Skip to main content

Environmental Biochemistry of Chromium

  • Chapter

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 136))

Abstract

Chromium (Cr) was first discovered in Siberian red lead ore (crocoite) in 1798 by the French chemist, Vauquelin. Named for the bright colors of its compounds, Cr has since found an extremely wide variety of industrial uses that exploit these colors, as well as various other characteristics of Cr, such as strength, hardness and corrosion resistance of the metal, and the oxidizing capabilities of certain Cr species. Not surprisingly, large volumes of Cr waste in various chemical forms are generated from industrial processes and discharged into the environment. While Cr, in trace amounts, is essential for human life, exposure to some Cr compounds can pose a major health risk to all forms of life. This review will discuss some of the environmental impacts of chromium, including novel bioremediation techniques currently under development for detoxifying Cr-contaminated water and soils.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adriano DC (1986) Trace elements in the terrestrial environment. Springer-Verlag,New York, pp 156–180.

    Google Scholar 

  • Ajmal M, Nomani AA, Ahmad A (1984) Acute toxicity of chrome electroplating wastes to microorganisms: Adsorption of ehromate and chromium (VI) on a mixture of clay and sand. Water Air Soil Pollut 23: 119–127.

    Article  CAS  Google Scholar 

  • Amacher MC, Baker DE (1982) Redox reactions involving chromium, plutonium and manganese in soils. DOE/DP/04515-1. Institute for Research on Land and Water Resources, Pennsylvania State University and U.S. Dept. of Energy. Las Vegas, NV.

    Google Scholar 

  • Anderson RA (1989) Essentiality of chromium in humans. Sci Total Environ 86: 15–23.

    Article  Google Scholar 

  • Apel WA, Turick CE (1991) Bioremediation of hexavalent chromium by bacterial reduction. In: Smith RW (ed) Mineral bioprocessing. The Minerals, Metals & Materials Society, Warrendale, PA, pp 377–387.

    Google Scholar 

  • Ayoub GM, Sayigh BA (1987) The effects and removal of chromium inChlamydomonassp. Tox Assess: Int Quart 2: 253–264.

    Article  CAS  Google Scholar 

  • Bartlett RJ, Kimble JM (1976a) Behavior of chromium in soils: I. Trivalent forms. J Environ Qual 5 (4): 379–383.

    Article  CAS  Google Scholar 

  • Bartlett RJ, Kimble JM (1976b) Behavior of chromium in soils: II. Hexavalent forms. J Environ Qual 5 (4): 383–386.

    Article  CAS  Google Scholar 

  • Bartlett R, James B (1979) Behavior of chromium in soils: III. Oxidation. J Environ Qual 8 (l): 31–34.

    Article  CAS  Google Scholar 

  • Bartlett R, James B (1988) Mobility and bioavailability of chromium in soils. In: Nriagu JO, Nieboer E (eds) Chromium in natural and human environments. John Wiley and Sons, New York, p 276.

    Google Scholar 

  • Bartlett RJ (1991) Chromium cycling in soils and water: Links, gaps and methods. Environ Hlth Perspect 92: 17–24.

    Article  CAS  Google Scholar 

  • Beas CF Jr, Messmer RE (1986) The hydrolysis of cations. John Wiley and Sons, New York.

    Google Scholar 

  • Bertine KK, Goldberg BD (1971) Fossil fuel combustion and the major sedimentary cycle. Science 171: 233–235.

    Article  Google Scholar 

  • Bharti A, Saxena RP, Pandley GN (1979) Physiological imbalances due to hexavalent chromium in fresh water algae. Indian J Environ Hlth 21 (3): 234–243.

    CAS  Google Scholar 

  • Bloomfield C, Pruden G (1980) The behavior of Cr(VI) in soil under aerobic and anaerobic conditions. Environ Pollut Ser A 23: 103–114.

    Article  CAS  Google Scholar 

  • Bopp LH, Chakrabarty AM, Ehrlich HL (1983) Chromium resistance plasmid inPseudomonas fluorescensstrain LB 300. J Bacteriol 155: 1105–1109.

    PubMed  CAS  Google Scholar 

  • Bopp LH, Ehrlich HL (1988) Chromate resistance and reduction inPseudomonas fluorescensstrain LB300. Arch Microbiol 150: 426–431.

    Article  CAS  Google Scholar 

  • Bowen HJM (1966) Trace elements in biochemistry. Academic Press, New York.

    Google Scholar 

  • Bowen HJM (1979) Environmental chemistry of the elements. Academic Press, New York.

    Google Scholar 

  • Cary EE, Alloway WH, Olson OE (1977a) Control of chromium concentrations in food plants. 1. Absorption and translocation of chromium by plants. J Agric Food Chem 25: 300–304.

    Article  PubMed  CAS  Google Scholar 

  • Cary EE, Alloway WH, Olson OE (1977b) Control of chromium concentrations in food plants. 2. Chemistry of chromium in soils and its availability to plants. J Agric Food Chem 25: 305 - 309.

    Article  CAS  Google Scholar 

  • Cary EE (1982) Chromium in air, soils and natural waters. In: Langard S (ed) Biological and environmental aspects of chromium. Elsevier Biomedical Press, Amsterdam, pp 49–64.

    Google Scholar 

  • Coleman RN, and Paran JH (1983) Accumulation of hexavalent chromium by selected bacteria. Environ Technol Lett 4: 149–156.

    Article  CAS  Google Scholar 

  • Coleman RN (1988) Chromium toxicity: Effects on microorganisms with special reference to the soil matrix. In: Nriagu JO, Nieboer E (eds) Chromium in natural and human environments. John Wiley and Sons, New York, pp 335–351.

    Google Scholar 

  • DeFilippi LJ, Lupton FS (1992) Bioremediation of soluble Cr(VI) using sulfate reducing bacteria. Allied Signal Research: National R&D Conference on the Control of Hazardous Materials, pp 138–141.

    Google Scholar 

  • Deutsch M (1972) Incidents of chromium contamination of groundwater in Michigan. Water quality in a stressed environment. Burgess Publishing Company, Minneapolis, MN, pp 256–271.

    Google Scholar 

  • Deverel SJ, Gilliom RJ, Fujii R, Izbicki JA, Fields JC (1984) A real distribution of selenium and other inorganic constituents in shallow ground water of the San Luis Drain Service Area, San Joaquin Valley, California: A preliminary study. U.S. Geological Survey. Water-Resources Investigation Report 84–4319.

    Google Scholar 

  • Eary LE, Rai D (1987) Kinetics of chromium (III) oxidation to chromium (VI) by reaction with manganese dioxide. Environ Sci Technol 21: 1187–1193.

    Article  Google Scholar 

  • Eary LE, Rai D (1988) Chromate removal from aqueous waste by reduction with ferrous iron. Environ Sci Technol 22: 972–977.

    Article  CAS  Google Scholar 

  • Eliseeva GS, Klyushnikova TM, Kasatkina TP, Serpokrylov NS (1991) Reduction of Cr(VI) by microorganisms in media with inedible plant raw material. Khimiya i Tekhnologiya Vody 13 (l): 72–75.

    CAS  Google Scholar 

  • Filip D, Peters ST, Adams VD, Middlebrooks EJ (1979) Residual heavy metal removal by an algae-intermittent sand filtration system. Water Res 13: 305–313.

    Article  CAS  Google Scholar 

  • Frey BE, Riedel GF, Bass AE, Small LF (1983) Sensitivity of estuarine phytoplankton to hexavalent chromium. Est Coast Shelf Sci 17: 181–187.

    Article  CAS  Google Scholar 

  • Fujii E, Toda K, Ohtake H (1990) Bacterial reduction of toxic hexavalent chromium using a fed-batch culture ofEnterobacter cloacaestrain HOI. J Fermentation Bioengineering 69 (6): 365–367.

    Article  CAS  Google Scholar 

  • Gad SC (1989) Acute and chronic systemic chromium toxicity. Sci Total Environ 86: 149–157.

    Article  PubMed  CAS  Google Scholar 

  • Gaines RW (1988) West San Joaquin Valley Agricultural Setting. Prepared for U. S. Bureau of Reclamation, Contract No. 7-CS-20-05230.

    Google Scholar 

  • Gochfeld M (1991) Panel discussion: Analysis of chromium: Methodologies and detection levels and behavior of chromium in environmental media. Environ Hlth Perspect (92): 41–43.

    Google Scholar 

  • Griffin RA, Au AK, Frost RR (1977) Effect of pH on adsorption of chromium from landfill leachate by clay minerals. J Environ Sci Hlth A12 (8): 431–449.

    Article  CAS  Google Scholar 

  • Horitsu H, Futo S, Ozawa K, Kawai K (1983) Comparison of hexavalent chromium- tolerant bacterium,Pseudomonas ambiguaG-l, and its hexavalent chromium- sensitive mutant. Agric Biol Chem 47 (12): 2907–2908.

    Article  Google Scholar 

  • Horitsu H, Futo S, Miyazawa Y, Ogai S, Kawai K (1987) Enzymatic reduction of hexavalent chromium by hexavalent chromium tolerantPseudomonas ambiguaG-l. Agric Biol Chem 51 (9): 2417–2420.

    Article  CAS  Google Scholar 

  • Huffman E Jr (1973) Chromium: essentiality to plants, forms and distribution in plants, and availability of plant chromium to rats. Ph.D. dissertation, Cornell University.

    Google Scholar 

  • Huffman EWD Jr, Allaway WH (1973) Growth of plants in solution culture containing low levels of chromium. Plant Physiol 52: 72–75.

    Article  PubMed  CAS  Google Scholar 

  • Hughes MN, Poole RK (1989) Metal toxicity. In: Metals and microorganisms. Chapman and Hall, London and New York, pp 253–302.

    Google Scholar 

  • Ishibashi Y, Cervantes C, Silver S (1990) Chromium reduction inPseudomonas putida. Appl Environ Microbiol 56 (7): 2268–2270.

    PubMed  CAS  Google Scholar 

  • James BR, Bartlett RJ (1983a) Behavior of chromium in soils: V. Fate of organically complexed Cr(III) added to soil. J Environ Qual 12: 169–172.

    Article  CAS  Google Scholar 

  • James BR, Bartlett RJ (1983b) Behavior of chromium in soils: VI. Interactions between oxidation-reduction and organic complexation. J Environ Qual 12: 173–176.

    Article  CAS  Google Scholar 

  • James BR, Bartlett RJ (1983c) Behavior of chromium in soils: VII. Adsorption and reduction of hexavalent forms. J Environ Qual 12: 177–181.

    Article  CAS  Google Scholar 

  • Jeejeebhoy KN, Chu RH, Marliss EB, Greenberg GR, Bruce-Robinson A (1977) Chromium deficiency, glucose intolerance, and neuropathy reversed by chromium supplementation in a patient receiving long term total parenteral nutrition. Am J Clin Nutr 30: 531–538.

    PubMed  CAS  Google Scholar 

  • Khasim DI, Nanda Kumar NV, Hussain RC (1989) Environmental contamination of chromium in agricultural and animal products near a chromate industry. Bull Environ Contam Toxicol 43: 742–746.

    Article  PubMed  CAS  Google Scholar 

  • Komori K, Wang P, Toda K, Ohtake H (1989) Factors affecting chromate reduction inEnterobacter cloacaestrain HOI. Appl Microbiol Biotechnol 31: 567–570.

    Article  CAS  Google Scholar 

  • Komori K, Rivas A, Toda K, Ohtake H (1990a) Biological removal of toxic chromium using anEnterobacter cloacaestrain that reduces chromate under anaerobic conditions. Biotechnol Bioeng 35: 951–954.

    Article  CAS  Google Scholar 

  • Komori K, Rivas A, Toda K, Ohtake H (1990b) A method for removal of toxic chromium using dialysis-sac cultures of a chromate-reducing strain ofEnterobacter cloacae. Appl Microbiol Biotechnol 33: 117–119.

    Article  PubMed  CAS  Google Scholar 

  • Komori K, Toda K, Ohtake H (1990c) Effects of oxygen stress on chromate reduction in Enterobacter cloacae strain HOI. J Fermen Bioeng 69 (1): 67–69.

    Article  CAS  Google Scholar 

  • Krauskopf KB (1979) Introduction to geochemistry, 2nd ed. McGraw-Hill, New York.

    Google Scholar 

  • Kvasnikov EI, Stepanyuk VV, Klyushnikova TM, Serpokrylov NS, Simonova GA, Kasatkina TP, and Panchenko LP (1985) A new chromium-reducing, gram- variable bacterium with mixed type of flagellation. Translated from Mikrobiologiya 54 (l): 83–88.

    CAS  Google Scholar 

  • Kvasnikov EI, Serpokrylov NS, Klyushnikova TM, Kasatkina TP, Zukov IM, Tokareva LL (1986) Optimization of a nutrient medium forAeromonas dechromaticareducing Cr(VI). Khimiya i Tekhnologiya Vody 8 (3): 64–66.

    CAS  Google Scholar 

  • Kvasnikov EI, Serpokrylov NS, Klyushnikova TM, Kasatkina TP, Zukov IM, Tokareva LL (1987) Reduction of Cr(VI) by a culture ofAeromonas dechromaticaKS-11 in the presence of certain heavy metals. Khimiya i Tekhnologiya Vody 9 (2): 159–162.

    CAS  Google Scholar 

  • Langard S (1980) In: Waldron HA (ed) Metals in the environment. Academic Press, New York, pp 111–132.

    Google Scholar 

  • Lester JN, Perry R, Dadd AH (1979) The influence of heavy metals on a mixed bacterial population of sewage origin in the chemostat. Water Res 13: 1055–1063.

    Article  CAS  Google Scholar 

  • Levis AG, Bianchi V (1982) Mutagenic and cytogenic effects of chromium compounds. In: Langard S (ed) Topics in environmental health. Vol. 5. Biological and environmental aspects of chromium. Elsevier Biomedical Press, New York, pp 171–206.

    Google Scholar 

  • Losi ME, Amrhein C, Frankenberger WT Jr (1994a) Bioremediation of chromate contaminated groundwater by reduction and precipitation in surface soils. J Environ Qual (in review).

    Google Scholar 

  • Losi ME, Amrhein C, Frankenberger WT Jr (1994b) Factors affecting chemical and biological reduction of hexavalent chromium in soil. Environ Toxicol Chem (in review).

    Google Scholar 

  • Losi ME, Frankenberger WT Jr (1994) Chromium resistant microorganisms isolated from evaporation ponds of a metal processing plant. Water Air Soil Pollut 74: 1–9.

    Article  Google Scholar 

  • Love AHG (1983) Chromium-biological and analytical considerations. In: Burrows D (ed) Chromium: Metabolism and toxicity. CRC Press, Inc., Boca Raton, FL, pp 1–13.

    Google Scholar 

  • Luli GW, Talnagi JW, Strohl WR, Pfister RM (1983) Hexavalent chromium- resistant bacteria isolated from river sediments. Appl Environ Microbiol 46 (4): 846–854.

    PubMed  CAS  Google Scholar 

  • Marquez AM, Espuny MJ, Congregado F, Simon-Pujol MD (1982) Accumulation of chromium byPseudomonas aeruginosa. Microbios Lett 21: 143–147.

    Google Scholar 

  • Matthews NA, Morning JL (1980) In: US Bureau of mines, minerals yearbook 1978-79, Vol 1. Metals and Minerals, 193–205. US Dept of Interior, Washington, DC.

    Google Scholar 

  • Mattison PL (1992) Bioremediation of metals—putting it to work. Ch. 3, Chromium. Cognis, Inc., Santa Rosa, CA.

    Google Scholar 

  • McGrath SP, Smith S (1990) Chromium and nickel. In: Alloway BJ (ed) Heavy metals in soils. John Wiley and Sons, New York, pp 125–147.

    Google Scholar 

  • Mehra HC, Frankenberger WT Jr (1989) Single-column ion chromatographic determination of chromium(VI) in aqueous soil and sludge extracts. Talanta 36 (9): 889–892.

    Article  PubMed  CAS  Google Scholar 

  • Mertz W (1969) Chromium occurrence and functions in biological systems. Physiol Rev 49: 165–239.

    Google Scholar 

  • Mertz WE, Toepfer W, Polansky MM, Roginski EE, Wolf WR (1977) Preparation of chromium-containing material of glucose tolerance factor activity from brewers yeast extracts and by synthesis. J Agric Food Chem 25 (1): 162–166.

    Article  Google Scholar 

  • Naguib MI, Haikal NZ, Gouda S (1984) Effects of chromium ions on the growth ofFusarium oxysporumf.sp.lycopersiciandCunninghamella echinulata. Arab Gulf J Sci Res 2 (1): 149–157.

    CAS  Google Scholar 

  • National Academy of Sciences (NAS) (1974) In: Chromium. NAS, Washington DC.

    Google Scholar 

  • Nieboer E, Jusys AA (1988) Biologic chemistry of chromium. In: Nriagu JO, Nieboer E (eds) Chromium in natural and human environments. John Wiley and Sons, New York, pp 21–81.

    Google Scholar 

  • Nriagu JO (1988) Production and uses of chromium. In: Nriagu JO, Nieboer E (eds) Chromium in natural and human environments. John Wiley and Sons, New York, pp 81–105.

    Google Scholar 

  • Nriagu JO, Pacyna JM, Milford JB, Davidson CI (1988) Distribution and characteristic features of chromium in the atmosphere. In: Nriagu JO, Nieboer E (eds) Chromium in natural and human environments. John Wiley and Sons, New York, pp 125–173.

    Google Scholar 

  • Ohtake H, Cervantes C, Silver S (1987) Decreased uptake inPseudomonas fluoresceincarrying a chromate resistance plasmid. J Bacteriol 169 (8): 3853–3856.

    PubMed  CAS  Google Scholar 

  • Ohtake H, Fujii E, Toda K (1990) Reduction of toxic chromate in an industrial effluent by use of a chromate-reducing strain ofEnterobacter cloacae. Environ Technol 11: 663–668.

    Article  CAS  Google Scholar 

  • Pacyna JM (1986) Atmospheric trace elements from natural and anthropogenic sources. In: Nriagu JO, Davidson C (eds) Toxic metals in the atmosphere. John Wiley and Sons, New York, pp 33–52.

    Google Scholar 

  • Pacyna JM, Nriagu JO (1988) Atmospheric emissions of chromium from natural and anthropogenic sources. In: Nriagu JO, Nieboer E (eds) Chromium in natural and human environments. John Wiley and Sons, New York, pp 105–125.

    Google Scholar 

  • Perkin-Elmer (1982) Analytical methods for atomic absorption spectrophotometry. Perkin-Elmer Corp., Norwalk, CT.

    Google Scholar 

  • Pratt PF (1966) Chromium. In: Chapman HD (ed) Diagnostic criteria for plants and soils. Quality Printing Co. Inc., Abilene, TX, pp 136–141.

    Google Scholar 

  • Rai D, Zachara JM, Eary LE, Girvin DC, Moore DA, Resch CT, Sass BM, Schmidt RL (1986) Geochemical behavior of chromium species. Electric Power Research Institute, Palo Alto, CA, EA-4544.

    Google Scholar 

  • Rai D, Zachara JM (1988) Chromium reactions in geologic materials. EA-5741. Research Project 2485-3. Prepared for Electric Power Research Institute. Palo Alto, CA. Land and Water Quality Studies Program, Environment Division.

    Google Scholar 

  • Rai D, Eary LE, Zachara JM (1989) Environmental chemistry of chromium. Sci Total Environ 86: 15–23.

    Article  PubMed  CAS  Google Scholar 

  • Reisenauer HM (1982) Chromium. In: methods of soil analysis, part 2, Chemical and microbiological properties. Agronomy Monograph no. 9 (2nd ed.) ASA- SSSA, Madison, WI, p 340.

    Google Scholar 

  • Roda IG, Smirnova GF (1989) Biochemical treatment of chromium-containing waste water. Khimiya i Tekhnologiya Vody 11 (2): 169–172.

    CAS  Google Scholar 

  • Romanenko VI, Kusnetsov SI, Koren’kov VN (1976) Koren’kov method for biological purification of wastewater. USSR patent SU 521, 234.

    Google Scholar 

  • Romanenko VI, Koren’kov VN (1977) A pure culture of bacteria utilizing chromates and bichromates as hydrogen acceptors in growth under anaerobic conditions. Institute of Biology of Inland Water, Academy of Sciences of the USSR. Translated from Mikrobiologiya 46 (3): 414–417.

    CAS  Google Scholar 

  • Ross DS, Sjogren RE, Bartlett RJ (1981) Behavior of chromium in soils: IV. Toxicity to microorganisms. J Environ Qual 10 (2): 145–148.

    Article  CAS  Google Scholar 

  • Shimada K, Matsushima K (1983) Isolation of potassium chromate-resistant bacterium and reduction of hexavalent chromium by the bacterium. Bull Fac Agric Mie Univ 67: 101–106.

    Google Scholar 

  • Shupack SI (1991) The chemistry of chromium and some resulting analytical problems. Environ Hlth Perspect 92: 7–11.

    Article  CAS  Google Scholar 

  • Simon-Pujol MD, Marques AM, Ribera M, Congregado F (1979) Drug resistance of chromium-tolerant Gram negative bacteria isolated from a river. Microbios Lett 7: 139–144.

    Google Scholar 

  • Skeffington RA, Shewry PA, Peterson PJ (1976) Chromium uptake and transport in barley seedlings (Hordeum vulgareL.). Planta 132: 209–14.

    Article  CAS  Google Scholar 

  • Smillie RH, Hunter K, Loutit M (1981) Reduction of chromium(VI) by bacterially produced hydrogen sulfides. Water Res 15: 1351–1354.

    Article  CAS  Google Scholar 

  • Sposito G, Mattigod SV (1980) GEOCHEM: A computer program for the calculation of chemical equilibria in soil solutions and other natural water systems. Kearney Foundation of Soil Science, Univ. of California, Riverside, CA.

    Google Scholar 

  • Studt T (1993) Chromium hazard drives replacement R&D. R&D Magazine. Cahners Publishing, Des Plaines, IL, Sept., p 6.

    Google Scholar 

  • Summers AO, Jacoby GA (1977) Plasmid-determined resistance to boron and chromium compounds inPseudomonas aeruginosa. Antimicrob Agents Chemother 13 (4): 637–6440.

    Google Scholar 

  • U.S. Environmental Protection Agency (USEPA) (1976) Quality criteria for water. USEPA, Washington, DC.

    Google Scholar 

  • USEPA (1984) Health assessment for chromium. Report No. EPA-600/8-83-014F. Environmental Criteria and Assessment Office, Research Triangle Park, NC.

    Google Scholar 

  • USEPA (1986) EPA Methods. SW-846. 3rd ed.

    Google Scholar 

  • USEPA (1993) Standards for use and disposal of sewage sludge: final rules. EPA 40 CFR part 257. Fed Regis, Feb. 19, pp 9248–9415.

    Google Scholar 

  • USEPA/Oak Ridge National Laboratories (ORNL) (1978) Reviews of environmental effects of pollutants III. Chromium. Environmental Protection Agency, Oak Ridge National Laboratories, U.S. National Technical Information, Springfield, VA.

    Google Scholar 

  • Warington K (1946) Molybdenum as a factor in the nutrition of lettuce. Ann Appl Biol 33: 249–254.

    Article  CAS  Google Scholar 

  • Whitten KW, Gailey KD (1984) General Chemistry, 2nd ed. Saunders College Publishing, Philadelphia, p 789.

    Google Scholar 

  • Williams JW, Silver A (1984) Bacterial resistance and detoxification of heavy metals. Enzyme Microb Technol 6: 530–537.

    Article  CAS  Google Scholar 

  • Wood JM, Wang H-K (1983) Microbial resistance to heavy metals. Environ Sci Technol 17(12):582A–590A.

    Article  CAS  Google Scholar 

  • Zachara JM, Girvin DC, Schmidt RC, Resch CT (1987) Chromate adsorption on amorphous iron hydroxide in the presence of major groundwater ions. Environ Sci Technol 21: 589–594.

    Article  PubMed  CAS  Google Scholar 

  • Zachara JM, Ainsworth CC, Cowan CC, Resch CT (1989) Adsorption of chromate by subsurface soil horizons. Soil Sci Soc Am J 53: 418–428.

    Article  Google Scholar 

  • Zumriye A, Sag Y, Kutsal T (1990) A comparitive study of the adsorption of Cr(VI) ions to Cvulgarisand Z ramigera. Environ Technol 11: 33–40.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Losi, M.E., Amrhein, C., Frankenberger, W.T. (1994). Environmental Biochemistry of Chromium. In: Ware, G.W. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 136. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2656-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2656-7_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7623-4

  • Online ISBN: 978-1-4612-2656-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics