Skip to main content

Climate Change and the Life Histories and Biogeography of Aquatic Insects in Eastern North America

  • Conference paper
Global Climate Change and Freshwater Ecosystems

Abstract

One of the most important factors affecting the life history characteristics and biogeography of aquatic insects is temperature (Sweeney, 1984). Insects are poikilothermic (cold-blooded) animals whose metabolism, rate and magnitude of growth, development, and overall behavioral activities respond significantly to thermal change on a diel, seasonal, and annual basis (Ward and Stanford, 1982). Despite this sensitivity to temperature, most aquatic insect species can be found in aquatic habitats over a broad geographic area that includes a wide range of thermal regimes. Obviously, these aquatic insect species possess bioenergetic, developmental, and/or behavioral mechanisms that enable conspecific populations to survive and reproduce in very different environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson NH, Cargill AS (1987) Nutritional ecology of aquatic detritivorous insects. In F Slansky Jr, JG Rodriguez, eds, Nutritional Ecology of Insects, Mites, and Spiders, pp 903–925. John Wiley, New York.

    Google Scholar 

  • Anderson NH, Cummins KW (1979) Influences of diet on the life histories of aquatic insects. J Fish Res Board Can 36:335–342.

    Article  Google Scholar 

  • Brittain JE (1982) Biology of mayflies. Annu Rev Entomol 27:119–147.

    Article  Google Scholar 

  • Coutant CC (1982) Evidence for upstream dispersion of adult caddisflies (Trichoptera: Hydropsychidae) in the Columbia River. Aquat Insects 4:61–66.

    Article  Google Scholar 

  • Davis MB (1989) Lags in vegetation response to greenhouse warming. Clim Change 15:75–82.

    Google Scholar 

  • Davis MB, Zabinski C (1992) Changes in geographical range resulting from greenhouse warming-effects on biodiversity in forests. In R Peters, T Lovejoy, eds, Consequences of Greenhouse Warming to Biodiversity. Yale University Press, New Haven, CN, in press.

    Google Scholar 

  • Edmunds GF Jr, Edmunds CH (1980) Predation, climate, and emergence and mating of mayflies. In JF Flannagan, KE Marshall, eds, Advances in Ephemeroptera Biology, pp 277–285. Plenum, New York.

    Google Scholar 

  • Edmunds GF Jr, Jensen SL, Berner L (1976) The Mayflies of North and Central America. University of Minnesota Press, Minneapolis.

    Google Scholar 

  • Emanuel WR, Shugart HH, Stevenson MP (1985) Climatic change and the broadscale distribution of terrestrial ecosystem complexes. Clim Change 7:29–43.

    Article  Google Scholar 

  • Eriksen CH (1966) Benthic invertebrates and some substrate-current-oxygen interrelationships. Pymatuning Lab Ecol Special Publ 4:98–115.

    Google Scholar 

  • Eriksen CH, Resh VH, Balling SS, Lamberti GA (1984) Aquatic insect respiration. In RW Merritt, KW Cummins, eds, An Introduction to the Aquatic Insects of North America, pp 27–37. Kendall/Hunt, Dubuque, IA.

    Google Scholar 

  • Fajer ED (1989) How enriched carbon dioxide environments may alter biotic systems even in the absence of climatic changes. Consery Bio 13:318–320.

    Google Scholar 

  • Fajer ED, Bowers MD, Bazzaz FA (1989) The effects of enriched carbon dioxideatmospheres on plant-insect herbivore interactions. Science 243:1198–1200.

    Article  PubMed  CAS  Google Scholar 

  • Findlay S, Jones CG (1990) Exposure of cottonwood plants to ozone alters subsequent leaf decomposition. Oecologia (Berlin) 82:248–250.

    Article  Google Scholar 

  • Funk DH, Sweeney BW, Vannote RL (1988) Electrophoretic study of eastern North American Eurylophella (Ephemeroptera: Ephemerellidae) with the discovery of morphologically cryptic species. Ann Entomol Soc Am 81: 174–186.

    Google Scholar 

  • Glick PA (1939) The distribution of insects, spiders and mites in the air. Technical Bulletin No. 673, US Department of Agriculture.

    Google Scholar 

  • Gordon MS (1972) Animal Physiology: Principles and Adaptations, 2nd ed. Macmillan, New York.

    Google Scholar 

  • Gormally MJ (1988) Temperature and the biology and predation of Ilione albiseta (Diptera: Sciomyzidae)—potential biological control agent of liver fluke. Hydrobiologia 166:239–246.

    Article  Google Scholar 

  • Graur D (1985) Gene diversity in Hymenoptera. Evolution 39:190–199.

    Article  Google Scholar 

  • Hansen J, Lacis A, Rind D, Russell G, Fung I, Ashcraft P, Lebedeff S, Ruedy R, Stone P (1986) The greenhouse effect: Projections of global climate change. In JG Titus, ed, Effects of Changes in Stratospheric Ozone and Global Climate, Vol. 1: Overview, pp 199–218. US Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • Hansen J, Lacis A, Rind D, Russell G, Fung I, Lebedeff S (1987) Evidence for future warming: how large and when? In WE Shands, JS Hoffman, eds, The Greenhouse Effect, Climate Change, and U.S. Forests, pp 57–75. The Conserva-. tion Foundation, Washington, DC.

    Google Scholar 

  • Hartl DL (1988) A Primer of Population Genetics, 2nd ed. Sinauer Associates. Sunderland, MA.

    Google Scholar 

  • Jackson JK (1988) Diel emergence, swarming and longevity of selected adult aquatic insects from a Sonoran Desert stream. Am Midl Nat 119:344–352.

    Article  Google Scholar 

  • Johnson CG (1969) Migration and Dispersal of Insects by Flight. Methuen, London.

    Google Scholar 

  • Leverenz JW, Lev DJ (1987) Effects of carbon dioxide-induced climate changes on the natural ranges of six major commercial tree species in the western United States. In WE Shands, JS Hoffman, eds, The Greenhouse Effect, Climate Change,and U.S. Forests, pp 123–155. The Conservation Foundation, Washington, DC.

    Google Scholar 

  • Levine J (1991) Global climate change. In P Firth, SG Fisher, eds, Global Warming and Freshwater Ecosystems, pp. 1–25. Springer-Verlag, New York.

    Google Scholar 

  • Lincoln DE, Sionit N, Strain BR (1984) Growth and feeding response of Pseudoplusia includens (Lepidoptera: Noctuidae) to host plants grown in controlled carbon dioxide atmospheres. Environ Entomol 13:1527–1530.

    CAS  Google Scholar 

  • Merritt RW, Cummins KW (eds) (1984) An Introduction to the Aquatic Insects of North America, 2nd ed. Kendall/Hunt, Dubuque, IA.

    Google Scholar 

  • Meyer J, Pulliam W (1991) Modification of terrestrial-aquatic interactions by climate. In P Firth, SG Fisher, eds, Global Warming and Freshwater Ecosystems,pp. 177–191. Springer-Verlag, New York.

    Google Scholar 

  • Nei M (1975) Molecular Population Genetics and Evolution. North-Holland, Amsterdam.

    Google Scholar 

  • Nevo E (1978) Genetic variation in natural populations: Patterns and theory. Theor Popul Biol 13:121–177.

    Article  PubMed  CAS  Google Scholar 

  • Newell RC, Northcroft HC (1967) A re-interpretation of the effect of temperature on the metabolism of certain marine invertebrates. J Zool, London 151:277–298.

    Google Scholar 

  • Parry ML, Carter TR (1986) Effects of climatic changes on agriculture and forestry: an overview. In JG Titus, ed, Effects of Changes in Stratospheric Ozone and Global Climate. Vol. 1: Overview, pp 257–297. U.S. Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • Peters RL (1989) Effects of global warming on biological diversity. In DE Abrahamson, ed, The Challenge of Global Warming, pp 82–95. Island Press, Washington, DC.

    Google Scholar 

  • Poff NL (1991) Surface water hydrology: climate induced changes and ecological implications. In P Firth, SG Fisher, eds, Global Warming and Freshwater Ecosystems, pp. 88–115. Springer-Verlag, New York.

    Google Scholar 

  • Porter AH, Geiger H (1988) Genetic and phenotypic population structure of the Coenonympha tulla complex (Lepidoptera: Nymphalidae: Satyrinae) in California: No evidence for species boundaries. Can J Zool 66:2751–2765.

    Article  Google Scholar 

  • Richardson BJ, Baverstock PR, Adams M (1986) Allozyme Electrophoresis. Academic Press, Sydney.

    Google Scholar 

  • Schindler DW, Beaty KG, Fee EJ, Cruikshank DR, DeBruyn ER, Findlay DL, Linsey GA, Shearer JA, Stainton MP, Turner MA (1990) Effects of climatic warming on lakes of the central boreal forest. Science 250:967–970.

    Article  PubMed  CAS  Google Scholar 

  • Scholander PF, Flagg W, Walters V, Irving L (1953) Climatic adaptation in arctic and tropical poikilotherms. Physiol Zool 26:67–92.

    Google Scholar 

  • Sheldon AL (1984) Colonization dynamics of aquatic insects. In VH Resh, DM Rosenberg, eds, The Ecology of Aquatic Insects, pp 401–429. Praeger, New York.

    Google Scholar 

  • Stewart KW, Stark BP (1988) Nymphs of North American stonefly genera (Plecoptera). The Thomas Say Foundation Volume 12. Entomol Soc Am.

    Google Scholar 

  • Svensson BW (1974) Population movements of adult Trichoptera at a South Swedish stream. Oikos 25:157–175.

    Article  Google Scholar 

  • Sweeney BW (1978) Bioenergetic and developmental response of a mayfly to thermal variation. Limnol Oceanogr 23:461–477.

    Article  Google Scholar 

  • Sweeney BW (1984) Factors influencing life-history patterns of aquatic insects. In VH Resh, DM Rosenberg, eds, The Ecology of Aquatic Insects, pp 56–100. Praeger, New York.

    Google Scholar 

  • Sweeney BW, Vannote RL (1981) Ephemerella mayflies of White Clay Creek: Bioenergetic and ecological relationships among six coexisting species. Ecology 62:1353–1369.

    Article  Google Scholar 

  • Sweeney BW, Funk DH, Vannote RL (1987) Genetic variation in stream mayfly (Insecta: Ephemeroptera) populations of eastern North America. Ann Entomol Soc Am 80:600–612.

    Google Scholar 

  • Swofford DL, Selander RB (1981) BIOSYS-1: a FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematics. J Hered 72:281–283.

    Google Scholar 

  • Vannote RL and Sweeney BW (1985) Larval feeding and growth rate of the stream cranefly Tipula abdominalis in gradients of temperature and nutrition. Proc Acad Nat Sci Phila 137:119–128.

    Google Scholar 

  • Ward JV, Stanford JA (1982) Thermal responses in the evolutionary ecology of aquatic insects. Annu Rev Entomol 27:97–117.

    Article  Google Scholar 

  • Watt WB, Carter PA, Blower SM (1985) Adaptation at specific loci. IV. Differential mating success among glycolytic allozyme genotypes of Colias butterflies. Genetics 109:157–175.

    PubMed  CAS  Google Scholar 

  • Workman PL, Niswander, JD (1970) Population studies on southwestern Indian tribes. II. Local genetic differentiation in the Papago. Am J Hum Genet 22:24–49.

    PubMed  CAS  Google Scholar 

  • Wright S (1978) Evolution and the Genetics of Populations,Vol. 4. Variability within and among Natural Populations. University of Chicago Press, Chicago.

    Google Scholar 

  • Zwick P (1990) Emergence, maturation and upstream oviposition flights of Plecoptera from the Breitenbach, with notes on the adult phase as a possible control of stream insect populations. Hydrobiologia 194:207–223.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York Inc.

About this paper

Cite this paper

Sweeney, B.W., Jackson, J.K., Newbold, J.D., Funk, D.H. (1992). Climate Change and the Life Histories and Biogeography of Aquatic Insects in Eastern North America. In: Firth, P., Fisher, S.G. (eds) Global Climate Change and Freshwater Ecosystems. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2814-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2814-1_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7681-4

  • Online ISBN: 978-1-4612-2814-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics