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Notation 

Z(N) = integers mod N = Z/ NZ. 
If A is an abelian group, we usually denoted by AN the elements x E A 

such that Nx = O. Thus for a prime p, we denote by Ap the elements of order 
p. However, we also use p in this position for indexing purposes, so we rely 
to some extent on the context to make the intent clear. In his book, Shimura 
uses A [p] for the kernel of p, and more generally, if A is a module 
over a ring, uses A[a] for the kernel of an ideal a in A. The brackets are 
used also in other contexts, like operators, as in Lubin-Tate theory. There is 
a dearth of symbols and positions, so some duplication is hard to avoid. 

We let A(N) = A/NA. We let A(p) be the subgroup of A consisting of all 
elements annihilated by a power of p. 

xi 



Introduction 

Kummer's work on cyclotomic fields paved the way for the development of 
algebraic number theory in general by Dedekind, Weber, Hensel, Hilbert, 
Takagi, Artin and others. However, the success of this general theory has 
tended to obscure special facts proved by Kummer about cyclotomic fields 
which lie deeper than the general theory. For a long period in the 20th century 
this aspect of Kummer's work seems to have been largely forgotten, except 
for a few papers, among which are those by Pollaczek [Po], Artin-Hasse 
[A-H] and Vandiver [Va]. 

In the mid 1950's, the theory of cyclotomic fields was taken up again by 
Iwasawa and Leopoldt. Iwasawa viewed cyclotomic fields as being analogues 
for number fields of the constant field extensions of algebraic geometry, and 
wrote a great sequence of papers investigating towers of cyclotomic fields, 
and more generally, Galois extensions of number fields whose Galois group 
is isomorphic to the additive group of p-adic integers. Leopoldt concentrated 
on a fixed cyclotomic field, and established various p-adic analogues of the 
classical complex analytic class number formulas. In particular, this led him 
to introduce, with Kubota, p-adic analogues of the complex L-functions 
attached to cyclotomic extensions of the rationals. Finally, in the late 1960's, 
Iwasawa [Iw 11] made the fundamental discovery that there was a close 
connection between his work on towers of cyclotomic fields and these p-adic 
L-functions of Leopoldt - Kubota. 

The classical results of Kummer, Stickelberger, and the Iwasawa-Leopoldt 
theories have been complemented by, and received new significance from the 
following directions: 

1. The analogues for abelian extensions of imaginary quadratic fields in 
the context of complex multiplication by Novikov, Robert, and Coates
Wiles. Especially the latter, leading to a major result in the direction of the 

xiii 



Introduction 

Birch-Swinnerton-Dyer conjecture, new insight into the explicit reciprocity 
laws, and a refinement of the K ummer-Takagi theory of units to all levels. 

2. The development by Coates, Coates-Sinnott and Lichtenbaum of an 
analogous theory in the context of K-theory. 

3. The development by Kubert-Lang of an analogous theory for the units 
and cuspidal divisor class group of the modular function field. 

4. The introduction of modular forms by Ribet in proving the converse of 
Herbrand's theorem. The connection between cyclotomic theory and modular 
forms reached a culmination in the work of Mazur-Wiles, who proved the 
"main conjecture". This is one of the greatest achievements of the modern 
period of mathematics. 

5. The connection between values of zeta functions at negative integers 
and the constant terms of modular forms starting with Klingen and Siegel, 
and highly developed to congruence properties of these constant terms by 
Serre, for instance, leading to the existence of the p-adic L-function for 
arbitrary totally real fields. 

6. The construction of p-adic zeta functions in various contexts of elliptic 
curves and modular forms by Katz, Manin, Mazur, Vishik. 

7. The connection with rings of endomorphisms of abelian varieties or 
curves, involving complex multiplication (Shimura-Taniyama) and/or the 
Fermat curve (Davenport-Hasse-Weil and more recently Gross-Rohrlich). 

My two volumes on Cyclotomic Fields provided a systematic introduction 
to the basic theory. No such introduction existed when they first came out. 
Since then, Washington's book has appeared, covering some of the material 
but emphasizing different things. As my books went out of print, Springer
Verlag and I decided to continue making them available in a single volume 
for the convenience of readers. No changes have been made except for some 
corrections, for which I am indebted to Larry Washington, Neal Koblitz, and 
others. Thus the book is kept essentially purely cyclotomic, and as elementary 
as possible, although in a couple of places we use class field theory. No 
connection is made with modular forms. This would require an entire book 
by itself. However, in a major development, a purely cyclotomic proof of the 
"main conjecture", the Mazur-Wiles theorem, has been found, and I am very 
much indebted to Karl Rubin for having given me an appendix containing 
a self-contained proof, based on work of Thaine, Kolyvagin and Rubin himself. 
For details of the history, see Rubin's own introduction to his appendix. 

My survey article [L 5] provides another type of introduction to 
cyclotomic theory. First, at the beginning in §2 it gives a quick and 
efficient summary of main results, stripped of their proofs which neces
sarily add bulk. Second, this article is also useful to get a perspective on 
cyclotomic fields in connection with other topics, for instance having to 
do with modular curves and elliptic curves. In that survey, I emphasize 
questions about class groups and unit groups in a broader context than 
cyclotomic fields. Specifically, in Theorem 4.2 of [L 5] I state how Mazur-
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Introduction 

Wiles construct certain class fields (abelian unramified extensions) of 
cyclotomic fields by means of torsion points on the Jacobians of modular 
curves. The existence of class fields of certain degrees is predicted ab
stractly by the pure cyclotomic theory, but the explicit description of the 
irrationalities generating such class fields provides an additional basic 
structure. In that sense, the purely cyclotomic proof of the "main con
jecture", and even the "main conjecture" itself, do not supersede and are 
not substitutes for the Mazur-Wiles theory. 

The first seven chapters of the present book, together with Chapters 
10, 11, 12 and 13 and Rubin's appendix develop systematically the basic 
structure of units and ideal class groups in cyclotomic fields, or possibly 
Galois extensions whose Galois group is isomorphic to the group of 
p-adic integers. We look at the ideal class group in fields such as Q(llpn) 
where Ilpn is the group of pn-th roots of unity. We decompose these 
groups, as well as their projective limits, into eigenspaces for characters of 
(ZjpZ)*, and we attempt to describe as precisely as possible the structure 
of these eigenspaces. For instance, let hp denote the class number of Q(llp). 
There is already a natural decomposition hp = h; h;, where h; is the 
order of the (+ I)-eigenspace, and h; is the order of the (-I)-eigenspace 
for complex conjugation, and similarly for pn instead of p. Part of the 
problem is to determine as accurately as possible the p-divisibility of h; 
and h;, and also asymptotically for pn instead of p when n ---+ 00. 

A number of chapters are logically independent of each other. For instance, 
readers might want to read Chapter lOon measures and Iwasawa power series 
immediately after Chapter 4, since the ideas of Chapter 10 are continuations 
of those of Chapter 4. This leads naturally into the Ferrero-Washington 
theorems, proving Iwasawa's conjecture that the p-primary part of the ideal 
class group in the cyclotomic Zp-extension of a cyclotomic field grows linearly 
rather than exponentially. This is first done for the minus part (the minus 
referring, as usual, to the eigenspace for complex conjugation), and then it 
follows for the plus part because of results bounding the plus part in 
terms of the minus part. Kummer had already proved such results. An
other proof for the Ferrero-Washington theorem was subsequently given 
by Sinnott [Sin 2]. 

The first seven chapters suffice for the proof of the "main conjecture" 
in Rubin's appendix, which does not use the Ferrero-Washington theorem. 
However, using that theorem in addition gives a clearer picture of the 
projective limit of the ideal class groups as module over the projective 
limit of the group rings Zp[Gn ], where Gn is the Galois group of Q(llpn) 
over Q(llp), and therefore also as module over Zp. This module plays a 
role analogous to the Jacobian in the theory of curves. The Ferrero
Washington theorem states that up to a finite torsion group, this module 
is free of finite rank over Zp. The "main conjecture" gives some descrip
tion of the characteristic polynomial of a generator for the Galois group 
playing an analogous role to the Frobenius endomorphism in the theory 
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of curves. Questions then arise whether these characteristic polynomials 
behave in ways similar to those in the theory of curves over finite fields. 
These questions pertain both to the nature of these polynomials, e.g. 
their coefficients and their roots (Riemann type hypotheses); and also 
concerning the behavior of these polynomials for varying p. Cf. [L 5], 
p.274. 

After dealing mostly with ideal class groups and units, we turn to a 
more systematic study of Gauss sums. We do what amounts to "Dwork 
theory", to derive the Gross-Koblitz formula expressing Gauss sums in 
terms of the p-adic gamma function. This lifts Stickelberger's theorem 
p-adically. Half of the proof relies on a course of Katz, who had first 
obtained Gauss sums as limits of certain factorials, and thought of using 
Washnitzer-Monsky cohomology to prove the Gross-Koblitz formula. 

Finally, we apply these latter results to the Ferrero-Greenberg theorem, 
showing that L~(O, X) =1= 0 under the appropriate conditions. We take this 
opportunity to introduce a technique of Washington, who defined the p-adic 
analogues of the Hurwitz partial zeta functions, in a way making it possible 
to parallel the treatment from the complex case to the p-adic case, but in a 
much more efficient way. 

Some basic conjectures remain open, notably the Kummer-Vandiver 
conjecture that h; is prime to p. The history of that conjecture is inter
esting. Kummer made it in no uncertain terms in a letter to Kronecker 
dated 28 December 1849. Kummer first tells Kronecker off for not under
standing properly what he had previously written about cyclotomic fields 
and Fermat's equation, by stating "so liegt hierin ein grosser Irrthum 
deinerseits ... "; and then he goes on (Collected Works, Vol. 1, p. 84): 

Deine auf dieser falschen Ansicht bertihenden Folgerungen fallen somit von 
selbst weg. Ich gedenke vielmehr den Beweis des Fermatschen Satzes auf 
folgendes zu grunden: 
1. Auf den noch zu beweisenden Satz, dass es flir die Ausnahmszahlen A stets 

Einheiten giebt, welche ganzen Zahlen congruent sind flir den Modul .!c, 
ohne darum ). te Potenzen anderer Einheiten zu sein, oder was dassel be ist, 
dass hier niemals DIA durch A theilbar wird. 

In our notation: A = p and DjJ = h;. Kummer wrote DjJ as a quo
tient of regulators, expressing the index of the cyclotomic units in the 
group of all units. This index happens to coincide with h; (cf. Theorem 
5.1 of Chapter 3). Thus Kummer rather expected to prove the conjecture. 
According to Barry Mazur, who reviewed Kummer's complete works 
when they were published by Springer-Verlag, Kummer never mentioned 
the conjecture in a published paper, but he mentioned it once more in 
another letter to Kronecker on 24 April 1853 (loc cit p. 93): 

Hierein hiingt auch zusammen, dass eines meiner Haupresultate auf welches 
ich seit einem Vierteljahre gebaut hatte, dass der zweite Faktor der Klassen-
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zahl DjA niemals durch A theilbar ist, falsch ist oder wenigstens unbewiesen ... 
Ich werde also vorlaufig hauptsachlich meinen Fleiss nur auf die Weiter
fiihrung der Theorie der complexen Zahlen wenden, und dann sehen ob etwas 
daraus entsteht, was auch uber jene Aufgabe Licht verbreitet. 

So the situation was less clear than Kummer thought at first. Much later, 
Vandiver made the same conjecture, and wrote [Va 1]: 

... However, about twenty-five years ago I conjectured that this number was never 
divisible by I [referring to h+]. Later on, when I discovered how closely the question 
was related to Fermat's Last Theorem, I began to have my doubts, recalling how 
often conjectures concerning the theorem turned out to be incorrect. When I visited 
Furtwangler in Vienna in 1928, he mentioned that he had conjectured the same 
thing before I had brought up any such topic with him. As he had probably more 
experience with algebraic numbers than any mathematician of his generation, I felt 
a little more confident .... 

On the other hand, many years ago, Feit was unable to understand a step 
in Vandiver's "proof" that p r h+ implies the first case of Fermat's Last 
Theorem, and stimulated by this, Iwasawa found a precise gap which is such 
that there is no proof. 

The Iwasawa-Leopoldt conjecture that the p-primary pllrt of C- is cyclic 
over the group ring, and is therefore isomorphic to the group ring modulo 
the Stickelberger ideal, also remains open. For prime level, Leopoldt and 
lwasawa have shown that this is a consequence of the Kummer-Vandiver 
conjecture. Cf. Chapter IV, §4. 

Much of the cyclotomic theory extends to totally real number fields, as 
theorems or conjecturally. We do not touch on this aspect of the question. 
Cf. Coates' survey paper [Co 3], and especially Shintani [Sh]. 

Coates, Ribet, and Rohrlich had read the original manuscript and had 
made a large number of suggestions for improvement. I thank them again, 
as well as Koblitz and Washington, for their suggestions and corrections. 

New Haven, 1989 SERGE LANG 
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