on absolute thresholds in Japanese macaques. J Neurophysiol 64:191–205.

    PubMed  CAS  Google Scholar 

  • Heffner H, Masterton B (1975) Contribution of auditory cortex to sound localization in the monkey (Macaca mulatta). J Neurophysiol 38:1340–1358.

    PubMed  CAS  Google Scholar 

  • Heffner H, Masterton B (1980) Hearing in Glires: domestic rabbit, cotton rat, feral house mouse, and kangaroo rat. J Acoust Soc Am 68:1584–1599.

    Google Scholar 

  • Heffner RS, Heffner HE (1982) Hearing in the elephant (Elephas maximus): absolute sensitivity, frequency discrimination, and sound localization. J Comp Physiol Psych 96:926–944.

    CAS  Google Scholar 

  • Heffner RS, Heffner HE (1984c) Hearing loss in dogs after lesions of the brachium of the inferior colliculus and medial geniculate. J Comp Neurol 230:207–217.

    PubMed  CAS  Google Scholar 

  • Hellweg FC, Koch R, Vollrath M (1977) Representation of the cochlea in the neocortex of guinea pigs. Exp Brain Res 29:467–474.

    PubMed  CAS  Google Scholar 

  • Henry KR (1983) Abnormal auditory development resulting from exposure to ototoxic chemicals, noise, and auditory restriction. In: Romand R (ed) Development of Auditory and Vestibular Systems. New York: Academic Press, pp. 273–308.

    Google Scholar 

  • Hernandez-Peón R, Scherrer H, Jouvet M (1956) Modification of electrical activity in cochlear nucleus during “attention” in unanesthetized cats. Science 123:331–332.

    PubMed  Google Scholar 

  • Hind Jr JE, Benjamin RM, Woolsey CN (1958) Auditory cortex of squirrel monkey (Saimiri sciureus). Fed Proc 17:71.

    Google Scholar 

  • Hind Jr JE, Rose JE, Davies PW, Woolsey CN, Benjamin RM, Welkes WS, Thompson RF (1965) Unit activity in the auditory cortex. In: Rasmussen GL, Windle WF (eds) Neural Mechanisms of the Auditory and Vestibular Systems. Springfield, Ill: Charles C. Thomas, pp. 201–210.

    Google Scholar 

  • Hirsch JA, Chan JCK, Yin TCT (1985) Responses of neurons in the cat’s superior colliculus to acoustic stimuli. I. Monaural and binaural response properties. J Neurophysiol 53:726–745.

    PubMed  CAS  Google Scholar 

  • Hirsch JE (1968) Effect of interaural time delay on amplitude of cortical responses evoked by tones. J Neurophysiol 31:916–927.

    PubMed  CAS  Google Scholar 

  • Hocherman S, Gilat E (1981) Dependence of auditory cortex evoked unit activity on interstimulus interval in the cat. J Neurophysiol 45:987–997.

    PubMed  CAS  Google Scholar 

  • Hocherman S, Yirmiya R (1990) Neuronal activity in the medial geniculate nucleus and in the auditory cortex of the rhesus monkey reflects signal anticipation. Brain 113:1707–1720.

    PubMed  Google Scholar 

  • Hocherman S, Itzhaki A, Gilat E (1981) The response of single units in the auditory cortex of rhesus monkeys to predicted and to unpredicted sound stimuli. Brain Res 230:65–86.

    PubMed  CAS  Google Scholar 

  • Hocherman S, Benson DA, Goldstein Jr MH, Heffner HE, Hienz RD (1976) Evoked unit activity in auditory cortex of monkeys performing a selective attention task. Brain Res 117:51–68.

    PubMed  CAS  Google Scholar 

  • Houser CR, Vaughn JE, Barber RP, Roberts E (1980) GABA neurons are the major cell type of the nucleus reticularis thalami. Brain Res 200:341–354.

    PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s striate cortex. J Physiol (Lond) 160:106–154.

    CAS  Google Scholar 

  • Hubel DH, Henson CO, Rupert A, Galambos R (1959) “Attention” units in the auditory cortex. Science 129:1279–1280.

    PubMed  CAS  Google Scholar 

  • Hupfer K, Jürgens V, Ploog D (1977) The effects of superior temporal lesions on the recognition of species-specific calls in the squirrel monkey. Exp Brain Res 30:75–87.

    PubMed  CAS  Google Scholar 

  • Imig TJ, Adrián HO (1977) Binaural columns in the primary field (AI) of cat auditory cortex. Brain Res 138:241–257.

    PubMed  CAS  Google Scholar 

  • Imig TJ, Brugge JF (1978) Sources and terminations of callosal axons related to binaural and frequency maps in primary auditory cortex of the cat. J Comp Neurol 182:637–660.

    PubMed  CAS  Google Scholar 

  • Imig TJ, Morel A (1983) Organization of the thalamocortical auditory system in the cat. Ann Rev Neurosci 6:95–120.

    PubMed  CAS  Google Scholar 

  • Imig TJ, Morel A (1985a) Tonotopic organization in ventral nucleus of medial geniculate body in the cat. J Neurophysiol 53:309–340.

    PubMed  CAS  Google Scholar 

  • Imig TJ, Morel A (1985b) Tonotopic organization in lateral part of posterior group of thalamic nuclei in the cat. J Neurophysiol 53:836–851.

    PubMed  CAS  Google Scholar 

  • Imig TJ, Morel A (1988) Organization of the cat’s auditory thalamus. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function: Neurobiological Bases of Hearing. New York: Wiley, pp. 457–485.

    Google Scholar 

  • Imig TJ, Reale RA (1980) Patterns of cortico-cortical connections related to tonotopic maps in cat auditory cortex. J Comp Neurol 192:293–332.

    PubMed  CAS  Google Scholar 

  • Imig TJ, Reale RA (1981) Ipsilateral corticocortical projections related to binaural columns in cat primary auditory cortex. J Comp Neurol 203:1–14.

    PubMed  CAS  Google Scholar 

  • Imig TJ, Irons II WA, Samson FA (1990) Single-unit selectivity to azimuthal direction and sound pressure level of noise bursts in cat high-frequency primary auditory cortex. J Neurophysiol 63:1448–1466.

    PubMed  CAS  Google Scholar 

  • Imig TJ, Reale RA, Brugge JF (1982) The auditory cortex: patterns of cortico-cortical projections related to physiological maps in the cat. In: Woolsey CN (ed) Cortical Sensory Organization, Volume 3: Multiple Auditory Areas. Clifton, New Jersey: Humana Press, pp. 1–41.

    Google Scholar 

  • Imig TJ, Reale RA, Brugge JF, Morel A, Adrián HO (1986) Topography of cortico-cortical connections related to tonotopic and binaural maps of cat auditory cortex. In: Leporé F, Ptito M, Jasper HH (eds) Two Hemispheres—One Brain: Functions of the Corpus Callosum. New York: Alan R. Liss, pp. 103–115.

    Google Scholar 

  • Imig TJ, Ruggero MA, Kitzes LM, Javel E, Brugge JF (1977) Organization of auditory cortex in the owl monkey (Aotus trivirgatus). J Comp Neurol 177:111–128.

    Google Scholar 

  • Irons II WA (1989) Directional selectivity of single units in the auditory thalamus of cats. Ph.D. Dissertation, University of Kansas.

    Google Scholar 

  • Irvine DRF (1986) The Auditory Brainstem: A Review of the Structure and Function of Auditory Brainstem Processing Mechanisms. In: Ottoson D (ed) Progress in Sensory Physiology, Volume VII. New York: Springer-Verlag.

    Google Scholar 

  • Irvine DRF (1987a) A comparison of two methods for the measurement of neural sensitivity to interaural intensity differences. Hear Res 30:169–180.

    PubMed  CAS  Google Scholar 

  • Irvine DRF (1987b) Interaural intensity differences in the cat: changes in sound pressure level at the two ears associated with azimuthal displacements in the frontal horizontal plane. Hear Res 26:267–286.

    PubMed  CAS  Google Scholar 

  • Irvine DRF, Gago G (1990) Binaural interaction in high-frequency neurons in inferior colliculus of the cat: effects of variations in sound pressure level on sensitivity to interaural intensity differences. J Neurophysiol 63:570–591.

    PubMed  CAS  Google Scholar 

  • Ivarsson C, de Ribaupierre Y, de Ribaupierre F (1988) Influence of auditory localization cues on neuronal activity in the auditory thalamus of the cat. J Neurophysiol 59:586–606.

    PubMed  CAS  Google Scholar 

  • Iversen SD, Mishkin M (1973) Comparison of superior temporal and inferior prefrontal lesions on auditory and non-auditory tasks in rhesus monkeys. Brain Res 55:355–367.

    PubMed  CAS  Google Scholar 

  • Jenkins WM, Masterton RB (1982) Sound localization: effects of unilateral lesions in central auditory system. J Neurophysiol 47:987–1016.

    PubMed  CAS  Google Scholar 

  • Jenkins WM, Merzenich MM (1984) Role of cat primary auditory cortex for sound-localization behavior. J Neurophysiol 52:819–847.

    PubMed  CAS  Google Scholar 

  • Jerger J, Lovering L, Wertz M (1972) Auditory disorder following bilateral temporal lobe insult: report of a case. J Speech Hear Disorders 37:523–535.

    CAS  Google Scholar 

  • Jerger J, Weikers NJ, Sharbrough III FW, Jerger S (1969) Bilateral lesions of the temporal lobe, a case study. Acta Otolaryngol Suppl 258:1–51.

    PubMed  CAS  Google Scholar 

  • Jones EG (1975) Some aspects of the organization of the thalamic reticular complex. J Comp Neurol 162:285–308.

    PubMed  CAS  Google Scholar 

  • Kaas JH, Axelrod S, Diamond IT (1967) An ablation study of the auditory cortex in the cat using binaural tonal patterns. J Neurophysiol 30:710–724.

    PubMed  CAS  Google Scholar 

  • Kaas JH, Merzenich MM, Killackey HP (1983) The reorganization of somatosensory cortex following peripheral nerve damage in adult and developing mammals. Ann Rev Neurosci 6:325–356.

    PubMed  CAS  Google Scholar 

  • Kanshepolsky J, Kelley JT, Waggener JD (1973) A cortical auditory disorder. Clinical, audiologic, and pathologic aspects. Neurol 23:699–705.

    CAS  Google Scholar 

  • Katsuki K, Suga N, Kanno Y (1962) Neural mechanism of the peripheral and central auditory system in monkeys. J Acoust Soc Am 34:1396–1410.

    Google Scholar 

  • Kaukoranta E, Hari R, Lounasmaa OV (1987) Responses of the human auditory cortex to vowel onset after fricative consonants. Exp Brain Res 69:19–23.

    PubMed  CAS  Google Scholar 

  • Kavanagh GL, Kelly JB (1986) Midline and lateral field sound localization in the albino rat (Rattus norvegicus). Behav Neurosci 100:200–205.

    PubMed  CAS  Google Scholar 

  • Kavanagh GL, Kelly JB (1987) Contribution of auditory cortex to sound localization by the ferret (Mustela putorius). J Neurophysiol 57:1746–1766.

    PubMed  CAS  Google Scholar 

  • Kavanagh GL, Kelly JB (1988) Hearing in the ferret (Mustela putorius): effects of primary auditory cortical lesions on thresholds for pure tone detection. J Neurophysiol 60:879–888.

    PubMed  CAS  Google Scholar 

  • Kay RH (1974) The physiology of auditory frequency analysis. Prog Biophys Mol Biol 28:109–188.

    PubMed  CAS  Google Scholar 

  • Kay RH (1982) Hearing of modulation in sounds. Physiol Rev 62:894–975.

    PubMed  CAS  Google Scholar 

  • Kelly JB (1973) The effects of insular and temporal lesions in cats on two types of auditory pattern discrimination. Brain Res 62:71–87.

    PubMed  CAS  Google Scholar 

  • Kelly JB (1980) Effects of auditory cortical lesions on sound localization by the rat. J Neurophysiol 44:1161–1174.

    PubMed  CAS  Google Scholar 

  • Kelly JB, Glazier SJ (1978) Auditory cortex lesions and discrimination of spatial location by the rat. Brain Res 145:315–321.

    PubMed  CAS  Google Scholar 

  • Kelly JB, Judge PW (1985) Effects of medial geniculate lesions on sound localization by the rat. J Neurophysiol 53:361–372.

    PubMed  CAS  Google Scholar 

  • Kelly JB, Kavanagh GL (1986) Effects of auditory cortical lesions on pure-tone sound localization by the albino rat. Behav Neurosci 100:569–575.

    PubMed  CAS  Google Scholar 

  • Kelly JB, Sally SL (1988) Organization of auditory cortex in the albino rat: binaural response properties. J Neurophysiol 59:1756–1769.

    PubMed  CAS  Google Scholar 

  • Kelly JB, Whitfield IC (1971) Effects of auditory cortical lesions on discriminations of rising and falling frequency-modulated tones. J Neurophysiol 34:802–816.

    PubMed  CAS  Google Scholar 

  • Kelly JB, Judge PW, Phillips DP (1986) Representation of the cochlea in primary auditory cortex of the ferret (Mustela putorius). Hear Res 24:111–115.

    PubMed  CAS  Google Scholar 

  • Kiang NY-S, Neame JH, Clark LF (1961) Evoked cortical activity from auditory cortex in anesthetized and unanesthetized cats. Science 133:1927–1928.

    PubMed  CAS  Google Scholar 

  • Kitzes LM (1984) Some physiological consequences of neonatal cochlear destruction in the inferior colliculus of the gerbil, Meriones unguiculatus. Brain Res 306:171–178.

    PubMed  CAS  Google Scholar 

  • Kitzes LM, Semple MN (1985) Single-unit responses in the inferior colliculus: effects of neonatal unilateral cochlear ablation. J Neurophysiol 53:1483–1500.

    PubMed  CAS  Google Scholar 

  • Kitzes LM, Farley GR, Starr A (1978) Modulation of auditory cortex unit activity during the performance of a conditioned response. Exp Neurol 62:678–697.

    PubMed  CAS  Google Scholar 

  • Kitzes LM, Wrege KS, Cassady JM (1980) Patterns of responses of cortical cells to binaural stimulation. J Comp Neurol 192:455–472.

    PubMed  CAS  Google Scholar 

  • Klingon GH, Bontecou DC (1966) Localization in auditory space. Neurol 16:879–886.

    Google Scholar 

  • Knight PL (1977) Representation of the cochlea within the anterior auditory field (AAF) of the cat. Brain Res 130:447–467.

    PubMed  CAS  Google Scholar 

  • Knopman DS, Rubens AB, Klassen AC, Meyer MW, Niccum N (1980) Regional cerebral blood flow patterns during verbal and nonverbal auditory activation. Brain Lang 9:93–112.

    PubMed  CAS  Google Scholar 

  • Knudsen EI (1984) The role of auditory experience in the development and maintenance of sound localization. Trends in Neurosci 7:326–330.

    Google Scholar 

  • König N, Pujol R, Marty R (1971) Potentiels évoqués et réponses unitaires du cortex auditif du chat dans la période postnatale. J Physiol (Paris) 63:244A.

    Google Scholar 

  • König N, Pujol R, Marty R (1972) A laminar study of evoked potentials and unit responses in the auditory cortex of the postnatal cat. Brain Res 36:469–473.

    PubMed  Google Scholar 

  • Kraus N, Disterhoft JF (1981) Location of rabbit auditory cortex and description of single unit activity. Brain Res 214:275–286.

    PubMed  CAS  Google Scholar 

  • Kryter KD, Ades HW (1943) Studies on the function of the higher acoustic nervous centers in the cat. Am J Psychol 56:501–531.

    Google Scholar 

  • Kuriki S, Murase M (1989) Neuromagnetic study of the auditory responses in right and left hemispheres of the human brain evoked by pure tones and speech sounds. Exp Brain Res 77:127–134.

    PubMed  CAS  Google Scholar 

  • Kuwada S, Yin TCT (1983) Binaural interaction in low-frequency neurons in the inferior colliculus of the cat. I. Effects of long interaural delays, intensity, and repetition rate on interaural delay function. J Neurophysiol 50:981–999.

    PubMed  CAS  Google Scholar 

  • Lassen NA, Ingvar DH, Skinhøj E (1978) Brain function and blood flow. Sci Am 239:62–71.

    CAS  Google Scholar 

  • Lauter JL, Herscovitch P, Formby C, Raichle ME (1985) Tonotopic organization in human auditory cortex revealed by positron emission tomography. Hear Res 20:199–205.

    PubMed  CAS  Google Scholar 

  • Leinonen L, Hyvärinen J, Sovijärvi ARA (1980) Functional properties of neurons in the temporo-parietal association cortex of awake monkey. Exp Brain Res 39:203–215.

    PubMed  CAS  Google Scholar 

  • Lhermitte F, Chain F, Escourolle R, Ducarne B, Pillon B, Chedru F (1971) Etude des troubles perceptifs auditifs dans les lésions temporales bilatérales. Revue Neurologique 124:329–351.

    PubMed  CAS  Google Scholar 

  • Liegeois-Chauvel C, Musolino A, Chauvel P (1991) Localization of the primary auditory area in man. Brain 114:139–153.

    PubMed  Google Scholar 

  • Luethke LE, Krubitzer LA, Kaas JH (1988) Cortical connections of electrophysiologically and architectonically defined subdivisions of auditory cortex in squirrels. J Comp Neurol 268:181–203.

    PubMed  CAS  Google Scholar 

  • Luethke LE, Krubitzer LA, Kaas JH (1989) Connections of primary auditory cortex in the New World monkey, Saguinus. J Comp Neurol 285:487–513.

    PubMed  CAS  Google Scholar 

  • Mair IWS, Elverland HH, Laukli E (1978) Development of early auditory-evoked responses in the cat. Audiology 17:469–488.

    PubMed  CAS  Google Scholar 

  • Makela JP, Hari R, Linnankivi A (1987) Different analysis of frequency and amplitude modulations of a continuous tone in the human auditory cortex: a neuromagnetic study. Hear Res 27:257–264.

    PubMed  CAS  Google Scholar 

  • Manabe T, Suga N, Ostwald J (1978) Aural representation in the Doppler-shifted-CF processing area of the auditory cortex of the mustache bat. Science 200:339–342.

    PubMed  CAS  Google Scholar 

  • Manley JA, Müller-Preuss P (1978a) Response variability in the mammalian auditory cortex: an objection to feature detection? Fed Proc 37:2355–2359.

    PubMed  CAS  Google Scholar 

  • Manley JA, Müller-Preuß P (1978b) Response variability of auditory cortex cells in the squirrel monkey to constant acoustic stimuli. Exp Brain Res 32:171–180.

    PubMed  CAS  Google Scholar 

  • Martin RL, Webster WR (1989) Interaural sound pressure level differences associated with sound-source locations in the frontal hemifield of the domestic cat. Hear Res 38:289–302.

    PubMed  CAS  Google Scholar 

  • Maruyama N, Kanno Y (1961) Experimental study on functional compensation after bilateral removal of auditory cortex in cats. J Neurophysiol 24:193–202.

    PubMed  CAS  Google Scholar 

  • Massopust Jr LC, Barnes HW, Verdura J (1965) Auditory frequency discrimination in cortically ablated monkeys. J Aud Res 5:85–93.

    Google Scholar 

  • Massopust Jr LC, Wolin LR, Frost V (1970) Increases in auditory middle frequency discrimination thresholds after cortical ablations. Exp Neurol 28:299–307.

    PubMed  Google Scholar 

  • Massopust Jr LC, Wolin LR, Frost V (1971) Frequency discrimination thresholds following auditory cortex ablations in the monkey. J Aud Res 11:227–233.

    Google Scholar 

  • Matsubara JA, Phillips DP (1988) Intracortical connections and their physiological correlates in the primary auditory cortex (AI) of the cat. J Comp Neurol 268:38–48.

    PubMed  CAS  Google Scholar 

  • Mazziotta JC, Phelps ME, Carson RE, Kuhl DE (1982) Tomographic mapping of human cerebral metabolism: auditory stimulation. Neurology 32:921–937.

    PubMed  CAS  Google Scholar 

  • McKenna TM, Weinberger NM, Diamond DM (1989) Responses of single auditory cortical neurons to tone sequences. Brain Res 481:142–153.

    PubMed  CAS  Google Scholar 

  • McMullen NT, Glaser EM (1982) Tonotopic organization of rabbit auditory cortex. Exp Neurol 75:208–220.

    PubMed  CAS  Google Scholar 

  • McMullen NT, Glaser EM (1988) Auditory cortical responses to neonatal deafening: pyramidal neuron spine loss without changes in growth or orientation. Exp Brain Res 72:195–200.

    PubMed  CAS  Google Scholar 

  • McMullen NT, Goldberger B, Suter CM, Glaser EM (1988) Neonatal deafening alters nonpyramidal dendrite orientation in auditory cortex: a computer microscope study in the rabbit. J Comp Neurol 267:92–106.

    PubMed  CAS  Google Scholar 

  • Mendelson JR, Cynader MS (1985) Sensitivity of cat primary auditory cortex (AI) neurons to the direction and rate of frequency modulation. Brain Res 327:331–335.

    PubMed  CAS  Google Scholar 

  • Mendez MF, Geehan Jr GR (1988) Cortical auditory disorders: clinical and psychoacoustic features. J Neurol Neurosurg Psychiat 51:1–9.

    PubMed  CAS  Google Scholar 

  • Merzenich MM, Brugge JF (1973) Representation of the cochlear partition on the superior temporal plane of the macaque monkey. Brain Res 50:275–296.

    PubMed  CAS  Google Scholar 

  • Merzenich MM, Jenkins WM (1983) Dynamic maintenance and alterability of cortical maps in adults; some implications. In: Klinke R, Hartman R (eds) Hearing-Physiological Bases and Psychophysics. Berlin: Springer-Verlag, pp. 162–168.

    Google Scholar 

  • Merzenich MM, Colwell SA, Andersen RA (1982) Auditory forebrain organization: thalamocortical and corticothalamic connections in the cat. In: Woolsey CN (ed) Cortical Sensory Organization, Volume 3: Multiple Auditory Areas. Clifton, New Jersey: Humana Press, pp. 43–57.

    Google Scholar 

  • Merzenich MM, Jenkins WM, Middlebrooks JC (1984) Observations and hypotheses on special organizational features of the central auditory nervous system. In: Edelman GM, Gall WE, Cowan WM (eds) Dynamic Aspects of Neocortical Function. New York: John Wiley and Sons, pp. 397–424.

    Google Scholar 

  • Merzenich MM, Kaas JH, Roth GL (1976) Auditory cortex in the grey squirrel: tonotopic organization and architectonic fields. J Comp Neurol 166:387–402.

    PubMed  CAS  Google Scholar 

  • Merzenich MM, Knight PL, Roth GL (1975) Representation of cochlea within primary auditory cortex in the cat. J Neurophysiol 38:231–249.

    PubMed  CAS  Google Scholar 

  • Merzenich MM, Nelson RJ, Stryker MP, Cynader MS, Schoppmann A, Zook M (1984) Somatosensory cortical map changes following digit amputation in adult monkeys. J Comp Neurol 224:591–605.

    PubMed  CAS  Google Scholar 

  • Meyer DR, Woolsey CN (1952) Effects of localized cortical destruction on auditory discriminative conditioning in cat. J Neurophysiol 15:149–162.

    PubMed  CAS  Google Scholar 

  • Michel F, Peronnet F, Schott B (1980) A case of cortical deafness: clinical and electrophysiological data. Brain Lang 10:367–377.

    PubMed  CAS  Google Scholar 

  • Middlebrooks JC, Pettigrew JD (1981) Functional classes of neurons in primary auditory cortex of the cat distinguished by sensitivity to sound location. J Neurosci 1:107–120.

    PubMed  CAS  Google Scholar 

  • Middlebrooks JC, Zook JM (1983) Intrinsic organization of the cat’s medial geniculate body identified by projections to binaural response-specific bands in the primary auditory cortex. J Neurosci 3:203–224.

    PubMed  CAS  Google Scholar 

  • Middlebrooks JC, Dykes RN, Merzenich MM (1980) Binaural response-specific bands in primary auditory cortex (AI) of the cat: topographical organization orthogonal to isofrequency contours. Brain Res 181:31–48.

    PubMed  CAS  Google Scholar 

  • Miller JM (1971) Single unit discharges in behaving monkeys. In: Sachs MB (ed) Physiology of the Auditory System. Baltimore: National Educational Consultants, pp. 317–326.

    Google Scholar 

  • Miller JM, Beaton RD, O’Connor T, Pfingst BE (1974) Response pattern complexity of auditory cells in the cortex of unanesthetized monkeys. Brain Res 69:101–113.

    PubMed  CAS  Google Scholar 

  • Miller JM, Dobie RA, Pfingst BE, Hienz RD (1980) Electrophysiologic studies of the auditory cortex in the awake monkey. Am J Otol 1:119–130.

    CAS  Google Scholar 

  • Miller JM, Sutton D, Pfingst B, Ryan A, Beaton R, Gourevitch G (1972) Single cell activity in the auditory cortex of rhesus monkeys: behavioral dependency. Science 177:449–451.

    PubMed  CAS  Google Scholar 

  • Miyata H, Kawaguchi S, Samejima A, Yamamoto T (1982) Postnatal development of evoked responses in the auditory cortex of the cat. Jap J Physiol 32:421–429.

    CAS  Google Scholar 

  • Molnár M, Karmos G, Csépe V, Winkler I (1988) Intracortical auditory evoked potentials during classical aversive conditioning in cats. Biol Psychol 26:339–350.

    PubMed  Google Scholar 

  • Moore DR (1982) Late onset of hearing in the ferret. Brain Res 253:309–311.

    PubMed  CAS  Google Scholar 

  • Moore DR (1985) Postnatal development of the mammalian central auditory system and the neural consequences of auditory deprivation. Acta Otolaryngol (Stockh) Suppl 421:19–30.

    CAS  Google Scholar 

  • Moore DR (1986) Critical periods for binaural interaction and spatial representation. Acta Otolaryngol (Stockh) Suppl 429:51–55.

    CAS  Google Scholar 

  • Moore DR, Irvine DRF (1979a) A developmental study of the sound pressure transformation by the head of the cat. Acta Otolaryngol (Stockh) 87:434–440.

    CAS  Google Scholar 

  • Moore DR, Irvine DRF (1979b) The development of some peripheral and central auditory responses in the neonatal cat. Brain Res 163:49–59.

    PubMed  CAS  Google Scholar 

  • Moore DR, Irvine DRF (1981) Plasticity of binaural interaction in the cat inferior colliculus. Brain Res 208:198–202.

    PubMed  CAS  Google Scholar 

  • Moore DR, Kitzes LM (1985) Projections from the cochlear nucleus to the inferior colliculus in normal and neonatally cochlea-ablated gerbils. J Comp Neurol 240:180–195.

    PubMed  CAS  Google Scholar 

  • Moore DR, Kowalchuk NE (1988) Auditory brainstem of the ferret: effects of unilateral cochlear lesions on cochlear nucleus volume and projections to the inferior colliculus. J Comp Neurol 272:503–515.

    PubMed  CAS  Google Scholar 

  • Moore DR, Hutchings ME, King AJ, Kowalchuk NE (1989) Auditory brain stem of the ferret: some effects of rearing with a unilateral ear plug on the cochlea, cochlear nucleus, and projections to the inferior colliculus. J Neurosci 9:1213–1222.

    PubMed  CAS  Google Scholar 

  • Moore DR, Semple MN, Addison PD, Aitkin LM (1984) Properties of spatial receptive fields in the central nucleus of the cat inferior colliculus. I. Responses to tones of low intensity. Hear Res 13:159–174.

    PubMed  CAS  Google Scholar 

  • Morel A, Imig TJ (1987) Thalamic projections to fields A, AI, P, and VP in the cat auditory cortex. J Comp Neurol 265:119–144.

    PubMed  CAS  Google Scholar 

  • Morel A, Rouiller E, de Ribaupierre Y, de Ribaupierre F (1987) Tonotopic organization in the medial geniculate body (MGB) of lightly anesthetized cats. Exp Brain Res 69:24–42.

    PubMed  CAS  Google Scholar 

  • Morest DK (1964) The neuronal architecture of the medial geniculate body of the cat. J Anat 98:611–630.

    PubMed  CAS  Google Scholar 

  • Morest DK (1965) The laminar structure of the medial geniculate body of the cat. J Anat 99:143–160.

    PubMed  CAS  Google Scholar 

  • Müller-Preuss P (1986) On the mechanisms of call coding through auditory neurons in the squirrel monkey. Eur Arch Psychiat Neurol Sci 236:50–55.

    Google Scholar 

  • Müller-Preuss P, Bieser A, Preuss A (1986) Processing of amplitude modulated sounds in the auditory pathway of squirrel monkeys. Neurosci Let Suppl 26:S406.

    Google Scholar 

  • Musicant AD, Chan JCK, Hind JE (1990) Direction-dependent spectral properties of cat external ear: new data and cross-species comparisons. J Acoust Soc Am 87:757–781.

    PubMed  CAS  Google Scholar 

  • Musiek FE (1986) Neuroanatomy, neurophysiology, and central auditory assessment. Part II: The cerebrum. Ear Hear 7:283–294.

    PubMed  CAS  Google Scholar 

  • Myslivecek J (1983) Development of the auditory evoked responses in the auditory cortex of mammals. In: Romand R (ed) Development of Auditory and Vestibular Systems. New York: Academic Press, pp. 167–209.

    Google Scholar 

  • NeffWD (1968) Behavioral studies of auditory discrimination: localization and lateralization of sound in space. In: de Reuck AVS, Knight J (eds) Hearing Mechanisms in Vertebrates. Boston: Little Brown and Company, pp. 207–231.

    Google Scholar 

  • Neff WD, Diamond IT, Casseday JH (1975) Behavioral studies of auditory discrimination: central nervous system. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology, Volume V/2. New York: Springer-Verlag, pp. 307–400.

    Google Scholar 

  • Neff WD, Fisher JF, Diamond IT, Yela M (1956) Role of auditory cortex in discrimination requiring localization of sound in space. J Neurophysiol 19:500–512.

    PubMed  Google Scholar 

  • Newman JD (1978) Perception of sounds used in species-specific communication: the auditory cortex and beyond. J Med Primatol 7:98–105.

    PubMed  CAS  Google Scholar 

  • Newman JD (1988) Primate hearing mechanisms. Comp Primate Biol 4:469–499.

    Google Scholar 

  • Newman JD, Lindsley DF (1976) Single unit analysis of auditory processing in squirrel monkey frontal cortex. Exp Brain Res 25:169–181.

    PubMed  CAS  Google Scholar 

  • Newman JD, Symmes D (1974) Arousal effects on unit responsiveness to vocalizations in squirrel monkey auditory cortex. Brain Res 78:125–138.

    PubMed  CAS  Google Scholar 

  • Newman JD, Symmes D (1979) Feature detection by single units in squirrel monkey auditory cortex. Exp Brain Res Suppl 2:140–145.

    Google Scholar 

  • Newman JD, Wollberg Z (1973a) Responses of single neurons in the auditory cortex of squirrel monkeys to variants of a single call type. Exp Neurol 40:821–824.

    PubMed  CAS  Google Scholar 

  • Newman JD, Wollberg Z (1973b) Multiple coding of species-specific vocalizations in the auditory cortex of squirrel monkeys. Brain Res 54:287–304.

    PubMed  CAS  Google Scholar 

  • Nomoto M (1980) Discharge patterns of the primary auditory cortex in cats. Jap J Physiol 30:427–442.

    CAS  Google Scholar 

  • Nordeen KW, Killackey HP, Kitzes LM (1983) Ascending projections to the inferior colliculus following unilateral cochlear ablation in the neonatal gerbil, Meriones unguiculatus. J Comp Neurol 214:144–153.

    PubMed  CAS  Google Scholar 

  • Oatman LC (1971) Role of visual attention on auditory evoked potentials in unanesthetized cats. Exp Neurol 32:341–356.

    PubMed  CAS  Google Scholar 

  • Oatman LC (1976) Effects of visual attention on the intensity of auditory evoked potentials. Exp Neurol 51:41–53.

    PubMed  CAS  Google Scholar 

  • Oesterreich RE, Strominger NL, Neff WD (1971) Neural structures mediating differential sound intensity discrimination in the cat. Brain Res 27:251–270.

    PubMed  CAS  Google Scholar 

  • Oliver DL, Merzenich MM, Roth GL, Hall WC, Kaas JH (1976) Tonotopic organization and connections of primary auditory cortex in the tree shrew, Tupaia glis. Anat Rec 184:491.

    Google Scholar 

  • Olmstead ChE, Villabianca JR (1980) Development of behavioral audition in the kitten. Physiol Behav 24:705–712.

    PubMed  CAS  Google Scholar 

  • Oonishi S, Katsuki Y (1965) Functional organization and integrative mechanism on the auditory cortex of the cat. Jap J Physiol 15:342–365.

    Google Scholar 

  • Orman SS, Phillips DP (1984) Binaural interactions of single neurons in posterior field of cat auditory cortex. J Neurophysiol 51:1028–1039.

    PubMed  CAS  Google Scholar 

  • Pandya DN, Barnes CL (1987) Architecture and connections of the frontal lobes. In: Perecman E (ed) The Frontal Lobe Revisited. New York: IRBN Press, pp. 41–72.

    Google Scholar 

  • Pantev C, Hoke M, Lehnertz K, Lütkenhöner B, Anogianakis G, Wittkowski W (1988) Tonotopic organization of the human auditory cortex revealed by transient auditory evoked magnetic fields. Electroenceph Clin Neurophysiol 69:160–170.

    PubMed  CAS  Google Scholar 

  • Pantev C, Hoke M, Lütkenhöner B, Lehnertz K (1989) Tonotopic organization of the auditory cortex: pitch versus frequency representation. Science 246:486–488.

    PubMed  CAS  Google Scholar 

  • Parker DE (1962) Vertical organization of the auditory cortex of the cat. J Aud Res 2:99–124.

    Google Scholar 

  • Pelleg-Toiba R, Wollberg Z (1989) Tuning properties of auditory cortex cells in the awake squirrel monkey. Exp Brain Res 74:353–364.

    PubMed  CAS  Google Scholar 

  • Penfield W, Perot P (1963) The brain’s record of auditory and visual experience: a final summary and discussion. Brain 86:595–696.

    PubMed  CAS  Google Scholar 

  • Périer O, Alegria J, Buyse M, D’Alimonte G, Gilson D, Serniclaes W (1984) Consequences of auditory deprivation in animals and humans. Acta Otolaryngol (Stockh) Suppl 411:60–70.

    Google Scholar 

  • Pfingst BE, O’Connor TA (1981) Characteristics of neurons in auditory cortex of monkeys performing a simple auditory task. J Neurophysiol 45:16–34.

    PubMed  CAS  Google Scholar 

  • Pfingst BE, O’Connor TA, Miller JM (1977a) Response plasticity of neurons in auditory cortex of the rhesus monkey. Exp Brain Res 29:393–404.

    PubMed  CAS  Google Scholar 

  • Pfingst BE, O’Connor TA, Miller JM (1977b) Single cell activity in the awake monkey cortex: intensity encoding. Trans Am Acad Ophth Otol 84:217–222.

    CAS  Google Scholar 

  • Phillips DP (1985) Temporal response features of cat auditory cortex neurons contributing to sensitivity to tones delivered in the presence of continuous noise. Hear Res 19:253–268.

    PubMed  CAS  Google Scholar 

  • Phillips DP (1987) Stimulus intensity and loudness recruitment: neural correlates. J Acoust Soc Am 82:1–12.

    PubMed  CAS  Google Scholar 

  • Phillips DP (1988a) Effect of tone-pulse rise time on rate-level functions of cat auditory cortex neurons: excitatory and inhibitory processes shaping responses to tone onset. J Neurophysiol 59:1524–1539.

    PubMed  CAS  Google Scholar 

  • Phillips DP (1988b) The neural coding of simple and complex sounds in the auditory cortex. In: Lund JS (ed) Sensory Processing in the Mammalian Brain: Neural Substrates and Experimental Strategies. New York: Oxford Univ. Press, pp. 173–203.

    Google Scholar 

  • Phillips DP (1989) Timing of spike discharges in cat auditory cortex neurons: implications for encoding of stimulus periodicity. Hear Res 40:137–146.

    PubMed  CAS  Google Scholar 

  • Phillips DP (1990) Neural representation of sound amplitude in the auditory cortex: effects of noise masking. Behav Brain Res 37:197–214.

    PubMed  CAS  Google Scholar 

  • Phillips DP, Cynader MS (1985) Some neural mechanisms in the cat’s auditory cortex underlying sensitivity to combined tone and wide-spectrum noise stimuli. Hear Res 18:87–102.

    PubMed  CAS  Google Scholar 

  • Phillips DP, Gates GR (1982) Representation of the two ears in the auditory cortex: a re-examination. Int J Neurosci 16:41–46.

    PubMed  CAS  Google Scholar 

  • Phillips DP, Hall SE (1986) Spike-rate intensity functions of cat cortical neurons studied with combined tone-noise stimuli. J Acoust Soc Am 80:177–187.

    PubMed  CAS  Google Scholar 

  • Phillips DP, Hall SE (1987) Responses of single neurons in cat auditory cortex to time-varying stimuli: linear amplitude modulations. Exp Brain Res 67:479–492.

    PubMed  CAS  Google Scholar 

  • Phillips DP, Irvine DRF (1979a) Acoustic input to single neurons in pulvinar-posterior complex of cat thalamus. J Neurophysiol 42:123–136.

    PubMed  CAS  Google Scholar 

  • Phillips DP, Irvine DRF (1979b) Methodological considerations in mapping auditory cortex: binaural columns in AI of cat. Brain Res 161:342–346.

    PubMed  CAS  Google Scholar 

  • Phillips DP, Irvine DRF (1981a) Responses of single neurons in physiologically defined primary auditory cortex (AI) of the cat: frequency tuning and responses to intensity. J Neurophysiol 45:48–58.

    PubMed  CAS  Google Scholar 

  • Phillips DP, Irvine DRF (1981b) Responses of single neurons in physiologically defined area AI of cat cerebral cortex: sensitivity to interaural intensity differences. Hear Res 4:299–307.

    PubMed  CAS  Google Scholar 

  • Phillips DP, Irvine DRF (1982) Properties of single neurons in the anterior auditory field (AAF) of cat cerebral cortex. Brain Res 248:237–244.

    PubMed  CAS  Google Scholar 

  • Phillips DP, Irvine DRF (1983) Some features of binaural input to single neurons in physiologically defined area AI of cat cerebral cortex. J Neurophysiol 49:383–395.

    PubMed  CAS  Google Scholar 

  • Phillips DP, Kelly JB (1989) Coding of tone-pulse amplitude by single neurons in auditory cortex of albino rats (Rattus norvegicus). Hear Res 37:269–280.

    PubMed  CAS  Google Scholar 

  • Phillips DP, Orman SS (1984) Responses of single neurons in posterior field of cat auditory cortex to tonal stimulation. J Neurophysiol 51:147–163.

    PubMed  CAS  Google Scholar 

  • Phillips DP, Hall SE, Hollett JL (1989) Repetition rate and signal level effects on neuronal responses to brief tone pulses in cat auditory cortex. J Acoust Soc Am 85:2537–2549.

    PubMed  CAS  Google Scholar 

  • Phillips DP, Judge PW, Kelly JB (1988) Primary auditory cortex in the ferret (Mustela putorius): neural response properties and topographic organization. Brain Res 443:281–294.

    PubMed  CAS  Google Scholar 

  • Phillips DP, Calford MB, Pettigrew JD, Aitkin LM, Semple MN (1982) Directionality of sound pressure transformation at the cat’s pinna. Hear Res 8:13–28.

    PubMed  CAS  Google Scholar 

  • Phillips DP, Mendelson JR, Cynader MS, Douglas RM (1985a) Responses of single neurones in cat auditory cortex to time-varying stimuli: frequency-modulated tones of narrow excursion. Exp Brain Res 58:443–454.

    PubMed  CAS  Google Scholar 

  • Phillips DP, Orman SS, Musicant AD, Wilson GF (1985b) Neurons in the cat’s primary auditory cortex distinguished by their responses to tones and wide-spectrum noise. Hear Res 18:73–86.

    PubMed  CAS  Google Scholar 

  • Picton TW, Hillyard SA, Galambos R (1976) Habituation and attention in the auditory system. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology, Volume V/3. New York: Springer-Verlag, pp. 363–390.

    Google Scholar 

  • Pinek B, Duhamel JR, Cavé C, Brouchon M (1989) Audio-spatial deficits in humans: differential effects associated with left versus right hemisphere parietal damage. Cortex 25:175–186.

    PubMed  CAS  Google Scholar 

  • Ploog D (1981) Neurobiology of primate audio-vocal behavior. Brain Res Rev 3:35–61.

    Google Scholar 

  • Preuß A, Müller-Preuss P (1990) Processing of amplitude modulated sounds in the medial geniculate body of squirrel monkeys. Exp Brain Res 79:207–211.

    PubMed  Google Scholar 

  • Pujol R (1972) Development of tone-burst responses along the auditory pathway in the cat. Acta Otolaryngol 74:383–391.

    PubMed  CAS  Google Scholar 

  • Pujol R, Granier MR, Marty R (1966) Maturation post-natale du système auditif: réponses électro-corticales à la stimulation par sons purs. Revue Neurologique 115:587–590.

    PubMed  CAS  Google Scholar 

  • Raab DH, Ades HW (1946) Cortical and midbrain mediation of a conditioned discrimination of acoustic intensities. Am J Psych 59:58–83.

    Google Scholar 

  • Rajan R, Aitkin LM, Irvine DRF (1990) Azimuthal sensitivity of neurons in primary auditory cortex of cats. II. Organization along frequency-band strips. J Neurophysiol 64:888–902.

    PubMed  CAS  Google Scholar 

  • Rajan R, Aitkin LM, Irvine DRF, McKay J (1990) Azimuthal sensitivity of neurons in primary auditory cortex of cats. I. Types of sensitivity and the effects of variations in stimulus parameters. J Neurophysiol 64:872–887.

    PubMed  CAS  Google Scholar 

  • Ravizza R, Diamond IT (1974) Role of auditory cortex in sound localization: a comparative ablation study of hedgehog and bushbaby. Fed Proc 33:1917–1919.

    PubMed  CAS  Google Scholar 

  • Ravizza RJ, Masteron B (1972) Contribution of neocortex to sound localization in opossum (Didelphis virginiana). J Neurophysiol 35:344–356.

    PubMed  CAS  Google Scholar 

  • Reale RA, Brugge JF (1990) Auditory cortical neurons are sensitive to static and continuously changing interaural phase cues. J Neurophysiol 64:1247–1260.

    PubMed  CAS  Google Scholar 

  • Reale RA, Imig TJ (1980) Tonotopic organization in auditory cortex of the cat. J Comp Neurol 192:265–291.

    PubMed  CAS  Google Scholar 

  • Reale RA, Kettner RE (1986) Topography of binaural organization in primary auditory cortex of the cat: effects of changing interaural intensity. J Neurophysiol 56:663–682.

    PubMed  CAS  Google Scholar 

  • Reale RA, Brugge JF, Chan JCK (1987) Maps of auditory cortex in cats reared after unilateral cochlear ablation in the neonatal period. Dev Brain Res 34:281–290.

    Google Scholar 

  • Redies H, Sieben U, Creutzfeldt OD (1989a) Functional subdivisions in the auditory cortex of the guinea pig. J Comp Neurol 282:473–488.

    PubMed  CAS  Google Scholar 

  • Redies H, Sieben U, Creutzfeldt OD (1989b) Anatomy of the auditory thalamocortical system in the guinea pig. J Comp Neurol 282:489–511.

    PubMed  CAS  Google Scholar 

  • Robertson D, Irvine DRF (1989) Plasticity of frequency organization in auditory cortex of guinea pigs with partial unilateral deafness. J Comp Neurol 282:456–471.

    PubMed  CAS  Google Scholar 

  • Rodrigues-Dagaeff C, Simm G, de Ribaupierre Y, Villa A, de Ribaupierre F, Rouiller EM (1989) Functional organization of the ventral division of the medial geniculate body of the cat: evidence for a rostro-caudal gradient of response properties and cortical projections. Hear Res 39:103–126.

    PubMed  CAS  Google Scholar 

  • Roland PE, Skinhøj E, Lassen NA (1981) Focal activations of human cerebral cortex during auditory discrimination. J Neurophysiol 45:1139–1150.

    PubMed  CAS  Google Scholar 

  • Romani GL, Williamson SJ, Kaufman L (1982) Tonotopic organization of the human auditory cortex. Science 216:1339–1340.

    PubMed  CAS  Google Scholar 

  • Rose JE, Greenwood DD, Goldberg JM, Hind JE (1963) Some discharge characteristics of single neurons in the inferior colliculus of the cat. I. Tonotopical organization, relation of spike counts to tone intensity, and firing patterns of single elements. J Neurophysiol 26:294–320.

    Google Scholar 

  • Rose JE, Gross NB, Geisler CD, Hind JE (1966) Some neural mechanisms in the inferior colliculus of the cat which may be relevant to localization of a sound source. J Neurophysiol 29:288–314.

    PubMed  CAS  Google Scholar 

  • Rosenzweig MR (1946) Discrimination of auditory intensities in the cat. Am J Psych 59:127–136.

    CAS  Google Scholar 

  • Rosenzweig MR (1954) Cortical correlates of auditory localization and of related perceptual phenomena. J Comp Physiol Psychol 47:269–276.

    PubMed  CAS  Google Scholar 

  • Rouiller E, de Ribaupierre F (1982) Neurons sensitive to narrow ranges of repetitive acoustic transients in the medial geniculate body of the cat. Exp Brain Res 48:323–326.

    PubMed  CAS  Google Scholar 

  • Rouiller EM, de Ribaupierre F (1989) Note on the tonotopic organization in the cat medial geniculate body: influence of sampling of units. Exp Brain Res 74:220–226.

    PubMed  CAS  Google Scholar 

  • Rouiller E, de Ribaupierre Y, de Ribaupierre F (1979) Phase-locked responses to low frequency tones in the medial geniculate body. Hear Res 1:213–226.

    Google Scholar 

  • Rouiller E, de Ribaupierre Y, Toros-Morel A, de Ribaupierre F (1981) Neural coding of repetitive clicks in the medial geniculate body of cat. Hear Res 5:81–100.

    PubMed  CAS  Google Scholar 

  • Rouiller E, de Ribaupierre Y, Morel A, de Ribaupierre F (1983) Intensity functions of single unit responses to tone in the medial geniculate body of cat. Hear Res 11:235–247.

    PubMed  CAS  Google Scholar 

  • Rouiller EM, Colomb E, Capt M, de Ribaupierre F (1985) Projections of the reticular complex of the thalamus onto physiologically characterized regions of the medial geniculate body. Neurosci Lett 3:227–232.

    Google Scholar 

  • Rouiller EM, Rodrigues-Dagaeff C, Simm G, de Ribaupierre Y, Villa A, de Ribaupierre F (1989) Functional organization of the medial division of the medial geniculate body of the cat: tonotopic organization, spatial distribution of response properties and cortical connections. Hear Res 39:127–142.

    PubMed  CAS  Google Scholar 

  • Rouiller EM, Capt M, Hornung JP, Streit P (1990) Correlation between regional changes in the distributions of GABA-containing neurons and unit response properties in the medial geniculate body of the cat. Hear Res 49:249–258.

    PubMed  CAS  Google Scholar 

  • Rubel EW (1978) Ontogeny of structure and function in the vertebrate auditory system. In: Jacobson M (ed) Handbook of Sensory Physiology, Volume IX, Development of Sensory Systems. Berlin: Springer-Verlag, pp. 135–237.

    Google Scholar 

  • Rubel EW (1985) Strategies and problems for future studies of auditory development. Acta Otolaryngol (Stockh) Suppl 421:114–128.

    CAS  Google Scholar 

  • Ruff RM, Hersh NA, Pribram KH (1981) Auditory spatial deficits in the personal and extrapersonal frames of reference due to cortical lesions. Neuropsychologia 19:435–443.

    PubMed  CAS  Google Scholar 

  • Ryan A, Miller J (1978) Single unit responses in the inferior colliculus of the awake and performing rhesus monkey. Exp Brain Res 32:389–407.

    PubMed  CAS  Google Scholar 

  • Ryan AF, Miller JM, Pfingst BE, Martin GK (1984) Effects of reaction time performance on single-unit activity in the central auditory pathway of the rhesus macaque. J Neurosci 4:298–308.

    PubMed  CAS  Google Scholar 

  • Sakurai Y (1990) Cells in the rat auditory system have sensory-delay correlates during the performance of an auditory working memory task. Behav Neurosci 104:856–868.

    PubMed  CAS  Google Scholar 

  • Sally SL, Kelly JB (1988) Organization of auditory cortex in the albino rat: sound frequency. J Neurophysiol 59:1627–1638.

    PubMed  CAS  Google Scholar 

  • Samson FR, Imig TJ (1990) Physiological mechanisms of directional selectivity in the cat’s primary auditory cortex (AI) revealed by ear occlusion. Soc Neurosci Abst 16(1):721.

    Google Scholar 

  • Sanchez-Longo LP, Forster FM (1958) Clinical significance of impairment of sound localization. Neurology 8:119–125.

    PubMed  CAS  Google Scholar 

  • Sanchez-Longo LP, Forster FM, Auth TL (1957) A clinical test for sound localization and its applications. Neurology 7:655–663.

    PubMed  CAS  Google Scholar 

  • Scharlock DP, Neff WD, Strominger NL (1965) Discrimination of tone duration after bilateral ablation of cortical auditory areas. J Neurophysiol 28:673–681.

    PubMed  CAS  Google Scholar 

  • Scheibel ME, Scheibel AB (1966) The organization of the nucleus reticularis thaiami: a Golgi study. Brain Res 1:43–62.

    PubMed  CAS  Google Scholar 

  • Schreiner CE, Cynader MS (1984) Basic functional organization of second auditory cortical field (AII) of the cat. J Neurophysiol 51:1284–1305.

    PubMed  CAS  Google Scholar 

  • Schreiner CE, Langner G (1988a) Periodicity coding in the inferior colliculus of the cat. II. Topographical organization. J Neurophysiol 60:1823–1840.

    PubMed  CAS  Google Scholar 

  • Schreiner CE, Langner G (1988b) Coding of temporal patterns in the central auditory nervous system. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function: Neurobiological Bases of Hearing. New York: Wiley, pp. 337–361.

    Google Scholar 

  • Schreiner CE, Mendelson JR (1990) Functional topography of cat primary auditory cortex: distribution of integrated excitation. J Neurophysiol 64:1442–1459.

    PubMed  CAS  Google Scholar 

  • Schreiner CE, Urbas JV (1986) Representation of amplitude modulation in the auditory cortex of the cat. I. The anterior auditory field (AAF). Hear Res 21:227–241.

    PubMed  CAS  Google Scholar 

  • Schreiner CE, Urbas JV (1988) Representation of amplitude modulation in the auditory cortex of the cat. II. Comparison between cortical fields. Hear Res 32:49–64.

    PubMed  CAS  Google Scholar 

  • Schreiner C, Urbas JV, Mehrgardt S (1983) Temporal resolution of amplitude modulation and complex signals in the auditory cortex of the cat. In: Klinke R, Hartmann R (eds) Hearing—Physiological Bases and Psychophysics. New York: Springer-Verlag, pp. 169–175.

    Google Scholar 

  • Semple MN, Kitzes LM (1987) Binaural processing of sound pressure level in the inferior colliculus. J Neurophysiol 57:1130–1147.

    PubMed  CAS  Google Scholar 

  • Semple MN, Kitzes LM (1989) TWIN (two-way intensity network) neurons in the cat primary auditory cortex. Soc Neurosci Abst 15 (1):111.

    Google Scholar 

  • Semple MN, Aitkin LM, Calford MB, Pettigrew JD, Phillips DP (1983) Spatial receptive fields in the cat inferior colliculus. Hear Res 10:203–215.

    PubMed  CAS  Google Scholar 

  • Shamma SA, Symmes D (1985) Patterns of inhibition in auditory cortical cells in awake squirrel monkeys. Hear Res 19:1–13.

    PubMed  CAS  Google Scholar 

  • Shankweiler DP (1961) Performance of brain-damaged patients on two tests of sound localization. J Comp Physiol Psychol 54:375–381.

    Google Scholar 

  • Silverman MS, Clopton BM (1977) Plasticity of binaural interaction. I. Effect of early auditory deprivation. J Neurophysiol 40:1266–1274.

    PubMed  CAS  Google Scholar 

  • Skinner JE, Yingling CD (1977) Central gating mechanisms that regulate event-related potentials and behavior. In: Desmedt JE (ed) Attention, Voluntary Contraction and Event-Related Cerebral Potentials: Prog Clin Neurophysiol, Volume 1. Basel: Karger, pp. 30–69.

    Google Scholar 

  • Smith RL (1988) Encoding of sound intensity by auditory neurons. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function: Neurological Bases of Hearing. New York: Wiley, pp. 243–274.

    Google Scholar 

  • Smolders JWT, Aertsen AMHJ, Johannesma PIM (1979) Neural representation of the acoustic biotope: a comparison of the response of auditory neurons to tonal and natural stimuli in the cat. Biol Cybern 35:11–20.

    PubMed  CAS  Google Scholar 

  • Sovijärvi ARA (1975) Detection of natural complex sounds by cells in the primary auditory cortex of the cat. Acta Physiol Scand 93:318–355.

    PubMed  Google Scholar 

  • Sovijärvi ARA, Hyvärinen J (1974) Auditory cortical neurons in the cat sensitive to the direction of sound source movement. Brain Res 73:455–471.

    PubMed  Google Scholar 

  • Starr A, Don M (1972) Responses of squirrel monkey (Saimiri sciureus) medial geniculate units to binaural click stimuli. J Neurophysiol 35:501–517.

    PubMed  CAS  Google Scholar 

  • Stepien LS, Cordeau JP, Rasmussen T (1960) The effect of temporal lobe and hippocampal lesions on auditory and visual recent memory in monkeys. Brain 83:470–489.

    Google Scholar 

  • Steriade M, Llinás RR (1988) The functional states of the thalamus and the associated neuronal interplay. Physiol Rev 68:649–742.

    PubMed  CAS  Google Scholar 

  • Steriade M, Parent A, Hada J (1984) Thalamic projections of nucleus reticularis thalami of cat: a study using retrograde transport of horseradish peroxidase and fluorescent tracers. J Comp Neurol 229:531–547.

    PubMed  CAS  Google Scholar 

  • Stiebler I (1987) A distinct ultrasound-processing area in the auditory cortex of the mouse. Naturwiss 74:96–97.

    PubMed  CAS  Google Scholar 

  • Stillman RD (1972) Responses of high-frequency inferior colliculus neurons to interaural intensity differences. Exp Neurol 36:118–126.

    PubMed  CAS  Google Scholar 

  • Strominger NL (1969a) Subdivisions of auditory cortex and their role in localization of sound in space. Exp Neurol 24:348–362.

    PubMed  CAS  Google Scholar 

  • Strominger NL (1969b) Localization of sound in space after unilateral and bilateral ablation of auditory cortex. Exp Neurol 25:521–533.

    PubMed  CAS  Google Scholar 

  • Strominger NL, Oesterreich RE (1970) Localization of sound after section of the brachium of the inferior colliculus. J Comp Neurol 138:1–18.

    PubMed  CAS  Google Scholar 

  • Suga N (1965) Functional properties of auditory neurones in the cortex of echolocating bats. J Physiol (Lond) 181:671–700.

    CAS  Google Scholar 

  • Suga N (1977) Amplitude-spectrum representation in the Doppler-shifted-CF processing area of the auditory cortex of the mustache bat. Science 196:64–67.

    PubMed  CAS  Google Scholar 

  • Suga N (1978) Specialization of the auditory system for reception and processing of species-specific sounds. Fed Proc 37:2342–2354.

    PubMed  CAS  Google Scholar 

  • Suga N (1982) Functional organization of the auditory cortex: representation beyond tonotopy in the bat. In: Woolsey CN (ed) Cortical Sensory Organization: Volume 3, Multiple Auditory Areas. Clifton, New Jersey: Humana, pp. 157–218.

    Google Scholar 

  • Suga N (1984) The extent to which biosonar information is represented in the bat auditory cortex. In: Edelman GM, Gall WE, Cowan WM (eds) Dynamic Aspects of Neocortical Function. New York: John Wiley and Sons, pp. 315–373.

    Google Scholar 

  • Suga N (1988) Auditory neuroethology and speech processing: complex sound processing by combination-sensitive neurons. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function: Neurobiological Bases of Hearing. New York: John Wiley and Sons, pp. 679–720.

    Google Scholar 

  • Suga N, Jen PH-S (1976) Disproportionate tonotopic representation for processing CF-FM sonar signals in the mustache bat auditory cortex. Science 194:542–544.

    PubMed  CAS  Google Scholar 

  • Suga N, Manabe T (1982) Neural basis of amplitude-spectrum representation in auditory cortex of the mustached bat. J Neurophysiol 47:225–255.

    PubMed  CAS  Google Scholar 

  • Symmes D (1966) Discrimination of intermittent noise by macaques following lesions of the temporal lobe. Exp Neurol 16:201–214.

    PubMed  CAS  Google Scholar 

  • Symmes D (1981) On the use of natural stimuli in neurophysiological studies of audition. Hear Res 4:203–214.

    PubMed  CAS  Google Scholar 

  • Symmes D, Alexander GE, Newman JD (1980) Neural processing of vocalizations and artificial stimuli in the medial geniculate body of squirrel monkey. Hear Res 3:133–146.

    PubMed  CAS  Google Scholar 

  • Teas DC, Kiang NY-S (1964) Evoked responses from the auditory cortex. Exp Neurol 10:91–119.

    PubMed  CAS  Google Scholar 

  • Tees RC (1967a) Effects of early auditory restriction in the rat on adult pattern discrimination. J Comp Physiol Psychol 63:389–393.

    PubMed  CAS  Google Scholar 

  • Tees RC (1967b) The effects of early auditory restriction in the rat on adult duration discrimination. J Aud Res 7:195–207.

    Google Scholar 

  • Thompson GC, Cortez AM (1983) The inability of squirrel monkeys to localize sound after unilateral ablation of auditory cortex. Behav Brain Res 8:211–216.

    PubMed  CAS  Google Scholar 

  • Thompson RF (1960) Function of auditory cortex of cat in frequency discrimination. J Neurophysiol 23:321–334.

    PubMed  CAS  Google Scholar 

  • Toros A, Rouiller E, de Ribaupierre Y, Ivarsson C, Holden M, de Ribaupierre F (1979) Changes of functional properties of medial geniculate body neurons along the rostro-caudal axis. Neurosci Lett Suppl 3:S5.

    Google Scholar 

  • Toros-Morel A, de Ribaupierre F, Rouiller E (1981) Coding properties of the different nuclei of the cat’s medial geniculate body. In: Syka J, Aitkin L (eds) Neuronal Mechanisms of Hearing. New York: Plenum Publishing Corporation, pp. 239–243.

    Google Scholar 

  • Trune DR (1982) Influence of neonatal cochlear removal on the development of mouse cochlear nucleus. I. Number, size, and density of its neurons. J Comp Neurol 209:409–424.

    PubMed  CAS  Google Scholar 

  • Trune DR (1983) Influence of neonatal cochlear removal on the development of mouse cochlear nucleus. III. Its efferent projections to inferior colliculus. Dev Brain Res 9:1–12.

    Google Scholar 

  • Tunturi AR (1944) Audio frequency localization in the acoustic cortex of the dog. Am J Physiol 141:397–403.

    Google Scholar 

  • Tunturi AR (1950a) Physiological determination of the boundary of the acoustic area in the cerebral cortex of the dog. Am J Physiol 160:395–401.

    PubMed  CAS  Google Scholar 

  • Tunturi AR (1950b) Physiological determination of the arrangement of the afferent connections to the middle ectosylvian auditory area in the dog. Am J Physiol 162:489–502.

    PubMed  CAS  Google Scholar 

  • Tunturi AR (1952) A difference in the representation of auditory signals for the left and right ears in the iso-frequency contours of the right middle ectosylvian auditory cortex of the dog. Am J Physiol 168:712–727.

    PubMed  CAS  Google Scholar 

  • Tunturi AR (1960) Anatomy and physiology of the auditory cortex. In: Rasmussen GL, Windle WF (eds) Neural Mechanisms of the Auditory and Vestibular Systems. Springfield, Illinois: Charles C. Thomas, pp. 181–200.

    Google Scholar 

  • Tunturi AR (1962) Frequency arrangement in anterior ectosylvian auditory cortex of dog. Am J Physiol 203:185–193.

    Google Scholar 

  • Urbas J, Müller-Preuss P, Fastl H, Hesse A, Schorer E (1986) Selective responses of monkey auditory cortex neurons to various parameters of amplitude modulation (AM). Neurosci Lett Suppl 26:S407.

    Google Scholar 

  • Vaadia E, Gottlieb Y, Abeles M (1982) Single-unit activity related to sensorimotor association in auditory cortex of a monkey. J Neurophysiol 48:1201–1213.

    PubMed  CAS  Google Scholar 

  • Vaadia E, Benson DA, Hienz RD, Goldstein Jr MH (1986) Unit study of monkey frontal cortex: active localization of auditory and of visual stimuli. J Neurophysiol 56:934–952.

    PubMed  CAS  Google Scholar 

  • Vernier VG, Galambos R (1957) Response of single medial geniculate units to repetitive click stimuli. Am J Physiol 188:233–237.

    PubMed  CAS  Google Scholar 

  • Villa AEP (1990) Physiological differentiation within the auditory part of the thalamic reticular nucleus of the cat. Brain Res Rev 15:25–40.

    PubMed  CAS  Google Scholar 

  • Villabianca JR, Olmstead CE (1979) Neurological development of kittens. Dev Psychobiol 12:101–127.

    Google Scholar 

  • Volokhov AA (1968) Comparative studies of the functional development of analyzer systems in animals in the process of ontogenesis. Prog Brain Res 22:527–540.

    PubMed  CAS  Google Scholar 

  • Walsh EG (1957) An investigation of sound localization in patients with neurological abnormalities. Brain 80:222–250.

    PubMed  CAS  Google Scholar 

  • Walsh EJ, McGee J (1990) Development of auditory coding in the central nervous system: implications for in utero hearing. Seminars in Perinatology 14:281–293.

    PubMed  CAS  Google Scholar 

  • Walsh EJ, McGee J, Javel E (1986a) Development of auditory-evoked potentials in the cat. I. Onset of response and development of sensitivity. J Acoust Soc Am 79:712–724.

    PubMed  CAS  Google Scholar 

  • Walsh EJ, McGee J, Javel E (1986b) Development of auditory-evoked potentials in the cat. II. Wave latencies. J Acoust Soc Am 79:725–744.

    PubMed  CAS  Google Scholar 

  • Walsh EJ, McGee J, Javel E (1986c) Development of auditory-evoked potentials in the cat. III. Wave amplitudes. J Acoust Soc Am 79:745–754.

    PubMed  CAS  Google Scholar 

  • Watanabe T (1972) Fundamental study of the neural mechanism in cats subserving the feature extraction process of complex sounds. Jap J Physiol 22:569–583.

    CAS  Google Scholar 

  • Watanabe T, Katsuki Y (1974) Response patterns of single auditory neurons of the cat to species-specific vocalization. Jap J Physiol 24:135–155.

    CAS  Google Scholar 

  • Webster DB (1983) Auditory neuronal sizes after a unilateral conductive hearing loss. Exp Neurol 79:130–140.

    PubMed  CAS  Google Scholar 

  • Webster DB, Webster M (1979) Effects of neonatal conductive hearing loss on brain stem auditory nuclei. Ann Oto-Rhino Laryngol 88:684–688.

    CAS  Google Scholar 

  • Webster WR, Aitkin LM (1971) Evoked potential and single unit studies of neural mechanisms underlying the effects of repetitive stimulation in the auditory pathway. Electroencephal Clin Neurophysiol 31:581–592.

    CAS  Google Scholar 

  • Webster DB, Popper AN, Fay RR, eds (1992) Spring Handbook of Auditory Research, Vol. 1: The Mammalian Auditory Pathway: Neuroanatomy. New York: Springer-Verlag.

    Google Scholar 

  • Wegener JG (1973) The sound localizing behavior of normal and brain damaged monkeys. J Aud Res 13:191–219.

    Google Scholar 

  • Weinberger NM (1982) Effects of conditioned arousal on the auditory system. In: Beckman AL (ed) The Neural Basis of Behavior. New York: Spectrum Publications, pp. 63–91.

    Google Scholar 

  • Weinberger NM, Diamond DM (1987) Physiological plasticity in auditory cortex: rapid induction by learning. Prog Neurobiol 29:1–55.

    PubMed  CAS  Google Scholar 

  • Weinberger NM, Diamond D (1988) Dynamic modulation of the auditory system by associative learning. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function: Neurobiological Bases of Hearing. New York: Wiley, pp. 485–512.

    Google Scholar 

  • Weinberger NM, Diamond DM, McKenna TM (1984) Initial events in conditioning: plasticity in the pupillomotor and auditory systems. In: Lynch G, McGaugh JL, Weinberger NM (eds) Neurobiology of Learning and Memory. New York: Guilford Press, pp. 197–227.

    Google Scholar 

  • Weinberger NM, Hopkins W, Diamond DM (1984) Physiological plasticity of single neurons in auditory cortex of the cat during acquisition of the pupillary conditioned response: I. Primary field (AI). Behav Neurosci 98:171–188.

    PubMed  CAS  Google Scholar 

  • Whitfield IC (1969) Response of the auditory nervous system to simple time-dependent acoustic stimuli. Ann NY Acad Sci 156:671–677.

    PubMed  CAS  Google Scholar 

  • Whitfield IC (1980) Auditory cortex and the pitch of complex tones. J Acoust Soc Am 67:644–647.

    PubMed  CAS  Google Scholar 

  • Whitfield IC, Evans EF (1965) Responses of auditory cortical neurons to stimuli of changing frequency. J Neurophysiol 28:655–672.

    PubMed  CAS  Google Scholar 

  • Whitfield IC, Purser D (1972) Microelectrode study of the medial geniculate body in unanesthetized free-moving cats. Brain Behav Evol 6:311–322.

    Google Scholar 

  • Winer JA (1985) The medial geniculate body of the cat. Adv Anat Embryol Cell Biol 86:1–97.

    PubMed  CAS  Google Scholar 

  • Winer JA (1992) Thalamus and cortex. In: Fay RR, Popper AN (eds) The Anatomy of the Mammalian Auditory Pathways. Springer Series in Auditory Research (Vol. I). New York: Springer-Verlag.

    Google Scholar 

  • Winter P, Funkenstein HH (1973) The effect of species-specific vocalization on the discharge of auditory cortical cells in the awake squirrel monkey (Saimiri sciureus). Exp Brain Res 18:489–504.

    PubMed  CAS  Google Scholar 

  • Wise LZ, Irvine DRF (1983) Auditory response properties of neurons in deep layers of cat superior colliculus. J Neurophysiol 49:674–685.

    PubMed  CAS  Google Scholar 

  • Wise LZ, Irvine DRF (1984) Interaural intensity difference sensitivity based on facilitatory binaural interaction in cat superior colliculus. Hear Res 16:181–187.

    PubMed  CAS  Google Scholar 

  • Wise LZ, Irvine DRF (1985) Topographic organization of interaural intensity difference sensitivity in deep layers of cat superior colliculus: implications for auditory spatial representation. J Neurophysiol 54:185–211.

    PubMed  CAS  Google Scholar 

  • Wollberg Z, Newman JD (1972) Auditory cortex of squirrel monkey: response patterns of single cells to species-specific vocalizations. Science 175:212–214.

    PubMed  CAS  Google Scholar 

  • Wong D, Shannon SL (1988) Functional zones in the auditory cortex of the echolocating bat, Myotis lucifugus. Brain Res 453:349–352.

    PubMed  CAS  Google Scholar 

  • Woolsey CN (1960) Organization of cortical auditory system: a review and synthesis. In: Rasmussen GL, Windle WF (eds) Neural Mechanisms of the Auditory and Vestibular Systems. Springfield, Illinois: Charles C. Thomas, pp. 165–180.

    Google Scholar 

  • Woolsey CN (1961) Cortical auditory system. In: Rosenblith WA (ed) Sensory Communication. Cambridge, MA: MIT Press, pp. 235–257.

    Google Scholar 

  • Woolsey CN (1972) Tonotopic organization of the auditory cortex. In: Sachs MB (ed) Physiology of the Auditory System. Baltimore: National Educational Consultants, pp. 271–282.

    Google Scholar 

  • Woolsey CN, Walzl EM (1982) Cortical auditory area of Macaca mulatta and its relation to the second somatic sensory area (Sm II). In: Sachs MB (ed) Cortical Sensory Organization, Vol. 3: Multiple Auditory Areas. Clifton, New Jersey: Humana Press, pp. 231–256.

    Google Scholar 

  • Worden FG (1966) Attention and auditory electrophysiology. In: Stellar E, Sprague JM (eds) Progress in Physiological Psychology, Volume 1. New York: Academic Press, pp. 45–116.

    Google Scholar 

  • Worden FG, Galambos R (1972) Auditory processing of biologically significant sounds. Neurosci Res Prog Bull 10:1–119.

    CAS  Google Scholar 

  • Wurtz RH, Mohler CW (1976) Enhancement of visual responses in monkey striate cortex and frontal eye field. J Neurophysiol 39:766–772.

    PubMed  CAS  Google Scholar 

  • Wurtz RH, Goldberg ME, Robinson DL (1980) Behavioral modulation of visual responses in the monkey: stimulus selection for attention and movement. Prog Psychobiol Physiol Psychol 9:43–83.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Clarey, J.C., Barone, P., Imig, T.J. (1992). Physiology of Thalamus and Cortex. In: Popper, A.N., Fay, R.R. (eds) The Mammalian Auditory Pathway: Neurophysiology. Springer Handbook of Auditory Research, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2838-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2838-7_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97801-7

  • Online ISBN: 978-1-4612-2838-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics