Skip to main content

Hormonal Interactions Between the Pituitary and Immune Systems

  • Chapter

Part of the book series: Endocrinology and Metabolism ((EAM,volume 7))

Abstract

The first observations that neurohormonal factors influence lymphoid organs were made by pathologists at the beginning of the twentieth century. It was noted that the thymus frequently involutes under the influence of environmental or emotional factors and that hormonal changes such as castration, Graves’ disease, Addison’s disease, and acromegaly may be associated with thymic hyperplasia.1 In 1930, Smith first demonstrated experimentally the role of the pituitary gland in thymic growth.2 He observed that in hypophysectomized rats the thymus regressed in weight to less than half that of control animals, whereas the thymus of partially hypophysectomized animals did not show accelerated involution. The profound influence of steroid hormones on lymphoid tissue was first shown by Selye in 1936.3 He found that in rats a variety of noxious stimuli that produce a so-called alarm reaction also cause an acute involution of the thymus and other lymphoid organs in intact, but not in adrenalectomized animals. Furthermore, thymic atrophy could readily be induced in rats by adrenocortical extracts.4 Selye also established that steroid hormones had a similar influence on the bursa of Fabricius in birds.5 These initial observations inspired numerous studies on the effect of hormones on lymphoid tissue.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hammar JA. The new views as to the morphology of the thymus gland and their bearing on the problem of the function of the thymus. Endocrinology 1921; 5: 543 – 3573

    Google Scholar 

  2. Smith PE. Effect of hypophysectomy upon the involution of the thymus in the rat. Anat Rec 1930; 47: 119 – 129.

    Google Scholar 

  3. Selye H. Thymus and adrenals in the response of the organism to injuries and intoxications. Br J Exp Pathol 1936; 17: 234 – 248.

    CAS  Google Scholar 

  4. Selye H. A syndrome produced by diverse nocuous agents. Nature 1936; 183: 32.

    Google Scholar 

  5. Selye H. The pharmacology of steroid hormones and their derivatives. Rev Can Biol 1942; 1: 577 – 632.

    CAS  Google Scholar 

  6. Dougherty TF. Effect of hormones on lymphatic tissue. Physiol Rev 1952; 32: 379 – 407.

    PubMed  CAS  Google Scholar 

  7. Crafts RC, Meinecke HA. The anemia of hypophysectomized animals. Ann NY Acad Sci 1959; 77: 501 – 517.

    PubMed  CAS  Google Scholar 

  8. Ader R, ed. Psychoneuroimmunology. New York: Academic; 1981.

    Google Scholar 

  9. Ader R, Felten D, Cohen N, eds. Psychoneuroimmunology II. New York: Academic; 1990.

    Google Scholar 

  10. Berczi I. The influence of pituitary-adrenal axis on the immune system. In: Berczi I, ed. Pituitary Function and Immunity. Boca Raton, Florida: CRC Press; 1986: 49 – 132.

    Google Scholar 

  11. Berczi I, Kovacs K, eds. Hormones and Immunity. Lancaster, UL: MTP Press; 1987.

    Google Scholar 

  12. Berczi I. The influence of pituitary hormones and neurotransmitters on the immune system. EOS Riv Immun Immunofarm 1988; 8: 186 – 194.

    CAS  Google Scholar 

  13. Berczi I. Immunoregulation by neuroendocrine factors. Dev Comp Immunol 1989; 13: 329 – 341.

    PubMed  CAS  Google Scholar 

  14. Berczi I. Neurohormonal-immune interactions. In: Kovacs K, Asa S, eds. Functional Endocrine Pathology. Boston: Blackwell Scientific; 1990: 990 – 1004.

    Google Scholar 

  15. Berczi I, Nagy E. Effects of hypophysectomy on immune function. In: Ader R, Felten DL, Cohen N, eds. Psychoneuroimmunology II. New York: Academic; 1990.

    Google Scholar 

  16. Goetzl EJ, ed. Proceedings of a Conference on Neuromodulation of Immunity and Hypersensitivity. J Immunol (Suppl) 1985; 135(2).

    Google Scholar 

  17. Goetzl EJ, Spector NH, eds. Neuroimmune Networks: Physiology and Diseases. New York: Alan R. Liss; 1989.

    Google Scholar 

  18. Guillemin R, Cohn M, Melnechuk T, eds. Neural Modulation of Immunity. New York: Raven; 1985.

    Google Scholar 

  19. Jankovic BD. Neuroimmunomodulation: Facts and dilemmas. Immunol Lett 1989; 21: 101 – 118.

    PubMed  CAS  Google Scholar 

  20. Plotnikoff NP, Faith RE, Murgo AJ, Good RA, eds. Enkephalins and Endorphins: Stress and the Immune System. New York: Plenum; 1986.

    Google Scholar 

  21. Wolstenholme GE, Knight J, eds. Hormones and the Immune Response (Ciba Study Group, No. 36 ). London: Churchill Livingston; 1970.

    Google Scholar 

  22. Berczi I. The effects of growth hormone and related hormones on the immune system. In: Berczi I, ed. Pituitary Function and Immunity. Boca Raton, Florida: CRC Press; 1986: 133 – 159.

    Google Scholar 

  23. Ramos Zepeda R, Kretschmer R, Lopez Osuna M, Parra,Covarrubias A, Perez Pasten E. Evaluacion de la funcion immunologica en el hipopitui- tarismo humano. Arch Invest Med (Mex) 1973; 4: 197 – 206.

    CAS  Google Scholar 

  24. Berczi I, Nagy E, Kovacs K, Horvath E. Regulation of humoral immunity in rats by pituitary hormones. Acta Endocrinol (Copenh) 1981; 98: 506 – 513.

    CAS  Google Scholar 

  25. Berczi I, Nagy E. A posible role of prolactin in adjuvant arthritis. Arthritis Rheum 1982; 25: 591 – 594.

    PubMed  CAS  Google Scholar 

  26. Berczi I, Nagy E, Asa SL, Kovacs K. Pituitary hormones and contact sensitivity in rats. Allergy 1983; 38: 325 – 330.

    PubMed  CAS  Google Scholar 

  27. Berczi I, Nagy E, Asa SL, Kovacs K. The influence of pituitary hormones on adjuvant arthritis. Arthritis Rheum 1984; 27: 682 – 688.

    PubMed  CAS  Google Scholar 

  28. Nagy E, Berczi I. Immunodeficiency in hypophysectomized rats. Acta Endocrinol (Copenh) 1978; 89: 530 – 537.

    CAS  Google Scholar 

  29. Nagy E, Berczi I, Friesen HG. Regulation of immunity in rats by lactogenic and growth hormones. Acta Endocrinol (Copen) 1983; 102: 351 – 357.

    CAS  Google Scholar 

  30. Nagy E, Berczi I, Wren GE, Asa SL, Kovacs K. Immunomodulation by bromocriptine. Immunopharmacology 1983; 6: 231 – 243.

    PubMed  CAS  Google Scholar 

  31. Kaplan SL, Grumbach MM, Friesen HG, Costom BH. Thyrotropin-releasing factor (TRF) effect on secretion of human pituitary prolactin and thyrotropin in children and in idiopathic hypopituitary dwarfism: Further evidence for hypophysiotropic hormone deficiencies. J Clin Endocrinol Metab 1972; 35: 825 – 830.

    PubMed  CAS  Google Scholar 

  32. Barkley MS, Bartke A, Gross DS, Sinha YN. Prolactin status of hereditary dwarf mice. Endocrinology 1981; 110: 2088 – 2096.

    Google Scholar 

  33. Bartke A. Prolactin deficiency in genetically sterile dwarf mice. Mem Soc Endocrinol 1966; 15: 193 – 197.

    Google Scholar 

  34. Berczi I, Nagy E. The effect of prolactin and growth hormone on hemolym- phopoietic tissue and immune function. In: Berczi I, Kovacs K, eds. Hormones and Immunity. Lancaster, UK: MTP Press; 1987: 145 – 171.

    Google Scholar 

  35. Edwards CK III, Lorence RM, Dunham DM, Yunger LM, Kelley KW. Peritoneal macrophages from hypophysectomized rats treated in vivo with interferon-gamma or growth hormone are primed to release tumor necrosis factor-alpha (abstract No. 93–20:618). In: Proceedings of the Seventh International Congress on Immunology. Berlin: Gustav Fischer Verlag; 1989.

    Google Scholar 

  36. Kelley KW. Growth homone, lymphocytes and macrophages. Biochem Pharmacol 1989; 38: 705 – 713.

    PubMed  CAS  Google Scholar 

  37. Kelley KW. Growth hormone in immunobiology. In: Ader R, Felten D, Cohen N, eds. Psychoneuroimmunology II. New York: Academic; 1990: 377 – 402.

    Google Scholar 

  38. Nagy E, Berczi I. Pituitary dependence of bone marrow function. Br J Haematol 1989; 71: 457 – 462.

    PubMed  CAS  Google Scholar 

  39. Exon JH, Bussiere JL, Williams JR. Hypophysectomy and growth hormone replacement effects on multiple immune responses in rats. Brain Behav Immun 1990; 4: 118 – 128.

    PubMed  CAS  Google Scholar 

  40. Khansari DN, Gustad T. Effects of long-term, low-dose growth hormone therapy on immune function and life expectancy of mice. Mech Ageing Dev 1991; 57: 87 – 100.

    PubMed  CAS  Google Scholar 

  41. Schimpff RM, Repellin AM. In vitro effect of human growth hormone on lymphocyte transformation and lymphocyte growth factors secretion. Acta Endocrinol 1989; 120: 745 – 752.

    PubMed  CAS  Google Scholar 

  42. Schimpff RM, Repellin AM. Production of intereleukin-l-alpha and inter-leukin-2 by mononuclear cells in healthy adults in relation to different experimental conditions and to the presence of growth hormone. Horm Res 1990; 33: 171 – 176.

    PubMed  CAS  Google Scholar 

  43. Bozzola M, Valtorta A, Moretta A, Montagna D, Maccario R, Burgio GR. Modulating effect of growth hormone (GH) on PHA-induced lymphocyte proliferation. Thymus 1988; 12: 157 – 165.

    PubMed  CAS  Google Scholar 

  44. Jafari P, Khansari DN. Detection of somatotropin receptors on human monocytes. Immunol Lett 1990; 24: 199 – 202.

    PubMed  CAS  Google Scholar 

  45. Murphy WJ, Durum SK, Anver MR, Longo DL. Immunologic and hematologic effects of neuroendocrine hormones. J Immunol 1992; 148: 3799 – 3805.

    PubMed  CAS  Google Scholar 

  46. Rovensky J, Ferencikova J, Vigas M, Lukac P. Effect of growth hormone on the activity of some lysosomal enzymes in neutrophilic polymorphonuclear leukocytes of hypopituitary dwarfs. Int J Tissue React 1985; 7: 153 – 159.

    PubMed  CAS  Google Scholar 

  47. Spadoni GL, Spagnoli A, Cianfarani S, Del Principe D, Menichelli A, DiGiulio S, Boscherini B. Enhancement by growth hormone of phorbol diester-stimulated respiratory burst in human polymorphonuclear leukocytes. Acta Endocrinol 1991; 124: 589 – 594.

    PubMed  CAS  Google Scholar 

  48. Fu YK, Arkins S, Wang BS, Kelley KW. A noval role of growth hormone and insulin-Ike growth factor-1. Priming neutrophils for superoxide anion secretion. J Immunol 1991; 146: 1602 – 1608.

    PubMed  CAS  Google Scholar 

  49. Wiedermann CJ, Niedermuhlbichler M, Beimpold H, Braunsteiner H. In vitro activation of neutrophils of the aged by recombinant human growth hormone. J Infect Dis 1991; 164: 1017 – 1020.

    PubMed  CAS  Google Scholar 

  50. Wiedermann CJ, Niedermuhlbicher M, Geissler D, Beimpold H, Braunsteiner H. Priming of normal human neutrophils by recombinant human growth hormone. Br J Haematol 1991; 78: 19 – 22.

    PubMed  CAS  Google Scholar 

  51. Rapaport R, Oleske J, Ahdieh H, Solomon S, Delfaus C, Denny T. Suppression of immune function in growth hormone deficient children during treatment with human growth hormone. J Pediatr 1986; 109: 434 – 439.

    PubMed  CAS  Google Scholar 

  52. Rapaport R, Oleske J, Ahdieh H, Skuza K, Holland BK, Passannante MR, Denny T. Effects of human growth hormone on immune functions: In vitro studies on cells of normal and growth hormone-deficient children. Life Sci 1987; 41: 2319 – 2324.

    PubMed  CAS  Google Scholar 

  53. Kiess, Weiland, Doerr H, Butenandt O, Belohradsky BH. Lymphocyte subsets and natural–killer activity in growth hormone deficiency. N Engl J Med 1986; 314: 321.

    Google Scholar 

  54. Church JA, Costin G, Brooks J. Immune functions in children treated with biosynthetic growth hormone. J Pediatr 1989; 115: 420 – 423.

    PubMed  CAS  Google Scholar 

  55. Bozzola M, Maccario R, Cisternino M, DeAmici M, Valtorta A. Moretta A, Biscaldi I, Schimpff RM. Immunological and endocrinological response to growth hormone in short children. Acta Paediatr Scand 1988; 77: 675 – 680.

    PubMed  CAS  Google Scholar 

  56. Bozzola M, Cisternino M, Valtorta A, Moretta A, Biscaldi I, Maghnie M, DeAmici M, Schimpff RM. Effect of biosynthetic methionyl growth hormone (GH) therapy on the immune function in GH–deficient children. Horm Res 1989; 31: 153 – 156.

    PubMed  CAS  Google Scholar 

  57. Bozzola M, Valtorta A, Moretta A, Cisternino M, Biscaldi I, Schimpff RM. In vitro and in vivo effect of growth hormone on cytotoxic activity. J Pediatr 1990; 117: 596 – 599.

    PubMed  CAS  Google Scholar 

  58. Etzioni A, Pollack S, Hochberg Z. Immune function in growth hormone– deficient children treated with biosynthetic growth hormone. Acta Paediatr Scand 1988; 77: 169 – 170.

    PubMed  CAS  Google Scholar 

  59. Spadoni GL, Rossi P, Ragno W, Galli E, Cianfarani S, Galasso C, Boscherini B. Immune function in growth hormone–deficient children treated with biosynthetic growth hormone. Acta Paediatr Scand 1991; 80: 75 – 79.

    PubMed  CAS  Google Scholar 

  60. Tyden G, Berg U, Reinholt F. Acute renal graft rejection after treatment with human growth hormone. Lancet 1990; 336: 1455 – 1456.

    PubMed  CAS  Google Scholar 

  61. Rongen–Westerlaken C, Rijkers GT, Scholtens EJ, van Es A, Wit JM, van den Brande JL, Zegers BJ. Immunologic studies in Turner syndrome before and during treatment with growth hormone. J Pediatr 1991; 119: 268 – 272.

    Google Scholar 

  62. Crist DM, Peake GT, Mackinnon LT, Sibbitt WL Jr, Kraner JC. Exogenous growth hormone treatment alters body composition and increases natural killer cell activity in women with impaired endogenous growth hormone secretion. Metabolism 1987; 36: 1115 – 1117.

    PubMed  CAS  Google Scholar 

  63. Crist DM, Kraner JC. Supplemental growth hormone increases the tumor cytotoxic activity of natural killer cells in healthy adults with normal growth hormone secretion. Metabolism 1990; 39: 1320 – 1324.

    PubMed  CAS  Google Scholar 

  64. Kozak RW, Haskell JF, Greenstein LA, Rechler MM, Waldmann TA, Nissley SP. Type I and II insulin–like growth factor receptors on human phytohemagglutinin–activated T lymphocytes. Cell Immunol 1987; 109: 318 – 331.

    PubMed  CAS  Google Scholar 

  65. Verland S, Gammeltoft S. Functional receptors for insulin–like growth factors I and II in rat thymocytes and mouse thymoma cells. Mol Cell Endocrinol 1989; 67: 207 – 216.

    PubMed  CAS  Google Scholar 

  66. Johnson EW, Jones LA, Kozak RW. Expression and function of insulin–like growth factor receptors on anti–CD3–activated human T lymphocytes. J Immunol 1992; 148: 63 – 71.

    PubMed  CAS  Google Scholar 

  67. Roldan A, Charreau E, Schillaci R, Eugui EM, Allison AC. Insulin–like growth factor–1 increases the mitogenic response of human peripheral blood lymphocytes to phytohemagglutinin. Immunol Lett 1989; 20: 5 – 8.

    PubMed  CAS  Google Scholar 

  68. Hunt P, Eardley DD. Suppressive effects of insulin and insulin–like growth factor–1 (IGF–1) on immune response. J Immunol 1986; 136: 3994 – 3999.

    PubMed  CAS  Google Scholar 

  69. Gjerset RA, Yeargin J, Volkman SK, Vila V, Arya J, Haas M. Insulin–like growth factor–1 supports proliferation of autocrine thymic lymphoma cells with a pre–T cell phenotype. J Immunol 1990; 145: 3497 – 3501.

    PubMed  CAS  Google Scholar 

  70. Beschorner WE, Divic J, Pulido H, Yao X, Kenworthy P, Bruce G. Enhancement of thymic recovery after cyclosporine by recombinant human growth hormone and insulin–like growth factor–1. Transplantation 1991; 52: 879 – 884.

    PubMed  CAS  Google Scholar 

  71. Binz K, Joller P, Froesch P, Binz H, Zapf J, Froesch ER. Repopulation of the atrophied thymus in diabetic rats by insulin–like growth factor 1. Proc Natl Acad Sci USA 1990; 87: 3690 – 3694.

    PubMed  CAS  Google Scholar 

  72. Mocchegiani E, Paolucci P, Balsamo A, Cacciari E, Fabris N. Influence of growth hormone on thymic endocrine activity in humans. Horm Res 1990; 33: 248 – 255.

    PubMed  CAS  Google Scholar 

  73. Merchav S, Tatarsky I, Hochberg Z. Enhancement of erythropoiesis in vitro by human growth hormone is mediated by insulin–like growth factor–1. Br J Haematol 1988; 70: 267 – 271.

    PubMed  CAS  Google Scholar 

  74. Merchav S, Tatarsky I, Hochberg Z. Enhancement of human granulopoiesis in vitro by biosynthetic insulin–like growth factor 1/somatomedin C and human growth hormone. J Clin Invest 1988; 81: 791 – 797.

    PubMed  CAS  Google Scholar 

  75. Rappolee DA, Mark D, Banda MJ, Werb Z. Wound macrophages express TGF–alpha and other growth factors in vivo: Analysis by mRNA pheno– typing. Science 1988; 241: 708 – 712.

    CAS  Google Scholar 

  76. Rom WN, Basset P, Fells GA, Nukiwa T, Trapnell BC, Crysal RG. Alveolar macrophages release an insulin–like growth factor–1 type molecule. J Clin Invest 1988; 82: 1685 – 1693.

    PubMed  CAS  Google Scholar 

  77. Merimee TJ, Grant MB, Broder CM, Cavalli–Sforza LL. Insulin–like growth factor secretion by human B lymphocytes: A comparison of cells from normal and pygmy subjects. J Clin Endocrinol Metab 1989; 69: 978 – 984.

    PubMed  CAS  Google Scholar 

  78. Geffner ME, Bersch N, Lippe BM, Rosenfeld RG, Hintz RL, Golde DW. Growth hormone mediates the growth to T–lymphoblast cell lines via locally generated insulin–like growth factor–1. J Clin Endocrinol Metab 1990; 71: 464 – 469.

    PubMed  CAS  Google Scholar 

  79. Baxter JB, Blalock JE, Weigent DA. Characterization of immunoreactive insulin–like growth factor–1 from leukocytes and its regulation by growth hormone. Endocrinology 1991; 129: 1727 – 1734.

    PubMed  CAS  Google Scholar 

  80. Berman JS, Center DM. Chemotactic activity of porcine insulin for human T lymphocytes in vitro. J Immunol 1987; 138: 2100 – 2103.

    Google Scholar 

  81. Trovati M, Anfossi G, Cavalot F, Massucco P, Mularoni E, Emanuelli G. Insulin directly reduces platelet sensitivity to aggregating agents: Studies in vitro and in vivo. Diabetes 1988; 37: 780 – 786.

    CAS  Google Scholar 

  82. Nagy E, Berczi I. Prolactin and contact sensitivity. Allergy 1981; 36: 429 – 431.

    PubMed  CAS  Google Scholar 

  83. Nagy E, Berczi I. Immunomodulation by tamoxifen and pergolide. Immunopharmacology 1986; 12: 145 – 153.

    PubMed  CAS  Google Scholar 

  84. Cross RJ, Roszman TL. Neuroendocrine modulation of immune function: The role of prolactin. Prog Neuroendocrinimmunol 1989; 2: 17 – 20.

    Google Scholar 

  85. Holaday JW, Bryant HU, Kenner JR, Bernton EW. Pharmacologic manipulation of the endocrine-immune axis. Prog Neuroendocrinimmunol 1988; 1:68.

    Google Scholar 

  86. Gala RR. Prolactin and growth hormone in the regulation of the immune system. Proc Soc Exp Biol Med 1991; 198: 513 – 527.

    PubMed  CAS  Google Scholar 

  87. Bernton E, Dave J. Prolactin, growth hormone, and immune homeostasis. In: Meltzer MS, Mantovani A, eds. Cellular and Cytokine Networks in Tissue Immunity. (Progress in Leukocyte Biology, Vol. 11.) New York: Wiley–Liss Inc.; 1991: 69.

    Google Scholar 

  88. Berczi I. The immunology of prolactin. In: McCoshen JA, ed. Seminars in Reproductive Endocrinology, Special Issue on -Prolactin in Women.- Thieme Medical Publ. Inc., New-York, Stuttgart 1992; 10:196–219.

    Google Scholar 

  89. Hiestand PC, Melker P, Nordmann R, Grieder A, Permmongkol C. Prolactin as a modulator of lymphocyte responsiveness provides a possible mechanism of action for cyclosporine. Proc Natl Acad Sci USA 1986; 83: 2599 – 2603.

    PubMed  CAS  Google Scholar 

  90. Mater A.L, Muccioli G, Cesano A, Bellussi G, Genazzani E. Prolactin receptors on large granular lymphocytes: Dual regulation by cyclosporin A. Brain Behav Immun 1988; 2: 1 – 10.

    Google Scholar 

  91. Russel DH, Kibler R, Martrisian L, Larson DF, Poulos B, Magun BE. Prolactin receptors on human T and B lymphocytes: Antagonism of prolactin binding by cyclosporin. J Immunol 1985; 134: 3027 – 3031.

    Google Scholar 

  92. O’Neal KD, Schwarz LA, Yu–Lee LY. Prolactin receptor gene expression in lymphoid cells. Mol Cell Endocrinol 1991; 82: 127 – 135.

    PubMed  Google Scholar 

  93. Varma S, Ebner KE. The effect of cyclosporin A on the growth and prolactin binding to Nb–2 rat lymphoma cells. Biochem Biophys Res Commun 1988; 156: 223 – 239.

    Google Scholar 

  94. Ali S, Pellegrini I, Kelly PA. A prolactin–dependent immune cell line (Nb2) expresses a mutant form of prolactin receptor. J Biol Chem 1991; 266: 20110 – 20117.

    PubMed  CAS  Google Scholar 

  95. Dardenne M, Kelly PA, Bach JF, Savino W. Identification and functional activity of prolactin receptors in thymic epithelial cells. Proc Natl Acad Sci USA 1991; 88: 9700 – 9704.

    PubMed  CAS  Google Scholar 

  96. Skwarlo–Sonta K. Mitogenic effect of prolactin on chicken lymphocytes in vitro. Immunol Lett 1990; 24: 171 – 178.

    PubMed  Google Scholar 

  97. Berczi I, Nagy E, de Toledo SM, Matusik RJ, Friesen HG. Pituitary hormones regulate c–mycand DNA synthesis in lymphoid tissue. J Immunol 1991; 146: 2201 – 2206.

    PubMed  CAS  Google Scholar 

  98. Spangelo BL, Judd AM, Ross PC, Login IS, Jarvis WD, Badamchian M, Goldstein AL, MacLeod RM. Thymosin fraction 5 stimulates prolactin and growth hormone release from anterior pituitary cells in vitro. Endocrinology 1987; 121: 2035 – 2043.

    PubMed  CAS  Google Scholar 

  99. Sotowska–Brochocka J, Rosolowska–Huszcz D, Skwarlo–Sonta K, Gajewska A. Effect of exogenous prolactin on immunity in chickens. Res Vet Sci 1984; 37: 123 – 125.

    Google Scholar 

  100. Skwarlo–Sonta K, Sotowska–Brochocka J, Rosolowska–Huszca D, Paw– lowska–Wojewodka E, Gajewska A, Stepien D, Kochman K. Effect of prolactin on the diurnal changes in immune parameters and plasma cor– ticosterone in white leghorn chickens. Acta Endocrinol 1987; 116: 172 – 178.

    Google Scholar 

  101. Hiestand PC, Gale JM, Mekler P. Soft immunosuppression by inhibition of prolactin release: Synergism with cyclosporine in kidney allograft survival and in the localized graft–versus–host reaction. Transplant Proc 1986; 18: 870 – 872.

    CAS  Google Scholar 

  102. Wilner ML, Ettenger RB, Koyle MA, Rosenthal JT. The effect of hypopro– lactinemia alone and in combination with cyclosporine on allograft rejection. Transplantation 1990; 49: 264 – 267.

    PubMed  CAS  Google Scholar 

  103. Bernton EW, Meltzer MT, Holaday JW. Suppression of macrophage activation and T–lymphocyte function in hypoprolactinemic mice. Science 1988; 239: 401 – 404.

    PubMed  CAS  Google Scholar 

  104. Larson DF, Copeland JG, Rossel DH. Prolactin predicts cardiac allograft rejection in cyclosporin immunosuppressed patients. Lancet 1985; 11: 53.

    Google Scholar 

  105. Carrier M, Emery RW, Wild–Mobley J, Perrotta NJ, Russell DH, Copeland JG. Prolactin as a marker of rejection in human heart transplantation. Transplant Proc 1987; 19: 3442 – 3443.

    PubMed  CAS  Google Scholar 

  106. Cosson C, Myara I, Guillemain R, Amrein C, Dreyfus G, Moatti N. Serum prolactin as a rejection marker in heart transplantation. Clin Chem 1989; 35: 492 – 493.

    PubMed  CAS  Google Scholar 

  107. Esquifino Al, Villanua MA, Szary A, Yau J, Bartke A. Ectopic pituitary transplants restore immunocompetence in Ames dwarf mice. Acta Endocrinol 1991; 125: 67 – 72.

    Google Scholar 

  108. Gerli R, Rambotti P, Nicoletti I, Orlandi S, Migliorati G, Riccardi C. Reduced number of natural killer cells in patients with pathological hyper– prolactinemia. Clin Exp Immunol 1986; 64: 399 – 406.

    PubMed  CAS  Google Scholar 

  109. Matera L, Ciccarelli E, Cesano A, Veglia F, Miola C, Camanni F. Natural killer activity in hyperprolactinemic patients. Immunopharmacology 1989; 18: 143 – 146.

    PubMed  CAS  Google Scholar 

  110. Vidaller A, Guadarrama F, Llorente L, Mendez JB, Larrea F, Villa AR, Alarcon–Segovia D. Hyperprolactinemia inhibits natural killer (NK) cell function in vivo and its bromocriptine treatment not only corrects it but makes it more efficient. J Clin Immunol 1992; 12: 210 – 215.

    PubMed  CAS  Google Scholar 

  111. Matera L, Cesano A, Muccioli G, Veglia F. Modulatory effect of prolactin on the DNA synthesis rate and NK activity of large granular lymphocytes. Int J Neurosci 1990; 51: 265 – 267.

    PubMed  CAS  Google Scholar 

  112. Rovensky J, Vigas M, Marek J, Blazickova S, Korcakova L, Vyletelkova L, Takac A. Evidence for immunomodulatory properties of prolactin in selected invitro and in vivo situations. Int J Immunopharmacol 1991; 13: 267 – 272.

    PubMed  CAS  Google Scholar 

  113. Weisz–Carrington P. Secretory immunobiology of the mammary gland. In: Berczi I, Kovacs K, eds. Hormones and Immunity. Lancaster, UK: MTP Press; 1987: 172 – 202.

    Google Scholar 

  114. Nagy E, Berczi I, Sabbadini E. Endocrine control of the immunosuppressive activity of the submandibular gland. Brain Behav Immun 1992; 6: 418 – 428.

    PubMed  CAS  Google Scholar 

  115. Berczi I, Nagy E. Pituitary dependence of bone marrow function (abstract no. 93–10:616). In: Proceedings of the Seventh International Congress on Immunology Berlin: Gustav Fischer Verlag; 1989.

    Google Scholar 

  116. McGlone JJ, Lumpkin EA, Norman RL. Adrenocorticotorpin stimulates natural killer cell activity. Endocrinology 1991; 129: 1653 – 1658.

    PubMed  CAS  Google Scholar 

  117. Heijnen CJ, Zijlstra J, Kavelaars A, Croiset G, Ballieux RE. Modulation of the immune response by POMC–derived peptides. I. Influence on proliferation of human lymphocytes. Brain Behav Immun 1987; 1: 284 – 291.

    PubMed  CAS  Google Scholar 

  118. Kavelaars A, Ballieux RE, Heijnen C. Modulation of the immune response by proopiomelanocortin derived peptides. II. Influence of adrenocortico–tropin hormone on the rise in intracellular free calcium concentration after T–cell activation. Brain Behav Immun 1988; 2: 57 – 66.

    PubMed  CAS  Google Scholar 

  119. Cannon JG, Tatro JB, Reichlin S, Dinarello CA. Alpha melanocyte stimulating hormone inhibits immunostimulatory and inflammatory actions of interleukin 1. J Immunol 1986; 137: 2232 – 2236.

    PubMed  CAS  Google Scholar 

  120. Glyn–Ballinger JR, Bernardini GL, Lipton JM. Alpha–MSH injected into the septal region reduces fever in rabbits. Peptides (Fayetteville) 1983; 4: 199.

    Google Scholar 

  121. Murphy MT, Richards DB, Lipton JM. Antipyretic potency of centrally administered alpha–melanocyte stimulating hormone. Science 1983; 221: 192 – 193.

    PubMed  CAS  Google Scholar 

  122. Sundar SK, Becker KJ, Cierpial MA, Carpenter MD, Rankin LA, Fleener SL, Ritchie JC, Simson PE, Weiss JM. Intracerebroventricular infusion of interleukin 1 rapidly decreases peripheral cellular immune responses. Proc Natl Acad Sci USA 1989; 86: 6398 – 6402.

    PubMed  CAS  Google Scholar 

  123. Robertson B, Dostal K, Daynes RA. Neuropeptide regulation of inflammatory and immunologic responses. The capacity of a–melanocyte–stimulating hormone to inhibit tumor necrosis factor and IL–l–inducible biologic responses. J Immunol 1988; 140: 4300 – 4307.

    PubMed  CAS  Google Scholar 

  124. Goelst K, Mitchell D, Laburn H. Effects of a–melanocyte stimulating hormone on fever caused by endotoxin in rabbits. J Physiol 1991; 441: 469 – 476.

    PubMed  CAS  Google Scholar 

  125. Goelst K, Laburn H. The effect of a–MSH on fever caused by staphy– lococcus–aureus cell walls in rabbits. Peptides 1991; 12: 1239 – 1242.

    PubMed  CAS  Google Scholar 

  126. Stefano GB. Role of opioid neuropeptides in immunoregulation. Prog Neurobiol 1989; 33: 149 – 159.

    PubMed  CAS  Google Scholar 

  127. Weber RJ, Pert A. The periaqueductal gray matter mediates opiate–induced immunosuppression. Science 1989; 245: 188 – 190.

    PubMed  CAS  Google Scholar 

  128. Gilmore W, Weiner LP. P–Endorphin enhances interleukin–2 (IL–2) production in murine lymphocytes. J Neuroimmunol 1988; 18: 125 – 138.

    PubMed  CAS  Google Scholar 

  129. Apte RN, Durum SK, Oppenheim JJ. Opioids modulate interleukin-1 production and secretion by bone–marrow macrophages. Immunol Lett 1990; 24: 141 – 148.

    PubMed  CAS  Google Scholar 

  130. Millar DB, Hough CJ, Mazorow DL, Gootenberg JE. P–Endorphin’s modulation of lymphocyte proliferation is dose, donor, and time dependent. Brain Behav Immun 1990; 4: 232 – 242.

    PubMed  CAS  Google Scholar 

  131. Chiappelli F, Nguyen L, Bullington R, Fahey JL. P–Endorphin blunts phosphatidylinositol formation during invtro activation of isolated human lymphocytes: Preliminary report. Brain Behav Immun 1992; 6: 1 – 10.

    PubMed  CAS  Google Scholar 

  132. Claman HN. Corticosteroids—immunologic and anti–inflammatory effects. In: Berczi I, Kovacs K, eds. Hormones and Immunity. Lancaster, UK: MTP Press; 1987: 38 – 42.

    Google Scholar 

  133. Homo–Delarche F, Duval D. Glucocorticoid receptors in lymphoid tissue. In: Berczi I, Kovacs K, eds. Hormones and Immunity. Lancaster, UK: MTP Press; 1987: 1 – 19.

    Google Scholar 

  134. McConkey DJ, Hartzell P, Nicotera P, Orrenius S. Calcium–activated DNA fragmentation kills immature thymocytes. FASEB J 1989; 3: 1843 – 1849.

    PubMed  CAS  Google Scholar 

  135. Emilie D, Crevon MC, Auffredou MT, Galanaud P. Glucocorticosteroid– dependent synergy between interleukin-1 and interleukin–6 for human lymphocyte–B differentiation. Eur J Immunol 1988; 18: 2043 – 2047.

    PubMed  CAS  Google Scholar 

  136. Munck A, Naray–Fejes–Toth A, Guyre PM. Mechanisms of glucocorticoid actions on the immune system. In: Berczi I, Kovacs K, eds. Hormones and Immunity. Lancaster, UK: MTP Press; 1987: 20 – 37.

    Google Scholar 

  137. Nieto MA, Lopez–Rivas A. 11–2 protects T lymphocytes from glucocorticoid induced DNA fragmentation and cell death. J Immunol 1989; 143: 4166 – 4170.

    PubMed  CAS  Google Scholar 

  138. Fuggetta MP, Graziani G, Aquino A, D’Atri S, Bonmassar E. Effect of hydrocortisone on human natural killer activity and its modulation by beta interferon. Int J Immunopharmacol 1988; 10: 687 – 694.

    PubMed  CAS  Google Scholar 

  139. Masera R, Gatti G, Sartori ML, Carignola R, Salvadori A, Magro E, Angeli A. Involvement of Ca2+–dependent pathways in the inhibition of human natural killer (NK) cell activity by Cortisol. Immunopharmacology 1989; 18: 11 – 22.

    PubMed  CAS  Google Scholar 

  140. Rouabhia M, Chakir J, Deschaux P. Interaction between the immune and endocrine systems: Immunomodulatory effects of luteinizing hormone. Prog Neuroendocrinimmunol 1991; 4: 86 – 91.

    Google Scholar 

  141. Berczi I. Gonadotropins and sex hormones. In: Berczi I, ed. Pituitary Function and Immunity. Boca Raton, FL: CRC Press; 1986: 185 – 211.

    Google Scholar 

  142. Grossman CJ. Interactions between the gonadal steroids and the immune system. Science 1985; 227: 257 – 261.

    PubMed  CAS  Google Scholar 

  143. Stimson WH. Sex steroids, steroid receptors, and immunity. In: Berczi I, Kovacs K, eds. Hormones and Immunity. Lancaster, UK: MTP Press; 1987: 43 – 53.

    Google Scholar 

  144. Stimson WH. Oestrogen and human T lymphocytes: Presence of specific receptors in the T–suppressive/cytotoxic subset. Scand J Immunol 1988; 28: 345 – 350.

    PubMed  CAS  Google Scholar 

  145. Nelson JL, Steinberg AD. Sex steroids, autoimmunity, and autoimmune disease. In: Berczi I, Kovacs K, eds. Hormones and Immunity. Lancaster, UK: MTP Press; 1987: 93 – 119.

    Google Scholar 

  146. Raveche ES, Steinberg AD. Sex hormones in autoimmunity. In: Berczi I, ed. Pituitary Function and Immunity. Boca Raton, Florida: CRC Press; 1986: 283 – 301.

    Google Scholar 

  147. Fried W, Morley C. Effects of androgenic steroids on erythropoiesis. Steroids 1985; 46: 799 – 826.

    PubMed  CAS  Google Scholar 

  148. Sullivan DA. Endocrine regulation of the ocular secretory immune system. In: Berczi I, Kovacs K, eds. Hormones and Immunity. Lancaster, UK: MTP Press; 1987: 54 – 92.

    Google Scholar 

  149. Seaman WE, Gindhart TD, Greenspan JS, Blackman MA, Talal N. Natural killer cells, bone, and the bone marrow: Studies in estrogen–treated mice and in congenitally osteopetrotic (mi/mi) mice. J Immunol 1979; 122: 2541 – 2547.

    PubMed  CAS  Google Scholar 

  150. Cohen JHM, Danel L, Cordier G, Saez S, Revillard JP. Sex steroid receptors in peripheral T cells: Absence of androgen receptors and restriction of estrogen receptors to OKT8–positive cells. J Immunol 1983; 131: 2767 – 2771.

    PubMed  CAS  Google Scholar 

  151. Bick PH, Tucker AN, White KL Jr, Holsapple MP. Effect of subchronic exposure to diethylstilbestrol on humoral immune function in adult female (C3B6)F! mice. Immunopharmacology 1984; 7: 27 – 39.

    PubMed  CAS  Google Scholar 

  152. Harbour DV, Leon S, Keating C, Hughes K. Thyrotropin modulates B–cell function through specific bioactive receptors. Prog Neuroendocrinimmunol 1990; 3: 266 – 276.

    Google Scholar 

  153. Coutelier JP, Kehrl JH, Bellur SS, Kohn LD, Notkins AL, Prabhakar BS. Binding and functional effects of thyroid stimulating hormone on human immune cells. J Clin Immunol 1990; 10: 204 – 210.

    PubMed  CAS  Google Scholar 

  154. Todd I, Pujol–Borrell R, Hammond LJ, McNally JM, Feldman M, Bottazzo GF. Enhancement of thyrocyte HLA class II expression by thyroid stimulating hormone. Clin Exp Immunol 1987; 69: 524 – 531.

    PubMed  CAS  Google Scholar 

  155. Barlow JW, DeNayer P. Characterization of thyroid hormone receptors in human IM–9 lymphocytes. Acta Endocrinol 1988; 117: 327 – 332.

    PubMed  CAS  Google Scholar 

  156. Kvetny J, Matzen LE, Blochert–Toft M, Watt–Boolsen S, Date J. Nuclear thyroid hormone receptor binding in human mononuclear blood cells after goiter resection. Horm Metab Res 1989; 21: 142 – 144.

    CAS  Google Scholar 

  157. Fabris N, Mocchegiani E. Endocrine control of thymic serum factor production in young adult and old mice. Cell Immunol 1985; 91: 325 – 335.

    PubMed  CAS  Google Scholar 

  158. Fabris N, Mocchegiani E, Mariotti S, Pacini F, Pinchera A. Thyroid function modulates thymic endocrine activity. J Clin Endocrinol Metab 1986; 62: 474 – 478.

    PubMed  CAS  Google Scholar 

  159. Mocchegiani E, Amadio L, Fabris N. Neuroendocrine–thymus interactions. I. In vitro modulation of thymic factor secretion by thyroid hormones. J Endocrinol Invest 1990; 13: 139 – 147.

    PubMed  CAS  Google Scholar 

  160. Dainiak N, Sutter D, Kreczko, S. L–Triiodothyronine augments erythropoietic growth factor release from peripheral blood and bone marrow leukocytes. Blood 1986; 68: 1289 – 1297.

    PubMed  CAS  Google Scholar 

  161. Weetman AP, McGregor AM, Ludgate M, Hall R. Effect of triiodothyronine on normal human lymphocyte function. J Endocrinol 1984; 101: 81 – 86.

    PubMed  CAS  Google Scholar 

  162. Bachman SE, Mashaly MM. Relationship between circulating thyroid hormones and humoral immunity in immature male chickens. Dev Comp Immunol 1986; 10: 395 – 403.

    PubMed  CAS  Google Scholar 

  163. Bachman SE, Mashaly MM. Relationship between circulating thyroid hormones and cell–mediated immunity in immature male chickens. Dev Comp Immunol 1987; 11: 203 – 213.

    PubMed  CAS  Google Scholar 

  164. Mashaly MM, Youtz SL, Wideman RF Jr. Hypothyroidism and antibody production in immature male chickens. Immunol Commun 1983; 12: 551 – 563.

    PubMed  CAS  Google Scholar 

  165. Haddad EE, Mashaly MM. In vivo effects of TRH, T3, and cGH on antibody production and lymphocytes–T and lymphocytes–B proliferation in immature male chickens. Immunol Invest 1991; 20: 557 – 568.

    PubMed  CAS  Google Scholar 

  166. Stein–Streilein J, Zakarija M, Papic M, McKenzie JM. Hyperthyroxinemic mice have reduced natural killer cell activity. Evidence for a defective trigger mechanism. J Immunol 1987; 139: 2502 – 2507.

    Google Scholar 

  167. Turaihi K, Khan FA, Baron DN, Dandona P. Effect of short term triiodothyronine administration on human leukocyte Rb(K) influx and Na efflux. J Clin Endocrinol Metab 1987; 65: 1031 – 1034.

    PubMed  CAS  Google Scholar 

  168. Ruben LN, Clothier RH, Murphy GL, Marshall JD, Lee R, Pham T, Nobis C, Shiigi S. Thyroid function and immune reactivity during metamorphosis in Xenopus laevis, the South African clawed toad. Gen Comp Endocrinol 1989; 76: 128 – 138.

    PubMed  CAS  Google Scholar 

  169. Chandel AS, Chatterjee S. Effect of thyroid hormones on delayed type hypersensitivity reaction. Indian J Exp Biol 1989; 27: 408 – 411.

    PubMed  CAS  Google Scholar 

  170. Torres BA, Johnson HW. Arginine vasopressin (AVP) replacement of helper cell requirement in IFN-y production. Evidence for a novel A VP receptor on mouse lymphocytes. J Immunol 1988; 140: 2179 – 2183.

    PubMed  CAS  Google Scholar 

  171. Elands J, Van Woudenberg A, Resink A, de Kloet ER. Vasopressin receptor capacity of human blood peripheral mononuclear cells is sex dependent. Brain Behav Immun 1990; 4: 30 – 38.

    PubMed  CAS  Google Scholar 

  172. Bell J, Adler MW, Greenstein JI. The effect of arginine vasopressin on the autologous mixed lymphocyte reaction. Int J Immunopharmacol 1992; 14: 93 – 103.

    PubMed  CAS  Google Scholar 

  173. Kavelaars A, Ballieux RE, Heijnen CJ. The role of IL–1 in the corticotropin– releasing factor and arginine–vasopresin–induced secretion of immunoreactive P–endorphin by human peripheral blood mononuclear cells. J Immunol 1989; 142: 2338 – 2342.

    PubMed  CAS  Google Scholar 

  174. Kavelaars A, Ballieux RE, Heijnen CJ. P–Endorphin secretion by human peripheral blood mononuclear cells: Regulation by glucocorticoids. Life Sci 1990; 46: 1233 – 1240.

    PubMed  CAS  Google Scholar 

  175. Malkinson TJ, Bridges TE, Lederis K, Veale WL. Perfusion of the septum of the rabbit with vasopressin antiserum enhances endotoxin fever. Peptides 1987; 8: 385 – 389.

    PubMed  CAS  Google Scholar 

  176. LeBoeuf RD, Burns JN, Bost KL, Blalock JE. Isolation, purification, and partial characterization of suppressin, a novel inhibitor of cell proliferation. J Biol Chem 1990; 265: 158 – 165.

    Google Scholar 

  177. LeBoeuf RD, Carr DJJ, Green MM, Blalock JE. Cellular effects of suppressin: A biological response modifier of cells of the immune system. Prog Neuroendocrinimmunol 1990; 3: 176 – 187.

    Google Scholar 

  178. Hadden JW, Galy A, Chen H, Hadden EM. A pituitary factor induces thymic epithelial cell proliferation in vitro. Brain Behav Immun 1989; 3: 149 – 159.

    PubMed  CAS  Google Scholar 

  179. Calabresi P, Parks RE Jr. Antiproliferative agents and drugs used for immunosuppression. In: Gilman AG, Goodman LS, Gilman A, eds. The Pharmacological Basis of Therapeutics. New York: Macmillan; 1980: 1256 – 1313.

    Google Scholar 

  180. Daughaday WH. The adenohypophysis. In: Williams RH, ed. Textbook of Endocrinology. Philadelphia: Saunders; 1981: 73 – 116.

    Google Scholar 

  181. Kelley KW, Brief S, Westly HJ, Novakofski J, Bechtel PJ, Simon J, Walker EB. GH3 pituitary adenoma cells can reverse thymic aging in rats. Proc Natl Acad Sci USA 1986; 83: 5663 – 5667.

    PubMed  CAS  Google Scholar 

  182. Huggins C, Oka H. Regression of stem–cell erythroblastic leukemia after hypophysectomy. Cancer Res 1972; 32: 239 – 242.

    PubMed  CAS  Google Scholar 

  183. Huggins CB, Ueda N. Regression of myelocytic leukemia in rats after hypophysectomy. Proc Natl Acad Sci USA 1984; 81: 598 – 601.

    PubMed  CAS  Google Scholar 

  184. Fleming WH, Murphy PR, Murphy LJ, Hatton TW, Matusik RJ, Friesen HG. Human growth hormone induces and maintains c–mycgene expression in Nb2 lymphoma cells. Endocrinology 1985; 117: 2547 – 2549.

    PubMed  CAS  Google Scholar 

  185. Klein G. Specific chromosomal translocations and the genesis of B–cell– derived tumors in mice and men. Cell 1983; 32: 311 – 315.

    PubMed  CAS  Google Scholar 

  186. Berczi I, Nagy E, de Toledo SM, Matusik RJ, Friesen HG. Pituitary hormones regulate c–mycand DNA synthesis in lymphoid tissue. J Immunol 1991; 146: 2201 – 2206.

    PubMed  CAS  Google Scholar 

  187. Langdon WY, Harris AW, Cory S, Adams JM. The c–myconcogene perturbs B–lymphocyte development in Eu–myctransgenic mice. Cell 1986; 47: 11 – 18.

    PubMed  CAS  Google Scholar 

  188. Morse HC III, Hartley JW, Fredrickson TN, Yetter RA, Majumdar C, Cleveland JL, Rapp UR. Recombinant murine retroviruses containing avian v–mycinduce a wide spectrum of neoplasms in newborn mice. Proc Natl Acad Sci USA 1986; 83: 6868 – 6872.

    PubMed  CAS  Google Scholar 

  189. Stiles CD, Capone GT, Scher CD, Antoniades HN, Van Wyk JJ, Pledger WJ. Dual control of cell growth by somatomedins and platelet–derived growth by somatomedins and platelet–derived growth factor. Proc Natl Acad Sci USA 1979; 76: 1279 – 1283.

    PubMed  CAS  Google Scholar 

  190. Armelin HA, Armelin MCS, Kelly K, Stewart T, Leder P, Cochran BH, Stiles CD. Functional role for c–mycin mitogenic response to platelet– derived growth factor. Nature 1984; 310: 655 – 660.

    PubMed  CAS  Google Scholar 

  191. Pardee AB. Molecules involved in proliferation of normal and cancer cells: Presidental address. Cancer Res 1987; 47: 1488 – 1491.

    Google Scholar 

  192. Tanaka T, Shiu RPC, Gout PW, Beer CT, Noble RL, Friesen HG. A new sensitive and specific bioassay for lactogenic hormones: Measurement of prolactin and growth hormone in human serum. J Clin Endocrinol 1980; 51: 1058 – 1063.

    CAS  Google Scholar 

  193. Berczi I, Cosby H, Hunter T, Baragar F, McNeilly AS, Friesen HG. Decreased bioactivity of circulating prolactin in patients with rheumatoid arthritis. Br J Rheum 1987; 26: 433 – 436.

    CAS  Google Scholar 

  194. McNeilly AS, Friesen HG. Presence of a nonlactogenic factor in human serum which synergisticaly enhances prolactin–stimulated growth of Nb2 rat lymphoma cells in vitro. J Clin Endocrinol Metab 1985; 61: 408 – 411.

    PubMed  CAS  Google Scholar 

  195. Paul WE. The immune system: An introduction. In: Paul WE, ed. Fundamental Immunology, 2nd ed. New York: Raven; 1989: 3 – 19.

    Google Scholar 

  196. Audhya T, Kroon D, Heavner G, Viamontes G, Goldstein G. Tripeptide structure of bursin, a selective B–cell–differentiation hormone of the bursa of Fabricius. Science 1986; 231: 997 – 999.

    PubMed  CAS  Google Scholar 

  197. Clark SC, Kamen R. The human hematopoietic colony–stimulating factors. Science 1987; 236: 1229 – 1237.

    PubMed  CAS  Google Scholar 

  198. Goldstein AL, Low TLK, Zatz MM, Hall NR, Naylor PH. Thymosins. Clin Immunol Allergy 1983; 3: 119 – 132.

    CAS  Google Scholar 

  199. Metcalf D. The granulocyte–macrophage colony–stimulating factors. Science 1985; 229: 16 – 21.

    PubMed  CAS  Google Scholar 

  200. Sachs L. The molecular control of blood cell development. Science 1987; 238: 1374 – 1379.

    PubMed  CAS  Google Scholar 

  201. von Boehmer H, Kishi H, Scott B, Borgulya P, Teh HS, Kisielow P. Self–nonself discrimination by the immune system. In: Melchers F, Albert ED, von Boehmer H, Dierich MP, DuPasquier L, Eichman K, Gemsa D, Gotze O, Kalden JR, Kaufmann SHE, Kirchner H, Resch K, Riethmiiller G, Schimpl A, Sorg C, Steinmetz M, Wagner H, Zachau HG, eds. Progress in Immunology VII. Berlin: Springer–Verlag; 1989: 297 – 301.

    Google Scholar 

  202. MacDonald HR, Lees RK. Programmed death of autoreactive thymocytes. Nature 1990; 343: 642 – 644.

    PubMed  CAS  Google Scholar 

  203. Quesenberry PJ. Synergistic hematopoietic growth factors. Int J Cell Cloning 1986; 4: 3 – 15.

    PubMed  CAS  Google Scholar 

  204. Brook CGD, Hindmarsh PC, Stanhope R. Review: Growth and growth hormone secretion. J Endocrinol 1988; 119: 179 – 184.

    PubMed  CAS  Google Scholar 

  205. Dardenne M, Savino W, Gagnerault MC, Itoh T, Bach JF. Neuroendocrine control of thymic hormonal production. I. Prolactin stimulates in vivo and in vitro the production of thymulin by human and murine thymic epithelial cells. Endocrinology 1989; 125: 3 – 12.

    PubMed  CAS  Google Scholar 

  206. Goff BL, Roth JA, Arp LH, Incefy GS. Growth hormone treatment stimulates thymulin production in aged dogs. Clin Exp Immunol 1987; 68: 580 – 587.

    PubMed  CAS  Google Scholar 

  207. Mick CCW, Nicoll CS. Prolactin directly stimulates the liver in vivo to secrete a factor (synlactin) which acts synergistically with the hormone. Endocrinology 1985; 116: 2049 – 2053.

    PubMed  CAS  Google Scholar 

  208. Spangelo BL, MacLeod RM. Thymic stromal elements contain prolactin and growth hormone releasing activities. Prog Neuroendocrinimmunol 1988; 1: 9 – 10.

    Google Scholar 

  209. Goya RG, Quiqley KL, Takahashi S, Reichhart R, Meites J. Differential effect of homeostatic thymus hormone on plasma thyrotropin and growth hormone on plasma thyrotropin and growth hormone in young and old rats. Mech Ageing Dev 1989; 49: 119 – 128.

    PubMed  CAS  Google Scholar 

  210. Malarkey WB, Zvara BJ. Interleukin–l–beta and other cytokines stimulate adrenocorticotropin release form cultured pituitary cells of patients with Cushing’s disease. J Clin Endocrinol Metab 1989; 196 – 199.

    Google Scholar 

  211. Balkwill FR, Burke F. The cytokine network. Immunol Today 1989; 10: 299 – 304.

    PubMed  CAS  Google Scholar 

  212. Gillis S. Interleukin–2: Biology and biochemistry. J Clin Immunol 1983; 3: 1 – 13.

    PubMed  CAS  Google Scholar 

  213. Bretscher P, Cohn M. A theory of self–nonself discrimination. Science 1970; 169: 1042 – 1049.

    PubMed  CAS  Google Scholar 

  214. Schwartz RA. A cell culture model for T lymphocyte clonal anergy. Science 1990; 248: 1349 – 1356.

    PubMed  CAS  Google Scholar 

  215. Chen W, Reese V, Cheever MA. Adoptively transferred antigen–specific T cells can be grown and maintained in large numbers in vivo for extended periods of time by intermittent restimulation with specific antigen plus IL–2. J Immunol 1990; 144: 3659 – 3666.

    PubMed  CAS  Google Scholar 

  216. Bateman A, Singh A, Krai T, Solomon S. The immune–hypothalamic– pituitary–adrenal axis. Endocr Rev 1989; 10: 92 – 112.

    PubMed  CAS  Google Scholar 

  217. Berkenbosch F, van Oers J, del Rey A, Tilders F, Besedovsky H. Corticotropin–releasing factor–producing neurons in the rat activated by interleukin–1. Science 1987; 238: 524 – 526.

    PubMed  CAS  Google Scholar 

  218. Bernton EW, Beach JE, Holaday JW, Smallridge RC, Fein HG. Release of multiple hormones by a direct action of interleukin-1 on pituitary cells. Science 1987; 238: 519 – 521.

    PubMed  CAS  Google Scholar 

  219. del Rey A, Besedovsky HO. Immune–neuroendocrine feedback regulatory signals. In: Berczi I, Kovacs K, eds. Hormones and Immunity. Lancaster, UK: MTP Press; 1987: 215 – 230.

    Google Scholar 

  220. Sapolsky R, Rivier C, Yamamoto G, Plotsky P, Vale W. Interleukin-1 stimulates the secretion of hypothalamic corticotropin–releasing factor. Science 1987; 238: 522 – 524.

    PubMed  CAS  Google Scholar 

  221. Monroy RL, Davis TA, MacVittie TJ. Granulocyte-macrophage colony- stimulating factor: More than a hemopoietin. Clin Immunol Immunopathol 1990; 54: 333 – 346.

    PubMed  CAS  Google Scholar 

  222. Carr DJJ, Blalock JE. ‘Classical’ neuroendocrine peptide hormones produced by cells of the immune system. Brain Behav Immun 1988; 2: 328 – 334.

    PubMed  CAS  Google Scholar 

  223. Goetzl EJ, Sreedharan SP, Harkonen WS. Pathogenetic roles of neuro- immunologic mediators. Immunol Allergy Clin North Am 1988; 8: 183 – 200.

    CAS  Google Scholar 

  224. Costa O, Mulchahey JJ, Blalock JE. Structure and function of luteinizing hormone-releasing hormone (LHRH) receptors on lymphocytes. Prog Neuroendocrinimmunol 1990; 3: 55 – 60.

    Google Scholar 

  225. Emanuele NV, Emanuele MA, Tentler J, Kirsteins L, Azad N, Lawrence AM. Rat spleen lymphocytes contain an immunoactive and bioactive luteinizing hormone–releasing hormone. Endocrinology 1990; 126: 2482 – 2486.

    PubMed  CAS  Google Scholar 

  226. Hattori N, Shimatsu A, Sugita M, Kumagai S, Imura H. Immunoreactive growth hormone (GH) secretion by human lymphocytes: Augmented release by exogenous GH. Biochem Biophys Res Commun 1990; 168: 396 – 401.

    CAS  Google Scholar 

  227. Standaert FE, Chew BP, Wong TS, Michal JJ. Porcine lymphocytes secrete a bioactive and immunoreactive LH-like factor in response to LHRH and concanavalin–A. Am J Reprod Immunol 1991; 25: 175 – 180.

    PubMed  CAS  Google Scholar 

  228. Weigent DA, Riley JE, Galin FS, Le Boeuf RD, Blalock JE. Detection of growth hormone and growth hormone-releasing hormone–related messenger RNA in rat leukocytes by the polymerase chain reaction. Proc Soc Exp Biol Med 1991; 198: 643 – 648.

    PubMed  CAS  Google Scholar 

  229. Blalock JE, Smith EM. A complete regulatory loop between the immune and neuroendocrine systems. Fed Proc 1985; 44: 108 – 111.

    PubMed  CAS  Google Scholar 

  230. Dinarello CA. Biology of interleukin–1. FASEB J 1988; 2: 108 – 115.

    PubMed  CAS  Google Scholar 

  231. Scarborough DE, Reichlin S. Cytokines, the brain and aging. Prog Neuroendocrinimmunol 1988; 1: 10 – 15.

    Google Scholar 

  232. Ohalloran DJ, Jones PM, Bloom SR. Neuropeptides synthesized in the anterior pituitary—possible paracrine role. Mol Cell Endocrinol 1991; 75: C7 – C12.

    CAS  Google Scholar 

  233. Vankelecom H, Carmeliet P, Van Damme J, Billiau A, Denef C. Production of interleukin–6 by folliculo–stellate cells of the anterior pituitary gland in a histiotypic cell aggregate culture system. Neuroendocrinology 1989; 49: 102 – 106.

    Google Scholar 

  234. Spangelo BL, MacLeod RM, Isakson PC. Production of interleukin-6 by anterior pituitary cells in vitro. Endocrinology 1990; 126: 582 – 586.

    PubMed  CAS  Google Scholar 

  235. Koenig JI. Presence of cytokines in the hypothalamic-pituitary axis. Prog Neuroendocrinimmunol 1991; 4: 143 – 153.

    Google Scholar 

  236. Geenen V, Robert F, Fatemi M, Martens H, Defresne MP, Boniver J, Legros JJ, Franchimont P. Neuroendocrine–immune interactions in T-cell ontogeny. Thymus 1989; 13: 131 – 140.

    PubMed  CAS  Google Scholar 

  237. Smith EM, Morrill AC, Meyer WJ III, Blalock JE. Corticotropin releasing factor induction of leukocyte-derived immunoreactive ACTH and endorphins. Nature 1986; 321: 881 – 882.

    PubMed  CAS  Google Scholar 

  238. Hokfelt T, Elfvin LG, Elde R, Schultzberg M, Goldstein M, Luft R. Occurrence of somatostatin-like immunoreactivity in some peripheral sympathetic noradrenergic neurons. Proc Natl Acad Sci USA 1977; 74: 3587 – 3591.

    PubMed  CAS  Google Scholar 

  239. Germain G, Ferre F. Hormones et parturition chez les primates. Ann Endocrinol (Paris) 1987; 48: 311 – 321.

    CAS  Google Scholar 

  240. Green DR, Wegmann TG. Beyond the immune system: The immunotrophic role of T cells in organ generation and regeneration. Prog Immunol 1986; 6: 1100 – 1112.

    Google Scholar 

  241. Rivier C, Vale W. In the rat, interleukin-l-alpha acts at the level of the brain and the gonads to interfere with gonadotropin and sex steroid secretion. Endocrinology 1989; 124: 2105 – 2109.

    PubMed  CAS  Google Scholar 

  242. Yamashita S, Kimura H, Ashizawa K, Nagayama Y, Hirayu H, Izumi M, Nagataki S. Interleukin-1 inhibits thyrotrophin-induced human thyroglobulin gene expression. J Endocrinol 1989; 122: 177 – 183.

    PubMed  CAS  Google Scholar 

  243. Brown R, Li Z, Vriend CY, Nirula R, Janz L, Falk J, Nance DM, Dyck DG, Greenberg AH. Suppression of splenic macrophage interleukin-1 secretion following intracerebroventricular injection of interleukin-1 p—evidence for pituitary adrenal and sympathetic control. Cell Immunol 1991; 132: 84 – 93.

    PubMed  CAS  Google Scholar 

  244. Beutler B, Milsark IW, Cerami A. Passive immunization against cachectin/ tumor necrosis factor protects mice from lethal effects of endotoxin. Science 1985; 229: 869 – 871.

    PubMed  CAS  Google Scholar 

  245. Beutler B, Cerami A. Cachectin (tumor necrosis factor): A macrophage hormone governing cellular metabolism and inflammatory response. Endocr Rev 1988; 9: 57 – 66.

    PubMed  CAS  Google Scholar 

  246. Gulick T, Chung MK, Pieper SJ, Lange LG, Schreiner GF. Interleukin 1 and tumor necrosis factor inhibit cardiac monocyte beta-adrenergic responsiveness. Proc Natl Acad Sci USA 1989; 86: 6753 – 6757.

    PubMed  CAS  Google Scholar 

  247. Sharp BM, Matta SG, Peterson PK, Newton R, Chao C, Mcallen K. Tumor necrosis factor–alpha is a potent ACTH secretagogue: Comparison to inter– leukin–1. Endocrinology 1989; 124: 3131 – 3133.

    CAS  Google Scholar 

  248. Woloski BMRNJ, Jamieson JC. Rat corticotropin, insulin, and thyroid hormone levels during the acute phase response to inflammation. Comp Biochem Physiol [A] 1987; 86: 15 – 19.

    CAS  Google Scholar 

  249. Woloski BMRNJ, Smith EM, Meyer WJ III, Fuller GM, Blalock JE. Corticotropin-releasing activity of monokines. Science 1985; 230: 1035 – 1037.

    PubMed  CAS  Google Scholar 

  250. Nagayama Y, Izumi M, Ashizawa K, Kiriyama T, Yokohama N, Morite S, Ohtakara S, Fukuta T, Eguchi K, Morimoto I, Okamoto I, Ihikawa N, Ito K, Nagataki S. Inhibitory effect of interferon-gamma on the response of human thyrocytes to thyrotropin (TSH) stimulation: Relationship between the response to TSH and the expression of DR antigen. J Clin Endocrinol Metab 1987; 64: 949 – 953.

    PubMed  CAS  Google Scholar 

  251. Orava M, Cantell K, Kauppia A, Vihko R. Interferon and serum thyroid hormones. Int J Cancer 1983; 31: 671 – 672.

    PubMed  CAS  Google Scholar 

  252. Orava M, Voutilainew R, Vihko R. Interferon-gamma inhibits steroidogenesis and accumulation of mRNA of the steroidogenic enzymes P450scc and P450cl7 in cultured porcine Leydig cells. Mol Endocrinol 1989; 3: 887 – 894.

    PubMed  CAS  Google Scholar 

  253. Pestka S, Langer JA, Zoon KC, Samuel CE. Interferons and their actions. Annu Rev Biochem 1987; 56: 727 – 777.

    PubMed  CAS  Google Scholar 

  254. Roosth J, Pollard RB, Brown SL, Meyer WJ. Cortisol stimulation by recombinant interferon-alpha2. J Neuroimmunol 1986; 12: 311 – 316.

    PubMed  CAS  Google Scholar 

  255. Shimizu F, Shimizu M, Kamiayama K. Inhibitory effect of interferon on the production of insulin. Endocrinology 1985; 117: 2081 – 2084.

    PubMed  CAS  Google Scholar 

  256. Stanton GJ, Weigent DA, Fleischmann WR, Dianzani F, Baron S. Interferon review. Invest Radiol 1987; 22: 259 – 273.

    PubMed  CAS  Google Scholar 

  257. Berczi I, ed. Pituitary Function and Immunity. Boca Raton, Florida: CRC Press; 1986.

    Google Scholar 

  258. Dantzer R, Kelley KW. Minireview. Stress and immunity: An integrated view of relationships between the brain and the immune system. Life Sci 1989; 44: 1995 – 2008.

    PubMed  CAS  Google Scholar 

  259. Marcos MAR, Sundblad A, Grendien A, Huetz F, Avrameas S, Coutinho A. The physiology of autoimmune reactivities. In: Melchers F, et al., eds. Progress in Immunology VII. Berlin: Springer-Verlag; 1989: 793 – 804.

    Google Scholar 

  260. Hess AD, Fischer AC. Immune mechanisms in cyclosporine–induced syngeneic graft–versus–host disease. Transplantation 1989; 48: 895 – 900.

    PubMed  CAS  Google Scholar 

  261. Butenandt O. Rheumatoid arthritis and growth retardation in children: Treatment with human growth hormone. Eur J Pediatr 1979; 130: 15 – 28.

    PubMed  CAS  Google Scholar 

  262. Allen RC, Jimenez M, Cowell CT. Insulin-like growth factor and growth hormone secretion in juvenile chronic arthritis. Ann Rheum Dis 1991; 50: 602 – 606.

    PubMed  CAS  Google Scholar 

  263. Asa SL, Bilbao JM, Kovacs K, Josse RG, Kreines K. Lymphocytic hypophysitis of pregnancy resulting in hypopituitarism: A distinct clinocopatho- logic entity. Ann Intern Med 1981; 95: 166 – 171.

    PubMed  CAS  Google Scholar 

  264. Ferrari C, Boghen M, Paracchi A, Rampini P, Raiteri F, Benco R, Romussi M, Codecasa F, Mucci M, Bianco M. Thyroid autoimmunity in hyperpro- lactinaemic disorders. Acta Endocrinol (Copenh) 1983; 104: 35 – 41.

    CAS  Google Scholar 

  265. Lever EG, McKerron CG. Auto-immune Addison’s disease associated with hyperprolactinaemia. Clin Endocrinol 1984; 21: 451 – 457.

    CAS  Google Scholar 

  266. Hedner LP, Bynke G. Endogenous iridocyclitis relieved during treatment with bromocriptine. Am J Ophthalmol 1985; 100: 618 – 619.

    PubMed  CAS  Google Scholar 

  267. Lavalle C, Loyo E, Paniagua R, Bermudez JA, Herrera J, Graef A, Gonzalez–Barcena D, Fraga A. Correlation study between prolactin and androgens in male patients with systemic lupus erythematosus. J Rheumatol 1987; 14: 268 – 272.

    PubMed  CAS  Google Scholar 

  268. Schauenstein K, Fassler R, Dietrich H, Schwarz S, Kromer G, Wick G. Disturbed immune-endocrine communication in autoimmune disease. Lack of corticosterone response to immune signals in obese strain chickens with sponaneous autoimmune thyroiditis. J Immunol 1987; 139: 1830 – 1833.

    PubMed  CAS  Google Scholar 

  269. MacPhee I AM, Antoni FA, Mason DW. Spontaneous recovery of rats from experimental allergic encephalomyelitis is dependent on regulation of the immune system by endogenous adrenal corticosteroids. J Exp Med 1989; 169: 431 – 445.

    PubMed  CAS  Google Scholar 

  270. Sternberg EM, Hill JM, Chrousos GP, Kamilaris T, Listwak SJ, Gold PW, Wilder RL. Inflammatory mediator–induced hypothalamic-pituitary-adrenal axis activation is defective in streptococcal cell wall arthritis-susceptible Lewis rats. Proc Natl Acad Sci USA 1989; 86: 2374 – 2378.

    PubMed  CAS  Google Scholar 

  271. Sternberg EM, Young WS III, Bernardini R, Calogero AE, Chrousos GP, Gold PW, Wilder RL. A central nervous system defect in biosynthesis of corticotropin–releasing hormone is associated with susceptibility to streptococcal cell wall-induced arthritis in Lewis rats. Proc Natl Acad Sci USA 1989; 86: 4771 – 4775.

    PubMed  CAS  Google Scholar 

  272. Cutolo M, Balleari E, Giusti M, Monachesi M, Accardo S. Sex hormone status of male patients with rheumatoid arthritis—evidence of low serum concentrations of testosterone at baseline and after human chorionic gonadotropin stimulation. Arthritis Rheum 1988; 31: 1314 – 1317.

    PubMed  CAS  Google Scholar 

  273. Feher KG, Feher T, Meretey K. Interrelationship between the immunological and steroid hormone parameters in rheumatoid arthritis. Exp Clin Endocrinol 1986; 87: 38 – 42.

    PubMed  CAS  Google Scholar 

  274. Sambrook PN, Eisman JA, Champion GD, Pocock NA. Sex hormone status and osteoporosis in postmenopausal women with rheumatoid arthritis. Arthritis Rheum 1988; 31: 973 – 978.

    PubMed  CAS  Google Scholar 

  275. McMurray R, Keisler D, Kanuckel K, Izui S, Walker SE. Prolactin influences autoimmune disease activity in the female B/W mouse. J Immunol 1991; 147: 3780 – 3787.

    PubMed  CAS  Google Scholar 

  276. Jara–Quezada L, Graef A, Lavalle C. Prolactin and gonadal hormones during pregnancy in systemic lupus erythematosus. J Rheumatol 1991; 18: 349 – 353.

    Google Scholar 

  277. Folomeev M, Prokaeva T, Nassaonova V, Nassonov E, Masenko E, Ovtraht N. Prolactin levels in men with SLE and RA. J Rheumatol 1990; 17: 1569 – 1570.

    PubMed  CAS  Google Scholar 

  278. Asa SL. The pathology of autoimmune endocrine disorders. In: Berczi I, Kovacs K, eds. Hormones and Immunity. Lancaster, UK: MTP Press; 1987: 247 – 271.

    Google Scholar 

  279. Bottazzo GF, Mirakian R, De Lazzari F, Mauerhoff T, Todd I, Pujol- Borrell R. Autoimmune endocrine/organ–specific disorders: Clinical diagnostic relevance and novel approaches to pathogenesis. In: Berczi I, Kovacs K, eds. Hormones and Immunity. Lancaster, UK: MTP Press; 1987: 296 – 311.

    Google Scholar 

  280. Jankovic BD. Neuroimmunomodulation: Facts and dilemmas. Immunol Lett 1989; 21: 101 – 118.

    PubMed  CAS  Google Scholar 

  281. Welsh JB, Szabo M. Impaired suppression of growth hormone release by somatostatin in cultured adenohypophyseal cells of spontaneously diabetic BB/W rats. Endocrinology 1988; 123: 2230 – 2234.

    PubMed  CAS  Google Scholar 

  282. Leff AR. Toward the formulation of a theory of asthma. Perspect Biol Med 1990; 33: 292 – 302.

    PubMed  CAS  Google Scholar 

  283. Szentivanyi A. The beta-adrenergic theory of the ectopic abnormality in bronchial asthma. J Allergy 1968; 42: 203 – 232.

    Google Scholar 

  284. Walker KB, Serwonska MH, Valone FH, Harkonen WS, Frick OL, Scriven KH, Ratnoff WD, Browning JG, Payan DG, Goetzi EJ. Distinctive patterns of release of primary afferent neuropeptides after nasal challenge of allergic subjects with rye grass antigen. J Clin Immunol 1988; 8: 108 – 113.

    PubMed  CAS  Google Scholar 

  285. Kidd BL, Mapp PI, Gibson SJ, Polak JM, O’Higgins F, Buckland-Wright JC, Blake DR. A neurogenic mechanism for symmetrical arthritis. Lancet 1989; 2: 1128 – 1130.

    PubMed  CAS  Google Scholar 

  286. Frayn KN. Hormonal control of metabolism in trauma and sepsis. Clin Endocrinol (Oxf) 1986; 24: 577 – 599.

    CAS  Google Scholar 

  287. Leshin LS, Malven PV. Bacteremia-induced changes in pituitary hormone release and effect of naloxone. Am J Physiol 1984; 247: E585 – E591.

    PubMed  CAS  Google Scholar 

  288. Smith BB, Wagner WC. Effect of Escherichia coliendotoxin and thyrotropin–releasing hormone on prolactin in lactating sows. Am J Vet Res 1985; 46: 175 – 180.

    PubMed  CAS  Google Scholar 

  289. Yki–Jarvinen H, Sammalkorpi K, Koivisto VA, Nikkila EA. Severity, duration, and mechanisms of insulin resistance during acute infections. J Clin Endocrinol Metab 1989; 69: 317 – 323.

    Google Scholar 

  290. Banck G, Forsgren A. Many bacterial species are mitogenic for human blood lymphocytes. Scand J Immunol 1978; 8: 347 – 354.

    PubMed  CAS  Google Scholar 

  291. Cavaillon JM. The role of bacterial polyclonal activators in autoimmunity. Nouv Presse Med 1982; 11: 3125 – 3129.

    PubMed  CAS  Google Scholar 

  292. Denicoff KD, Rubinow DR, Papa MZ, Simpson C, Seipp CA, Lotze MT, Chang AE, Rosenstein D, Rosenberg SA. The neuropsychiatric effects of treatment with interleukin-2 and lymphokine activated killer cells. Ann Intern Med 1987; 107: 293 – 300.

    PubMed  CAS  Google Scholar 

  293. McDonald EM, Mann AH, Thomas HC. Interferons as mediators of psychiatric morbidity. Lancet 1987; 2: 1175 – 1177.

    PubMed  CAS  Google Scholar 

  294. Grau GE, Fajardo LF, Piguet PF, Allet B, Lambert PH, Vassalli P. Tumor necrosis factor (cachectin) as an essential mediator in murine cerebral malaria. Science 1987; 237: 1210 – 1212.

    PubMed  CAS  Google Scholar 

  295. Havell EA. Evidence that tumor necrosis factor has an important role in antibacterial resistance. J Immunol 1989; 143: 2894 – 2899.

    PubMed  CAS  Google Scholar 

  296. Sheppard BC, Fraker DL, Norton JA. Prevention and treatment of endotoxin and sepsis lethality with recombinant human tumor necrosis factor. Surgery 1989; 106: 156 – 161.

    PubMed  CAS  Google Scholar 

  297. Ramachandra RN, Sehon AH, Berczi I. Neuro-hormonal host defence in endotoxin shock. Brain Behav Immun 1992; 6: 157 – 169.

    PubMed  CAS  Google Scholar 

  298. Bertini R, Bianchi M, Ghezzi P. Adrenalectomy sensitizes mice to the lethal effects of interleukin-1 and tumor necrosis factor. J Exp Med 1988; 167: 1708 – 1712.

    PubMed  CAS  Google Scholar 

  299. Zuckerman SH, Shellhaas J, Butler LD. Differential regulation of lipopolysaccharide-induced interleukin-1 and tumor necrosis factor synthesis. Effects of endogenous and exogenous glucocorticoids and the role of the pituitary–adrenal axis. Eur J Immunol 1989; 19: 301 – 305.

    PubMed  CAS  Google Scholar 

  300. Bertok L. Bacterial endotoxins and nonspecific resistance. In: Ninnemann JL, ed. Traumatic Injury. Baltimore: University Park Press; 1983: 119 – 123.

    Google Scholar 

  301. Nagy E, Chalmers IM, Baragar FD, Friesen HG, Berczi I. Prolactin deficiency in rheumatoid arthritis. J Rheum 1991; 18: 1662 – 1668.

    PubMed  CAS  Google Scholar 

  302. Tracey KJ, Lowry SF, Cerami A. Cachectin: A hormone that triggers acute shock and chronic cachexia. J Infect Dis 1988; 157: 413 – 420.

    PubMed  CAS  Google Scholar 

  303. Berczi I. Cancer immunology-quo vadis? An overview. J Exp Clin Cancer Res 1983; 2: 135 – 144.

    Google Scholar 

  304. Harbour D, Blalock JE. Lymphocytes and lymphocytic hormones in pregnancy. Prog Neuroendocrinimmunol 1989; 2: 55 – 63.

    Google Scholar 

  305. Potter EL, Craig JM. Pathology of the Fetus and the Infant, 3rd ed. Chicago: Year Book; 1975.

    Google Scholar 

  306. Jerne NK. Towards a network theory of the immune system. Ann Immunol (Paris) 1974; 125C: 373 – 389.

    CAS  Google Scholar 

  307. Berthelsen S, Pettinger WA. Functional basis for classification of alpha- adrenergic receptors. Life Sci 1977; 21: 595 – 606.

    PubMed  CAS  Google Scholar 

  308. Motulsky HJ, Insel PA. Adrenergic receptors in man direct identification, physiologic regulation, and clinical alteractions. N Engl J Med 1982; 307: 18 – 29.

    PubMed  CAS  Google Scholar 

  309. Crabtree GR. Contingent genetic regulatory events in T lymphocyte activation. Science 1989; 243: 355 – 361.

    PubMed  CAS  Google Scholar 

  310. Tordai A, Sarkadi B, Gorog G, Gardos G. Inhibition of the CD3-mediated calcium signal by protein kinase C activators in human T (Jurkat) lympho- blastoid cells. Immunol Lett 1989; 20: 47 – 52.

    PubMed  CAS  Google Scholar 

  311. Rebor RW, Miyake A, Low TLK, Goldstein AL. Thymosin stimulates secretion of luteinizing hormone releasing factor. Science 1981; 214: 699 – 673.

    Google Scholar 

  312. Malaise MG, Hazee-Hagelstein MT, Reuter AM, Vrinds-Gevaert Y, Goldstein G, Franchimont P. Thymopoietin and thymopentin enhance the levels of ACTH, beta–endorphin, and beta-lipotropin from rat pituitary cells in vitro. Acta Endocrinol 1987; 115: 455 – 460.

    PubMed  CAS  Google Scholar 

  313. Milenkovic L, McCann SM. Effects of thymosin alpha-1 on pituitary hormone release. Neuroendocrinology 1992; 55: 14 – 19.

    PubMed  CAS  Google Scholar 

  314. Badamchian M, Spangelo BL, Damavandy T, MacLeod RM, Goldstein AL. Complete amino acid sequence analysis of a peptide isolated from the thymus that enhances release of growth hormone and prolactin. Endocrinology 1991; 128: 1580 – 1588.

    PubMed  CAS  Google Scholar 

  315. Nakamura H, Motoyoshi S, Kadokawa T. Anti–inflammatory action of interleukin 1 through the pituitary–adrenal axis in rats. Eur J Pharmacol 1988; 141: 67 – 73.

    Google Scholar 

  316. Tsagarakis S, Gillies G, Rees LH, Besser M, Grossman A. Interleukin-1 directly stimulates the release of corticotrophin releasing factor from rat hypothalamus. Neuroendocrinology 1989; 49: 98 – 101.

    PubMed  CAS  Google Scholar 

  317. Uehara A, Gottschall PE, Dahl RR, Arimura A. Interleukin-1 stimulates ACTH release by an indirect action which requires endogenous corticotropin releasing factor. Endocrinology 1987; 121: 1580 – 1582.

    PubMed  CAS  Google Scholar 

  318. Weidenfeld J, Abramsky O, Ovadia H. Effect of interleukin-1 on ACTH and corticosterone secretion in dexamethasone and adrenalectomized pre– treated male rats. Neuroendocrinology 1989; 50: 650 – 654.

    PubMed  CAS  Google Scholar 

  319. Yamaguchi M, Yoshimoto Y, Komura H, Koike K, Matsuzaki N, Hirota K, Miyake A, Tanizawa O. Interleukin-1-beta and tumour necrosis factor-alpha stimulate the release of gonadotropin-releasing hormone and interleukin-6 by primary cultured rat hypothalamic cells. Acta Endocrinol 1990; 123: 476 – 480.

    PubMed  CAS  Google Scholar 

  320. Kalra PS, Fuentes M, Sahu A, Kalra SP. Endogenous opioid peptides mediate the interleukin-l-induced inhibition of the release of luteinizing hormone (LH)-releasing hormone and LH. Endocrinology 1990; 127: 2381 – 2386.

    PubMed  CAS  Google Scholar 

  321. Bernton EW, Beach JE, Holaday JW, Smallridge RC, Fein HG. Release of multiple hormones by a direct action of interleukin-1 on pituitary cells. Science 1987; 238: 519 – 521.

    PubMed  CAS  Google Scholar 

  322. Spangelo BL, Jarvis WD, Judd AM, MacLeod RM. Induction of interleukin- 6 release by interleukin-1 in rat anterior pituitary cells in vitro—evidence for an eicosanoid–dependent mechanism. Endocrinology 1991; 129: 2886 – 2894.

    PubMed  CAS  Google Scholar 

  323. Fukata J, Usui T, Naitoh Y, Nakai Y, Imura H. Effects of recombinant human interleukin–la, –1(3, –2, and –6 on ACTH synthesis and release in the mouse pituitary tumour cell line AtT-20. J Endocrinol 1989; 122: 33 – 39.

    PubMed  CAS  Google Scholar 

  324. Fagarasan MO, Aiello F, Muegge K, Durum S, Axelrod J. Interleukin 1 induces P-endorphin secretion via Fos and Jun in AtT–20 pituitary cells. Proc Natl Acad Sci USA 1990; 87: 7871 – 7874.

    PubMed  CAS  Google Scholar 

  325. Karanth S, McCann SM. Anterior pituitary hormone controlled by interleukin-2. Proc Natl Acad Sci USA 1991; 88: 2961 – 2965.

    PubMed  CAS  Google Scholar 

  326. Smith LR, Brown SL, Blalock JE. Interleukin-2 induction of ACTH secretion: Presence of an interleukin–2 receptor alpha-chain-like molecule on pituitary cells. J Neuroimmunol 1989; 21: 249 – 254.

    PubMed  CAS  Google Scholar 

  327. Denicoff KD, Durkin TM, Lotze MT, Quinlan PE, Davis CL, Listwak SJ, Rosenberg SA, Rubinow DR. The neuroendocrine effects of interleukin–2 treatment. J Clin Endocrinol Metab 1989; 69: 402 – 410.

    PubMed  CAS  Google Scholar 

  328. Lissoni P, Barni S, Archili C, Cattaneo G, Rovelli F, Conti A, Maestroni GJ, Tancini G. Endocrine effects of a 24-hour intravenous infusion of interleukin-2 in the immunotherapy of cancer. Anticancer Res 1990; 10: 753 – 758.

    PubMed  CAS  Google Scholar 

  329. Lyson K, Milenkovic L, McCann SM. The stimulatory effect of interleukin 6 on corticotropin-releasing hormone and thyrotropin-releasing hormone release in vitro. Prog Neuroendocrinimmunol 1991; 4: 161 – 165.

    Google Scholar 

  330. Vankelecom H, Carmeliet P, Heremans H, Van Damme J, Dijkmans R, Billian A, Denef C. Interferon–y inhibits stimulated adrenocorticotropin, prolactin, and growth hormone secretion in normal rat anterior pituitary cell cultures. Endocrinology 1990; 126: 2919 – 2926.

    Google Scholar 

  331. Gonzalez MC, Riedel M, Rettori V, Yu WH, McCann SM. Effect of recombinant human y-interferon on the release of anterior pituitary hormones. Prog Neuroendocrinimmunol 1990; 3: 49 – 54.

    Google Scholar 

  332. Gonzalez MC, Aguila MC, McCann SM. In vitro effects of recombinant human y-interferon on growth hormone release. Prog Neuroendocrinimmunol 1991; 4: 222 – 227.

    Google Scholar 

  333. Pang XP, Hershman JM, Mirell CJ, Pe Kary AE. Impairment of hypothalamic-pituitary-thyroid function in rats treated with human recombinant tumor necrosis factor-a (cachectin). Endocrinology 1989; 125: 76 – 84.

    PubMed  CAS  Google Scholar 

  334. Yamaguchi M, Sakata M, Matsuzaki N, Koike K, Miyake A, Tanizawa O. Induction by tumor necrosis factor-alpha of rapid release of immunoreactive and bioactive luteinizing hormone from rat pituitary cell in vitro. Neuro-endocrinology 1990; 52: 468 – 472.

    CAS  Google Scholar 

  335. Gaillard RC, Turnill D, Sappino P, Muller AF. Tumor necrosis factor ainhibits the hormonal response of the pituitary gland to hypothalamic releasing factors. Endocrinology 1990; 127: 101 – 106.

    PubMed  CAS  Google Scholar 

  336. D’Urso R, Falaschi P, Canfalone G, Carusi E, Proietti A, Barnaba V, Balsano F. Neuroendocrine effects of recombinant a interferon administration in humans. Prog Neuroendocrinimmunol 1991; 4: 20 – 25.

    Google Scholar 

  337. Muller H, Hammes E, Hiemke C, Hess G. Interferon-alpha-2-induced stimulation of ACTH and Cortisol secretion in man. Neuroendocrinology 1991; 54: 499 – 503.

    PubMed  CAS  Google Scholar 

  338. Bernardini R, Kamilaris TC, Calogero AE, Johnson EO, Gomez MT, Gold PW, Chrousos GP. Interactions between tumor necrosis factor-a, hypothalamic corticotropin-releasing hormone, and adrenocorticotropin secretion in the rat. Endocrinology 1990; 126: 2876 – 2881.

    PubMed  CAS  Google Scholar 

  339. Murata T, Ying SY. Transforming growth factor-P and activin inhibit basal secretion of prolactin in a pituitary monolayer culture system. Proc Soc Exp Biol Med 1991; 198: 599 – 605.

    PubMed  CAS  Google Scholar 

  340. Delidow BC, Billis WM, Agarwal P, White BA. Inhibition of prolactin gene transcription by transforming growth factor–(3 in GH3 cells. Mol Endocrinol 1991; 5: 1716 – 1722.

    PubMed  CAS  Google Scholar 

  341. Elsasser TH, Caperna TJ, Fayer R. Tumor necrosis factor— a affects growth hormone secretion by a direct pituitary interaction. Proc Soc Exp Biol Med 1991; 198: 547 – 554.

    PubMed  CAS  Google Scholar 

  342. Camoratto AM, Grandison L. Platelet-activating factor stimulates prolactin release from dispersed rat anterior pituitary cells in vitro. Endocrinology 1989; 124: 1502 – 1506.

    PubMed  CAS  Google Scholar 

  343. Bernardini R, Calogero AE, Ehrlich YH, Brucke T, Chrousos GP, Gold PW. The alkylether phospholipid platelet-activating factor is a stimulator of the hypothalamic-pituitary-adrenal axis in the rat. Endocrinology 1989; 125: 1067 – 1073.

    PubMed  CAS  Google Scholar 

  344. Rougeot C, Junier MP, Minary P, Weidenfeld J, Braquet P, Dray F. Intracerebroventricular injection of platelet–activating factor induces secretion of adrenocorticotropin, beta-endorphin, and corticosterone in conscious rats: A possible link between the immune and nervous systems. Neuroendocrinology 1990; 51: 267 – 275.

    PubMed  CAS  Google Scholar 

  345. Sullivan NJ, Tashjian AH Jr. Platelet-derived growth factor selectively decreases prolactin production in pituitary cells in culture. Endocrinology 1983; 113: 639 – 645.

    PubMed  CAS  Google Scholar 

  346. Drouhault R, Abrous N, David JP, Dufy B. Bradykinin parallels thyrotropin-releasing hormone actions on prolactin release from rat anterior pituitary cells. Neuroendocrinology 1987; 46: 360 – 364.

    PubMed  CAS  Google Scholar 

  347. Jones TH, Brown BL, Dobson PRM. Bradykinin stimulates phosphoinositide metabolism and prolactin secretion in rat anterior pituitary cells. J Mol Endocrinol 1989; 2: 47 – 53.

    PubMed  CAS  Google Scholar 

  348. Knigge U, Bach FW, Matzen S, Bang P, Warberg J. Effect of histamine on the secretion of pro–opiomelancortin derived peptides in rats. Acta Endocrinol 1988; 119: 312 – 319.

    PubMed  CAS  Google Scholar 

  349. Kjaer A, Knigge U, Warberg J. The prolactin releasing effect of histamine is unrelated to its vascular action. Acta Endocrinol 1990; 122: 49 – 54.

    PubMed  CAS  Google Scholar 

  350. Donoso AE, Zarate MB. Release of prolactin and luteinizing hormone by histamine agonists in ovariectomized, steroid–treated rats under ether anesthesia. Exp Brain Res 1983; 52: 277 – 280.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Berczi, I. (1994). Hormonal Interactions Between the Pituitary and Immune Systems. In: Grossman, C.J. (eds) Bilateral Communication Between the Endocrine and Immune Systems. Endocrinology and Metabolism, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2616-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2616-1_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7608-1

  • Online ISBN: 978-1-4612-2616-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics